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Abstract

There is limited data in the literature to explicitly support the notion that neurons in OFC are truly action-independent in
their coding. We set out to specifically test the hypothesis that OFC value-related neurons in area 13 m of the monkey do
not carry information about the action required to obtain that reward – that activity in this area represents reward values in
an abstract and action-independent manner. To accomplish that goal we had two monkeys select and execute saccadic eye
movements to 81 locations in the visual field for three different kinds of juice rewards. Our detailed analysis of the response
fields indicates that these neurons are insensitive to the amplitude or direction of the saccade required to obtain these
rewards. Our data thus validate earlier proposals that neurons of 13 m in the OFC encode subjective value independent of
the saccadic action required to obtain that reward.
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Introduction

The orbitofrontal cortex (OFC) plays a prominent role in

decision-making research. Most recently, Walker’s area 13 m, the

most medial section of the OFC, has been described as carrying

information about goods in an economic sense rather than

information about actions [1]. The area receives projections from

a wide range of areas including the gustatory cortex, amygdala,

rhinal sulcus, thalamus, ventral tegmental area, premotor areas,

along with other prefrontal cortical areas [2,3]. Early electrophys-

iological studies noted strong responses in the OFC to gustatory

information, such as flavors, presumably due to heavy projections

from the gustatory cortex [4].

Lesion studies of the OFC of rhesus macaques have suggested a

role for this area in updating reward value representations that are

presumed to guide decision-making. A number of studies have

shown that monkeys have a difficult time extinguishing previously

learned reward values following lesions to OFC [5–7]. Recent

electrophysiological data supports a role for OFC in value and

decision-making. These studies have suggested that individual

neurons encode the magnitude of specific rewards. Padoa-

Schioppa and colleagues (2008) [8] have shown that different

neurons in the OFC respond to different flavors of juice reward.

But they also showed that the firing rates of these neurons encode

the magnitude or desirability of rewards in a more abstract sense.

Studies like these have given rise to the notion that neurons in

the OFC encode the properties of rewards in their firing rates but

that these firing rates are independent of the actions required to
obtain those rewards [9]. The critical idea presented in these

papers is that neurons are highly selective for reward-type but

completely unselective for the actions that yield those rewards.

This conclusion has led to the generation of new models that rest

on the idea that decision-making both takes place in Walker’s area

13 m of the OFC (amongst other places) and that this process of

decision-making is action-independent.

Despite these theoretical steps, there is limited data in the

literature to explicitly support the notion that neurons in OFC are

truly action-independent in their coding. In fact, those who

conduct research in rats suggest significant spatial selectivity of

OFC neurons in areas some believe to be homologous to area

13 m [10,11]. Literature from monkey electrophysiology has also

not yet come to a clear consensus on the spatial selectivity of OFC

neurons [11–16]. Coarse testing of neurons in areas 13 m and 14

by one group has suggested that close to 30% of neurons show

lateralization of responses (a preference for left or right

movements) [12]. In contrast, other labs using similar approaches

have seen little evidence for spatial tuning [13,16].

Here we set out to test the hypothesis that OFC value-related

neurons specifically in area 13 m do not carry information about

the action required to obtain that reward – that activity in this area

represents reward values in an abstract and action-independent

manner. To accomplish that goal we had monkeys select and

execute saccadic eye movements to 81 locations in the visual field

for three different kinds of juice rewards. These data allowed us to

construct detailed response fields for these neurons during a

rewarded visuomotor task. As in previous studies, we found that

13 m neurons were highly selective for reward type. Our detailed

analysis of the response fields indicates that these neurons are

insensitive to the amplitude or direction of the saccade required to

obtain these rewards. Our data thus appear to validate earlier

proposals that neurons of the OFC in Walker’s area 13 m encode

subjective value independent of the saccadic action required to

obtain that reward.

Materials and Methods

Ethics Statement
All animal procedures were developed in association with the

New York University Veterinarian, and were approved by the

New York University Institutional Animal Care and Use
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Committee. Monkey subjects were cared for by a team of

veterinarians and veterinary technicians including an enrichment

specialist who provided daily toys and treats for the animals along

with periodic entertainment in the form of a radio or cartoon

programming. Analgesia and anesthesia were always employed

before any procedure that might induce more than momentary

pain or distress. The subjects were pair-housed and received ad

libitum food. Subjects were motivated by a fluid regulation design.

