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Abstract

Cancer biomarkers are frequently evaluated using archived specimens collected from previously 

conducted therapeutic trials. Routine collection and banking of high quality specimens is an 

expensive and time-consuming process. Therefore, care should be taken to preserve these precious 

resources. Here we propose a novel two-stage adaptive cutoff (TACO) design that affords the 

possibility to stop the biomarker study early if an evaluation of the model performance is 

unsatisfactory at an early stage, thereby allowing one to preserve the remaining specimens for 

future research. In addition, our design integrates important elements necessary to meet statistical 

rigor and practical demands for developing and validating a prognostic biomarker signature, 

including maintaining strict separation between the datasets used to build and evaluate the model 

and producing a locked-down signature to facilitate future validation. We conduct simulation 

studies to evaluate the operating characteristics of the proposed design. We show that under the 

null hypothesis when the model performance is deemed undesirable, the proposed design 

maintains type I error at the nominal level, has high probabilities of terminating the study early, 

and results in substantial savings in specimens. Under the alternative hypothesis, power is 

generally high when the total sample size and the targeted degree of improvement in prediction 

accuracy are reasonably large. We illustrate the use of the procedure with a dataset in patients with 

diffuse large-B-cell lymphoma. The practical aspects of the proposed designs are discussed.
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1. Introduction

Increased understanding of cancer biology and advances in biotechnology have 

revolutionized the landscape of oncology drug development and brought us closer to the 

realization of “precision medicine”. A major thrust to this new paradigm involves 

development of biomarkers that will improve our ability to identify patients who are at an 

elevated risk of developing cancer (screening biomarkers), have a poor prognosis 

(prognostic biomarkers), or who are more likely to benefit from specific therapies 
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(predictive biomarkers). The oncology community has committed expansive resources to 

biomarker studies during the last decade. Ideally the development of a biomarker would be 

synchronized with the development of cancer therapy, but in reality biomarker development 

often lags behind therapeutic development. The reasons for this asynchrony may include an 

incomplete understanding of the mechanism of action of a drug, the uncertainty about what 

form of a marker is most relevant, and technical difficulties with marker assay development. 

As such, it is common for cancer biomarkers to be identified using archived specimens 

collected from previously conducted therapeutic trials. While routine collection and banking 

of high quality specimens from clinical trials provides a rich resource for conducting 

biomarker research, the development of the specimen banking system involves an expensive 

and time-consuming process. Therefore, care should be taken to preserve these valuable and 

scarce specimens. Motivated by the use of early looks in treatment clinical trials, here we 

propose a two-stage adaptive cutoff (TACO) design that affords the possibility to stop the 

biomarker study early if an evaluation of the model performance is unsatisfactory at an early 

stage, thereby allowing one to preserve the remaining specimens for future research.

A prognostic signature is a collection of biomarkers that are combined through some 

mathematical model to provide either a continuous score or a categorical classifier. 

Prognostic signatures can be used to identify patients receiving standard treatment (or no 

treatment if that is the standard of care) into subgroups with distinct clinical outcomes. In 

spite of the considerable increase in the number of cancer biomarker studies in recent years, 

the pace of adoption of new biomarkers into clinical practice has been slow. This 

phenomenon can, in part, be attributable to the lack of rigorous statistical design and 

analysis in many biomarker studies. In a comprehensive review of published studies 

reporting gene expression-based prognostic signatures for non-small cell lung cancer, 

Subramanian and Simon [1] identified common methodological deficiencies which included 

the failure to maintain a strict separation between the data used for model development from 

the data for model evaluation and the lack of a completely specified prognostic model to 

allow an independent validation on a separate dataset. The performance measurement of a 

prognostic model computed based on the same data used to develop it is known to be 

severely biased in an optimistic direction (the resulting estimates of the performance 

measure are referred to as the “resubstitution statistics”). This is especially problematic 

when the number of variables is much larger than the number of samples due to the risk of 

overfitting the data [2]. Re-sampling methods (e.g. split sample, K-fold cross-validation, 

leave-one-out cross-validation (LOOCV), Monte Carlo cross-validation and bootstrapping), 

when used properly, provide an almost unbiased estimate of the generalization error of the 

full sample classifier built using the entire dataset [3]. There is often a desire, however, to 

evaluate this “final” locked-down signature on an independent dataset where the effects of 

other sources of variability can be appreciated. The full model specification should include a 

list of variables in the model (including any interaction or non-linear terms), their weights in 

the multivariable model (e.g. regression coefficients) and any cutoff used to define risk 

groups. Clinical decision-making regarding treatment options often relies on the application 

of a cutoff (to some continuous score) to classify patients into “high” or “low” risk groups. 