Following the establishment of a baseline level, animals typically

received between 75–85% of their determined daily fluid

allotment in the context of successfully performing assigned tasks.

The subjects received the rest of their daily allotment in their

home cages. These procedures were designed in conductance and

in compliance with the Public Health Service’s Guide for the Care
and Use of Animals.

Subjects
Experiments were performed on two juvenile-adult male rhesus

monkeys (Macaca mulatta, Subject 1, 13.5 kg, and Subject 2,

7.0 kg).

Surgical and training procedures
In a sterile surgical procedure performed under isoflurane

inhalant anesthesia, a head-restraint prosthesis and scleral search

coil were implanted using standard techniques described in detail

elsewhere [17]. After surgery, animals received analgesics for a

minimum of 3 days. Antibiotic prophylaxis was initiated intra-

operatively and continued for a minimum of 3 days.

After a 6-week recovery period that facilitated the osteo-

integration of the implanted bone screws, access to water was

restricted, animals were habituated to head restraint, and then

trained to perform oculomotor tasks for a fruit juice or water

reward.

During data collection, horizontal and vertical eye position

signals were sampled at 500 Hz using an eye coil system. Tri-state

LEDs, which could be illuminated to appear red, green, or yellow

to normal human observers, served as visual stimuli. LEDs were

fixed on a tangent screen placed 139.7 cm (55 inches) from the

eyes of the animal. 81 of these LEDs formed a grid of points,

separated by 4u, spanning 36u horizontally and 36u vertically

which served as the targets of juice-reinforced saccades.

Following training, a second sterile surgical procedure was

performed. Monkeys were implanted with a Cilux recording

chamber (Crist Instruments) targeting area 13 m (36 mm caudal

and 8 mm lateral to the intersection of the midsaggital and

interaural planes) in the left hemisphere for both monkeys.

Chambers were implanted using standard surgical techniques

described in detail elsewhere [17]. Chamber location was verified

using anatomical magnetic resonance imaging (3T; Siemens).

Figure 1 illustrates a coronal slice from the MR image represent-

ing the center of subject 1’s chamber.

Behavioral Techniques
Animals were trained to associate red, green, or yellow LEDs

with 3 different juice-flavored rewards of 0.2 ml. Each trial began

with the illumination of central yellow LED which subjects were

required to fixate within 700 ms. On 82% of trials a single

eccentric, yellow, green, or red LED was illuminated 300 ms after

gaze was aligned within 2u of the fixation stimulus. After a further

1000 ms delay, the fixation stimulus was extinguished, cueing the

subject to shift gaze to within 2u of the eccentric target and within

350 ms in order to receive the reinforcement associated with the

colored light that appeared on the screen. The eccentric target

appeared in one of the 81 different locations that made up the

4u64u target grid which spanned 36u636u of visual space. On

18% of trials, which we refer to as choice trials, two eccentric LEDs

were illuminated simultaneously representing 1 of 3 different pairs

of color LEDs (red and yellow, red and green, or yellow and

green), 300 ms after gaze was aligned within 2u of the fixation of

stimulus. After a further 1000 ms delay, the fixation stimulus was

extinguished, cueing the animal to shift gaze to either of the

illuminated targets within 350 ms in order to receive the

reinforcement associated with the color of the stimulus he chose.

Microelectrode Recording Techniques
At the start of each recording session a 23-gauge stainless steel

guide tube was positioned in a support grid (1 mm spacing; Crist

Instruments) and inserted through the intact dura. A tungsten

electrode (8–10 MOhms impedence; FHC) was lowered through

the guide tube using a hydraulic micropositioner (KOPF

Instruments). Electrophysiological signals were amplified, band-

pass filtered, and individual neurons were isolated based on

waveform characteristics. Times of spike occurrence were

recorded by computer using a 1-ms internal clock. Once a cell

was isolated 250–1200 trials were presented in which the location

of the eccentric target(s) and the color of the eccentric target varied

randomly from trial-to-trial.

Analysis
The goal of our analysis was three-fold. First, we analyzed the

choice behavior of the animals on the two target choice trials to

determine whether the animals showed clear and consistent

preferences with regard to (target color and) juice reward type. We

did this to ensure that animals had learned to associate target

colors with reward types. An indication of reward preferences

through behavior indicated that subjects established ideosyncratic

Figure 1. MR Image. Subject 1’s MRI image depicts the center of the
recording chamber. For reference, a transparent image of a macaque
brain atlas reveals the target as Walker’s area 13 M.
doi:10.1371/journal.pone.0112750.g001
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economic values for the rewards. Second, we analyzed the

neuronal firing rate data from single target trials to determine

whether neuronal firing rates in our dataset clearly discriminated

between juice reward-type, as has been repeatedly demonstrated

in this area in the past. This served as an internal check that the

neurons we examined were similar to those that have been studied

previously in this area. To formally test the hypothesis that these

neurons are similar to the neurons recorded in Padoa-Schioppa

(2006) [14] we measured the reward selectivity of each neuron by

averaging firing rates across juice flavors. Third, we analyzed the

firing rate data from these single target trials for any evidence that

the location of the target, varied systematically over 81 spatial

locations, influenced the firing rates of OFC neurons.

To accomplish the second and third goals, we recorded, for

each trial, the location of the eccentric visual target and the

number of action potentials produced during two intervals 500 ms

in length: (1) Early Analysis, 400 ms following illumination of the

eccentric visual target, and (2) Late Analysis, 350 ms following the

onset of juice delivery. To choose these analysis periods we

considered the analysis periods used by other scientists recording

from the OFC (e.g., Padoa-Schioppa and Assad, 2008) because it

is their hypothesis that these neurons are spatially untuned during

specific trial epochs which we hoped to examine. Thus our epoch

selection was driven by existing data, though our precise msec by

msec windows were adjusted from those in the literature to align

with the timing of our task. This information allowed for the

construction of detailed response field plots for each neuron at

each of these time points. (We also generated more continuous

temporal analyses, which confirmed that our findings were not

unique to the temporal epochs we examined.) These response field

plots were used to assess the spatial tuning of each neuron during

target onset and reward delivery and thus to test the hypothesis

that these neurons are not modulated by saccadic-action

properties. To test the hypothesis that neurons were insensitive

to saccadic-action properties three ‘‘models’’ were fit to the data

from each neuron during each interval and the quality of these fits

was compared using the Akaike Information Criterion (AIC).

The first model tested the hypothesis that OFC neurons, like

neurons in frontal eye fields [18] or area LIP [19] showed a

Gaussian tuning with regard to horizontal and vertical saccade

amplitude. A two-dimensional Gaussian model was thus fit to the

raw data of the response fields measured for each cell as was

originally suggested for posterior parietal cortex [20]. The

Gaussian model has five free parameters: the horizontal and

vertical position of the center, the horizontal and vertical standard

deviations (sigmas), and baseline firing rate. The model was

constrained so that the center of the Gaussian lay within 36u of the

plot origin (the origin is defined as a position straight ahead of the

subject) and so that the diameter (standard deviation) of the

Gaussian was not larger than the region spanned by our data (36u).
Parameters of the model were estimated using a Nedler-Mead

simplex iterative fit that minimized the squared Cartesian distance

between the Gaussian model and the raw data (Matlab) [21].

To test the simpler alternative hypothesis that, within the limits

of our dataset, the neuronal firing rates were modulated as any
linear function of horizontal and vertical saccade amplitude, we fit

the raw data of the response fields with a two-dimensional planar

model that had three free parameters: the slope along the y-axis,

the slope along the x-axis, and the baseline firing rate. The

parameters of this model were estimated using a least-squares

linear regression that minimizes the squared Cartesian distance

between the planar model and the raw data (Matlab).

To test the even simpler alternative hypothesis that neurons

responded more strongly before or after movements to one

hemifield than to the other, a third model was fit to the data. The

hemifield model had 2 parameters, firing rate ipsilaterally and

firing rate contralaterally. We omitted data from the vertical

midline positions, (0,16), (0,8), (0,4), (0,0), (0,4), (0,8), and (0,16) for

this model, and averaged the firing rate across the remaining 37

target positions in each hemifield (right and left). Therefore the

hemifield ‘‘model’’ contained two parameters simply representing

the overall average firing rate of the neurons whenever the subjects

looked at a target in either the ipsilateral or contralateral visual

hemifield.