In practice, however, the determination of cutoffs often suffer the lack of statistical rigor. A 

common pitfall is to search all possible cutoffs within the entire spectrum of the continuous 
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predicted outcome and select one that maximizes the model performance in the same 

dataset. This practice is well-known to give inflated measure of the model performance and 

should be avoided [4].

The two-stage design we propose here represents a framework that integrates all the 

aforementioned elements necessary to meet the practical demands and statistical rigor for a 

prognostic biomarker signature. Specifically, in Stage 1, a statistically valid procedure based 

on the unbiased 10-fold cross-validated error is employed to evaluate the model 

performance. If the initial model performance based on Stage 1 data proves to be 

unsatisfactory, the study is terminated early. Otherwise, the study proceeds to Stage 2. In 

Stage 2, a final prognostic signature is built based on the entire Stage 1 data including the 

identification of a cutoff for classifying patients into distinct risk groups. This locked-down 

prognostic signature (including the cutoff) is then independently validated with Stage 2 data. 

The technical aspects of the design focus mainly on development of prognostic signatures in 

the context of a binary outcome, although with suitable adjustment similar approaches may 

be contemplated for other types of biomarker signatures or clinical outcomes (e.g. time-to-

event). To date, we are aware of only one paper in the literature that incorporates the idea of 

early stopping into the development of biomarker signatures [5]. However, their work does 

not build in a formal statistical test for model performance in an early stage and hence the 

decision as to whether the model holds sufficient promise to be further validated in the 

second stage is somewhat arbitrary.

Conservation of biospecimens is a relatively less pertinent issue in exploratory or 

hypothesis-generating studies involving high-dimensional data (e.g. gene-expression 

profiling studies) since such studies are typically based on smaller datasets readily 

accessible by the investigators. For this reason, the technical development of our design 

focuses mainly on settings in which the number of specimens is much larger than the 

number of biomarker variables (i.e. “large n, small p”) such that an early stopping will result 

in a sizable saving of specimens. In particular, we assume that biomarker discoveries have 

been carried out previously with smaller datasets and a small panel of biomarkers (e.g. 5 to 

20) has been identified to be of prognostic value. The primary interest is to combine these 

promising biomarkers into a prognostic signature and to evaluate the ability of the signature 

to accurately predict patient outcomes. These candidate markers may be selected based on 

biological insight, data-driven approaches, or the combination of both.

This paper is organized as follows: In Section 2, we describe the two-stage adaptive cutoff 

design. In Section 3, we present a simulation study to evaluate the operating characteristics 

of the design. In Section 4, we illustrate the use of the proposed design with a real dataset. 

We conclude with a discussion on practical aspects of the proposed design in Section 5.

2. Methods

2.1. Theoretical Framework

We start with notational set-up and a brief overview of the theoretical framework underlying 

the class prediction problem in which the goal is to predict some clinical outcome of a 

patient (or associated specimen) from a set of covariates. Suppose one observes n 
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independent and identically distributed random variables O = (O1, …, On) with unknown 

distribution . Each observation in O consists of a dichotomized outcome Y ∈ {0, 1} and a 

p-dimensional vector (p ≪ n) of measured covariates X ∈ , such that Oi = (Xi, Yi) for i = 1, 

…, n. In a biomarker study, the outcome Y may indicate some disease status (e.g. disease 

relapse by 5 years) and the covariates X may include standard clinico-pathological variables, 

molecular variables such as genetic variations, or imaging variables. The observations o = 

(o1, …, on) are realizations of underlying random variables O = (O1, …, On).

Define a classifier f(X) = I[m(X|β) > C] as a rule that maps the covariate space  onto the 

class space {0, 1}, where m(X|β) denotes a parametric statistical model that can be built, for 

example, via regression techniques (linear or non-linear) and C is the cutoff. Given the 

observations (o1, …, on), the classifier f̂(x) = I(m(x|β̂) > Ĉ) is obtained by substituting the 

parameters (β, C) with their estimates (β̂, Ĉ) from the data. We are interested in the 

performance of the given classifier f̂(x) in terms of its prediction accuracy in the population. 