To determine whether any of these three models was a better fit

to the data we collected than was a model that included no spatial
information whatsoever, we compared each of these models to a

calculation of the mean firing rate of the neuron during all

movements that yielded a particular juice reward. For the

purposes of comparing the hemifield model to the ‘‘mean’’ model,

the ‘‘mean’’ model excluded the central targets from the overall

average and represented firing rates in response to 74 stimulus

locations, rather than 81. To objectively assess the best model for

describing the data from each neuron we used the Akaike

Information Criterion (AIC), which estimates the information lost

by approximating the true process underlying the data by a

particular model [22]. For each model the AIC is computed as

AIC~{2 log Lð Þz2q

Where L is maximized log-likelihood of the model-fit and q is

the number of parameters. AIC allows for a description of the

interplay between likelihood estimates and the number of

parameters used; likelihood estimates decrease as more parameters

are used to describe the data. AIC allows one to ask the question of

at what point do the additional parameters stop providing more

information and guards against an over-fit. We compared our

three model AIC values to the other models as well as to an AIC

value that would encapsulate no spatial tuning.

Results

Eighty-four OFC neurons (Subject 1, n = 48; Subject 2, n = 36)

from area 13 m were studied while subjects completed a minimum

of 250 reinforced, delayed saccade trials and 30 free-choice trials.

We collected data from the average neuron for 520 trials (s.d. 158).

Behavior During Choice Trials
In order to ensure that subjects understood the relationship

between target stimulus color and the type of juice it provided,

subjects were repeatedly asked to choose between pairs of saccadic

targets. We looked for consistency and transitivity in their choices

as evidence that they could discriminate effectively between the

stimuli, and the rewards they offered. Subjects were thus asked to

choose between two of the three juice flavors on each free-choice

trial each recording day. As there were three possible colors/flavor

comparisons, the three pairwise comparison trials were presented

a minimum of 10 times each during each recording session.

Figure 2a plots the choice behavior of a single subject from a single

representative day; the subject always (100%) chose berry flavor

over orange (n = 26), chose orange over grape flavor at probability

0.85 (n = 21), and always (100%) chose berry over grape flavor

(n = 23). The subject exhibits highly transitive behavior on the

representative day preferring Berry to Orange and Orange to

Grape. Figure 2b and c aggregate all choice data from each

subject. Across 48 recordings, Subject 1 chose berry flavor over

orange (m = 0.8495, se = 0.0265), orange flavor over grape flavor

(m = 0.8504, se = 0.0287), and berry flavor over grape flavor

Spatial Tuning in OFC
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(m = 0.8990, se = 0.0201). Subject 2 exhibited similarly consistent

preferences across 36 sessions by choosing apple flavor over grape

flavor (m = 0.99, se = 0.0042), grape flavor over water (m = 0.8387,

se = 0.0282), and apple flavor over water (m = 0.9830,

se = 0.0110). The consistent and transitive behavior suggests that

the subjects understood that the stimuli have flavors associated

with them and that the subjects assigned stable preferences

amongst those stimuli/flavors.

Neural Activity as a Function of Reward Type
We collapsed the data across all stimulus locations and

separated the data by firing rates as a function of the reward

type. We recorded neurons from the same location as Padoa-

Schioppa (2006). To ensure that those neurons were functionally

similar, we tested their selectivity for juice flavor. By using a

100 ms sliding window across the duration of a trial and a

repeated measures ANOVA with a cut-off of p = 0.05, we found

65% of our neurons from Subject 1 were significantly selective for

reward type during the trial and 54% of the neurons from Subject

2 were significantly selective for reward type during the trial.

Figure 3 plots two example OFC neurons (one from each of the

two subjects) collapsed across all spatial locations (Fig. 3a: n = 653

trials Fig. 3b: n = 552). In figure 3a, the red line plots average

firing rate as a function of time for all trials rewarded with berry

juice, green represents trials rewarded with grape juice, and yellow

represents trials rewarded with orange juice. The neuron responds

differently to the different reward types during the target period

(ANOVA, F(2,652) = 3.63, p = 0.0271), but does not have statis-

tically different responses to the three reward types in the period

following reward delivery (ANOVA, F(2,652) = 1.67, p = 0.1889).

In figure 3b, red represents grape juice, yellow represents apple

juice, and green represents water. Subject 2’s example neuron

responds differently to the three reward types following stimulus

presentation (ANOVA, F(2,551) = 4.11, p = 0.0170) and following

reward delivery (ANOVA (2,551) = 10.96, p,0.001). The firing

rates for the example neuron from Subject 2 correspond with

Subject 2’s preferences. However, the firing rate for the example

neuron from Subject 1 does not correspond with the subject’s

preferences. Padoa-Schioppa (2006) showed that neurons in the

OFC are capable of encoding a complex representation of value

by representing three different signals: offer value (value of one of

the juices offered), chosen value (the value chosen by the subject in

any given trial), and taste (a binary variable identifying the chosen

juice). We did not record enough free choice data from the

subjects to be able to measure the responses of the neurons while

Figure 2. Transitive Behavior. (A) Representative day of choices made during free choice trials: Subject 1 performed a total of 70 free choice trials
during one recording session. Plotted are histograms representing the probability the subject chose the preferred juice flavor (berry or orange) given
the juice pairing ({berry, orange},{orange, grape},{berry, grape}). During the representative session, the subject chose berry juice over orange juice
consistently (n = 26), orange of grape juice with a probability of 0.83 (n = 21), and berry juice over grape just consistently (n = 23). During this session
the subject exhibited transitive behavior with berry$orange$grape. (B) Across the 48 recording sessions used in the neural analysis for Subject 1.
The subject’s preferences remained consistent. The subject chose berry juice over orange juice (m = 0.8405, se = 0.0265), orange juice over grape juice
(m = 0.8504, se = 0.0287), and berry juice over grape juice (m = 0.899, se = 0.0201). The monkey’s behavior exhibits robust transitivity and consistent
preferences indicating that the subject assigned value to the stimuli representative of the three juice flavors. (C) Analysis across the 36 recording
sessions used in the neural analysis of Subject 2. The subject’s preferences remained consistent. The subject chose apple juice over grape juice
(m = 0.99 s.e. = 0.0042), grape juice over water (m = 0.8387, se = 0.0282), and apple juice over water (m = 0.9830, se = 0.0110). The monkey’s behavior
exhibits robust transitivity indicating that he has learned the associative value of the stimuli.
doi:10.1371/journal.pone.0112750.g002
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the subjects made a choice, and therefore, did not expect to always

observe firing rates corresponding either with the subjects’

preferences or with other choice-based studies made in this brain

area. But most importantly, our data show that more than half of

the neurons we encountered, like many of those in the literature

[8,23], show a clear response to reward.

Neuronal Response Field as a Measure of Spatial
Structure

In order to determine whether there was any spatial structure in

the response fields we measured, we began by aggregating data

from each neuron across juice types. We then plotted neuronal

activity during the 400 ms after target onset (early activity,

indicated by the first grey bars in Fig. 3) and the 350 ms following

juice delivery (late activity, second grey bars) against the horizontal

and vertical position of the targets, in 4u bins. Figures 4a and b

plot these response fields for the early and late activity,

respectively. The plots in Figure 3a and Figures 4c and d plot

data for the early and late activity, respectively, from the example

neuron shown in 3b. Without any statistical analysis, it seems clear

that these neurons do not show any discernible spatial selectivity.

Model Fits and Quantifying Spatial Selectivity
To search systematically for evidence of spatial tuning that may

be too subtle to detect intuitively, throughout our database we

examined the goodness of fit of three response field models: A 2-

dimensional gaussian, a 2-dimensional linear (or planar) response

field and a simple hemifield-model, which differentiates rates for

movements only with regard to the left and right hemifield. The

goodness of fit of these models was compared to the hypothesis

that neurons have a fixed mean rate that does not vary with

movement or stimulus properties. (See methods for details.)

To give an example of a typical set of fits, Figure 5 plots best

fitting models to the raw data in Figures 4a and b. The mean

represents a model that describes the response field as firing rates

randomly distributed around a mean. The hemifield model

represents an ipsilateral or contralateral bias. The linear model

encodes changes in firing rate as a linear function of position.

Figure 3. Example neurons from each subject. Each graph plots spikes per second as a function of time in milliseconds and each line represents
the average spike rate of the neuron when the subject was presented with one of three rewards. (A) For this particularly neuron the firing rates
following stimulus presentation are statistically different (ANOVA, F(2,652) = 3.63, p = 0.0271), while the firing rates following the receipt of reward are
not statistically different (ANOVA, F(2,652) = 1.67, p = 0.1889). (B) The example neuron for Subject 2 has statistically different responses to the
presentation of the reward stimuli (ANOVA, F(2,551) = 4.11, p = 0.017) and the neurons responds statistically differently to the rewards (ANOVA,
(2,551) = 10.96, p,0.001.
doi:10.1371/journal.pone.0112750.g003
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Finally, the 2-dimensional gaussian plots firing rate as a gaussian

function of target position. Note in figure 5 how obviously similar

all model fits are to the mean ‘model’ shown at the top for this

neuron. Figure 6 plots the quality of each of these fits using the

Akaike Information Criteria (see methods). As is obvious, the AIC

reveals that the two example neurons do not show evidence of

spatial tuning as the AIC value of the ‘mean model’ is negligible or

lower than the AIC values for the other models (Subject 1, Early

Analysis: linear AIC difference = 23.83, gaussian AIC differ-

ence = 210.8, hemifield AIC difference = 21.20E+00; Late Anal-

ysis: linear AIC difference = 22.85, gaussian AIC difference =

23.05, hemifield AIC difference = 22.00; Subject 2, Early

Analysis: linear AIC difference = 26.8156, gaussian AIC differ-

ence = 21.0140, hemifield AIC difference = 27.2006; Late Anal-

ysis: linear AIC difference = 21.5156, gaussian AIC differ-

ence = 0.0278, hemifield AIC difference = 24.9700). A uniform

firing rate, encoding only features of the reward but not of the

action required to obtain that reward, accounts for the data better

than any of the spatially structured models.

To quantify our entire database, we performed these same 8 fits

for each neuron and derived a measure of the AIC for each fit for

each neuron. We then compared each pair of fits (mean versus

hemifield, mean versus linear, and mean versus gaussian) by

simply subtracting the AIC measures. Figure 6 plots these

comparisons during the early and late intervals. Observations to

the left of the dotted line indicate neurons for which the mean

firing rate alone accounts for the neuronal response better than

any of the models. The plots show that while most of the AIC

values for the individual neurons lie to the left of zero. Thus, the

neurons are overall best represented by a uniform firing rate.

There are, however, some neurons that have firing rates better

described by one of the other model fits. To determine the

statistical significance of encountering these occasional AIC values

supporting one of the other models in our neuronal population, we

calculated the binomial probability of observing this distribution of

AIC differences, given the assumption that all 4 ‘models’ were

equally good fits to the data. We found that the binomial

probability that this distribution of AIC values would be observed

for any model comparisons against the mean (uniform distribution

of firing rates) were always less than 0.05 for Subject 1 (early

analysis hemifield: p = 0.0336, late analysis hemifield: p = 0.006,

early analysis linear: p = 0.0014, late analysis linear: p = 0.0349,

early analysis gaussian: p = 0.0001, late analysis gaussian:

p = 0.0001) and at or below a probability of 0.055 for Subject 2

(early analysis hemifield: p,0.0001 late analysis hemifield: p,

0.00005 early analysis linear: p = 0.055, late analysis linear:

p = 0.055 early analysis gaussian: p,0.00005, late analysis

gaussian: p = 0.0087).

Finally, we wanted to eliminate the possibility that our findings

were specific to the two specific analysis periods we selected based

Figure 4. Spatial Grid. Each square represents the average firing rate of the neuron at the given location in the Subject’s visual field collapsed
across the three juice flavors. (A) and (C) represent firing rates for Subject 1 and 2, respectively, during the early activity following stimulus
presentation and (B) and (D) represent firing rates for Subject 1 and 2, respectively, during the late activity following reward delivery.
doi:10.1371/journal.pone.0112750.g004
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on the timing of previous experiments. We therefore broke up

each trial into sequential non-overlapping 500 ms windows

spanning the entire trial. We then calculated the AIC values for

all of the fits in all of these windows (figure 7). For each epoch we

therefore computed the binomial probability that the number of

negative AIC values out of the total number of neurons per subject

was that which would be expected by chance. We found this

additional analysis largely confirmed our findings. The binomial

probability that the ratio of positive and negative AIC values

occurred by chance is below 0.05 for all time periods and all model

comparisons, except for one. In that case, which was an epoch of

time during which saccades were produced, the Gaussian model

weakly outperformed the mean as a firing rate descriptor. While

there have been only few detailed numerical studies of activity in

this area during saccade generation, and while it should be noted

that firing rates are low during this period, this finding may suggest

some degree of spatial selectivity under these limited conditions.

To summarize then, all of the histograms, except one, show that

the neuronal population does not appear to show any systematic

spatial tuning, despite the fact that the majority of these neurons

show clear tuning for reward type. However, because the mean

and the linear model were very similar and the binomial

probability of obtaining negative AIC values in our population

exceeded the traditional alpha value of 0.05 for statistical

significance in subject two, we performed an additional analysis

to compare the mean and linear models. We constructed 4

histograms plotting slopes in the x and y direction during the early

analysis and during the late analysis (Figure 8). Note that despite

the fact that these models were not much worse than the mean

rate ‘‘model’’, we found fitted slopes were very close to 0, and, in

fact, only 8 neurons had slopes that were significantly different

from zero during the early analysis and only 5 neurons had slopes

that were significantly different from zeros during the late analysis.

Following this line of reasoning we also note that a chi-square test

of significance rejects the null hypothesis that there are two

populations of neurons equally dispersed between significantly

different from zero and not significantly different from zero during

the early analysis (c2(1,84) = 55.05, p,0.001) and late analysis

(c2(1,84) = 65.19, p,0.001).

Discussion

We tested the hypothesis that orbitofrontal cortex neurons from

Walker’s area 13 m do not carry information about the saccadic

eye movement required to obtain reward. To do this, we created a

detailed response field ‘‘map’’ measuring the firing rates of

Figure 5. Model Fits to Data. Using the scale from figure 4, which scales by the average firing rate for each stimulus location, these are heat maps
across the visual field of the model fits for example neurons from subject 1 and subject 2 during the (A) early period of analysis and the (B) late period
of analysis.
doi:10.1371/journal.pone.0112750.g005
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neurons drawn from Walker’s area 13 m as a function of stimulus

location (and thus saccade metrics) across 81 positions in the visual

field. We fit these maps with traditional models of spatial tuning

from other domains in neuroscience. Our findings suggests that,

for the class of task we examined, the population of OFC value-

related neurons we examined in area 13 m do not carry
information about the action required to obtain that reward; that

activity in this population represents reward values in an abstract

and action-independent manner. While this is a negative result,

these are the most detailed spatial maps of the responses of area

13 m neurons yet gathered in a saccadic task and they seem to

confirm the findings by some others that these neurons do not

carry spatial information [9,13,14,16,24]. It might well be argued

that our negative result does not mean that these neurons do not

Figure 6. AIC Differences. Histograms of the difference in the AIC; white represents Subject 1 and black represents Subject 2 during the early
analysis and late analysis. The lower axis is constructed by taking the AIC number for a uniform firing rate and subtracting the AIC number for the (A)
hemifield, (B) linear, and (C) gaussian models. Neurons to the left of zero are better fit by the ‘mean’ model. For Subject 1, the binomial probabilities
of observing so many negative AIC differences if the models fit equally well are all less that 0.05 (early analysis hemifield: p = 0.0336, late analysis
hemifield: p = 0.006, early analysis linear: p = 0.0014, late analysis linear: p = 0.0349, early analysis gaussian: p = 0.0001, late analysis gaussian:
p = 0.0001). For Subject 2, the binomial probabilities of observing so many negative AIC differences by chance are at or below 0.055 (early analysis
hemifield: p,0.0001 late analysis hemifield: p,0.00005 early analysis linear: p = 0.055, late analysis linear: p = 0.055 early analysis gaussian: p,
0.00005, late analysis gaussian: p = 0.0087).
doi:10.1371/journal.pone.0112750.g006
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carry spatial information about other classes of movement or in

other classes of task. This is an excellent point, which must be

borne in mind with any negative result. We do note, however, that

the methods we used to search for spatial tuning are standard,

other studies using similar techniques and similar numbers of trials

to study units in other brain areas have found neurons that

respond to spatial information in a wide variety of those other

areas [25–27], therefore we believe that the power in our

experiment is sufficient for substantiating our core claim.

In the experiment, the subjects were trained to associate juice

flavors to a stimulus color. In figure 2, we show that the subjects

develop a preference for stimuli and assume that the preference

and value representations are dependent on the juice flavors rather

than the colors of the visual stimuli signaling those rewards. We

are inclined to this attribution both due to the strong gustatory

cortex connectivity to OFC [2] and as a result of previous

experiments identifying strong responses in OFC to gustatory

information rather than visuo-spectral information [4]. But it is

important to note that an alternative explanation for our findings

Figure 7. Binomial probabilities 7 time points across the trial. Binomial probabilities are calculated as the probability (p = 0.5) of finding
k = number of negative AIC differences given the total number of neurons (n) for Subject 1 (a and b) and Subject 2 (c and d). The sliding windows are
aligned to the target onset (a and c) and the reward onset (b and d). On each of the graphs the blue, red, and green lines represent the binomial
probabilities for the difference between the gaussian, hemifield, and linear models, respectively, and the mean.
doi:10.1371/journal.pone.0112750.g007
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is that a subset of the neurons may show selectivity for the color of

the saccadic target and not for the juice flavor or reward quality.

While we see the existing data as strong suggesting that this

selectivity is for properties of the reward rather than the visual

stimulus and support Padoa-Schioppa and Cai (2011) findings that

area 13 m encodes value in the absence of action-related

information, our data alone cannot resolve this issue.

Our experiment indicates that under basic conditions in an

oculomotor task, orbitofrontal cortex neurons do not have any

spatially tuned organization, although we did find evidence for

value and reward coding like that previous reported in this area

[14,15]. Of late, the hypothesis that prefrontal neurons are capable

of coding value in the absence of both choice and action has come

under fire. FMRI experiments in humans provide evidence that

prefrontal areas are capable of encoding value for a stimulus

before action planning or stimulus onset [28]. Additionally, it

appears that similar prefrontal areas in humans are capable of

encoding the value of a stimulus even in the absence of a decision

[29]. In single unit recordings from monkeys there is also evidence

that many frontal cortical neurons encode value in the absence of

action planning. Padoa-Schioppa (2007) for example recorded

neurons from area 13 m and described the neurons as encoding

the value of goods in an action-independent framework. Our data

support those conclusions.

Our results may be slightly controversial because some groups

have found preferential tuning to stimulus location in some parts

of the OFC in macaques. For example, Tsujimoto et al. (2009)

reported that up to 28% of their neurons encoded a location

preference at the spatial resolution of a visual hemisphere

(preferring left or right). Wallis and Miller (2003) and Kennerley

and Wallis (2009) report that during certain periods within a trial

up to 8% and 12%, respectively, of their OFC neurons showed

some location selectivity. With regard to this later finding, it should

be noted that when comparing our ‘‘hemifield model’’ to a global

mean using the AIC, during either the neuronal activity directly

following the stimulus presentation or directly following reward

delivery 10% of our neurons were modeled better by hemifield

selectivity than by a uniform firing (this is also true for a selective

Figure 8. Plane Fitted Slopes. Histogram plots of the slopes of the plane along the x and y axis during the early and late analysis using the linear
model. White bars represent Subject 1 and black bars represent Subject 2 with grey representing the linear fits that create a plane statistically
different from zero. The statistically significant linear fits do not support the conclusions that there is separate group of neurons for the early analysis
(c2(1,84) = 55.05, p,0.001) or the late analysis (c2(1,84) = 65.19, p,0.001).
doi:10.1371/journal.pone.0112750.g008
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analysis of juice responsive neurons). A chi-square test of

significance of that finding, the hypothesis that there are two

(bimodally distributed) groups of neurons one of which is better

represented by a hemifield model and one of which is better

represented by the mean model, cannot be statistically supported

by the 10% of the neurons observed to be better fit by the

hemifield model in our dataset (c2(1,84) = 55.05, p,0.001).

The differences in recording location and task design between

our experiment and others, however, may also in part explain the

apparent inconsistencies between our results and other findings in

the literature. We, like Padoa-Schioppa and Assad (2008),

restricted our recording location to 13 m specifically to test

whether this area carries information about actions or goods.

Others have recorded neurons from areas 14 and 13 [16] or from

areas 11,12, and 13 [12]. Based on our results, one might well

hypothesize that areas 11 and 12 are responsible for the nearly

30% of neurons showing spatial selectivity identified in Tsujimoto

and colleagues’ experiment. It is also worth noting that both of the

above experiments placed a substantial cognitive load on the

subject during difficult tasks. It is possible that by enlisting a

difficult task, multiple frontal cortical regions are recruited slightly

altering the signal out of OFC neurons. Designing a task that

requires monkeys to use significant and long-lasting cognitive load

while thoroughly mapping the spatial field may elucidate the

differences in tuning properties that we have found in our

experiment compared to others.

In any case, our data support the hypothesis that OFC neurons

in area 13 m do not carry information about actions and that the

population encodes abstract and action-independent reward

values. Despite the existence of a few neurons that tested weakly

positive for location selectivity, we found no evidence for a

separate population of neurons that meaningfully encode location

selectivity. These data, the most densely sampled spatial tuning

data ever gathered in OFC 13 m, agree with Padoa-Schioppa and

Cai (2011) suggesting that area 13 m is a value-coding region that

does not carry action-related information.
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