Let L(Y, f̂(X)) denote the loss function for measuring errors between Y and f̂(X). For a given 

loss function L, define the conditional risk for a given f̂ as

(1)

Note that here the conditional risk refers to the expected error for a fixed classifier f̂ 

constructed based on observed data o = (o1, …, on). In the technical development that 

follows, we focus on the indicator loss function L(Y, f̂(X)) = I[Y ≠ f̂(X)]. The indicator loss 

function is a common choice of a loss function with a binary outcome Y although other 

choices are possible (e.g. the squared error loss (Y – f̂(X))2) [6].

A naive estimator of the conditional risk θ for the classifier f̂(x) is the resubstitution error 

which averages the loss over the observed data (o1, …, on) used to build the classifier

(2)

It has been shown that the resubstitution error can severely underestimate the expected error 

in finite sample situations [2].

One of the most widely used methods for estimating the conditional risk θ is cross-

validation. Cross-validation involves using part of the available data to build a classifier and 

a different part of the data to evaluate its performance. For example, in a K-fold cross-

validation, one splits the data into K roughly equal-sized and mutually exclusive subsets 

each with size (s1, …, sK), respectively, such that . For the kth subset, we 

develop a classifier with combined data from the remaining K–1 subsets, and calculate the 

misclassification error of the classifier when predicting the kth part of the data. This process 

is repeated for k = 1, 2, …, K and the K estimates of the misclassification error are then 

combined to get the K-fold cross-validated error. In the case of a binary outcome and 

indicator loss, for example, the K-fold cross-validated error can be written as
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(3)

where f̂(k)(x) denotes the classifier developed with kth part of the data removed. Note that the 

case K = n is known as the leave-one-out cross-validated error.

The performance of the classifier f̂(x) is evaluated in the following statistical hypothesis 

testing framework:

(4)

where θ0 is a pre-specified threshold below which the performance of a classifier would be 

deemed acceptable. In the context of a biomarker study, the alternative hypothesis would 

correspond to the scenario in which the probability that the classifier f̂(x) built on the 

observed data (o1, …, on) misclassifies a future specimen is less than θ0 (see Discussion for 

the choice of θ0).

Dudoit and van der Laan proposed asymptotic confidence intervals for the conditional risk θ 

using a class of resampling methods including cross-validation [7]. They showed that these 

methods have good asymptotic properties when using common loss functions to assess the 

performance of the classifier f̂. The asymptotic results were derived under the assumption 

that the size of the test set in the resampling methods converges to infinity which should 

apply well to the “large n, small p” setting. Based on their results, an asymptotic 100(1– α)

% confidence interval for the conditional risk θ can be written as s

(5)

where θK̂CV is the K-fold cross-validated error defined in (18), Φ(z1−α/2) = 1–α/2 for the 

standard normal cumulative distribution function Φ(.) and the estimated variance term is

(6)

where  is the resubstitution error.

2.2. The TACO Design

Assume a total of N specimens are available for the study. In Stage 1, S% of the total N 

samples (n1 samples) are used to obtain an unbiased estimate of the conditional risk based 

on 10-fold cross-validation. A test for (4) is performed using a statistical procedure. If H0 is 

not rejected (indicating an unacceptable performance of the classifier), the study is 

terminated early. Otherwise, the study continues to Stage 2. In Stage 2, all data in Stage 1 

are combined to develop a prognostic classifier (or signature) including the identification of 

a cutoff. This locked-down signature is then validated using the remaining independent (1–
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S)% samples in Stage 2 (n2 = N–n1 samples). The significance levels for Stage 1 (α1) and 

Stage 2 (α2) are chosen so that (α1 × α2) does not exceed some pre-specified type I error α 

(e.g. 0.05). A flow chart of the design is given in Figure 1. Below we describe the technical 

steps of the procedure in detail.

Stage 1

1-1. First layer (10-fold cross-validation): The samples are divided randomly into 10 

groups with roughly equal size. Nine of the groups (i.e. 90% of the samples) serves as the 

“training set” while the remaining group (i.e. 10% of the samples) constitutes the “test set”. 

For each training set, develop a prognostic signature based on p biomarkers using standard 

statistical techniques suitable for a binary outcome (e.g. logistic regression). The 

performance of the signature as measured by misclassification error is computed on the test 

set in each iteration.

1-2. Second layer (cutoff identification): To identify a cutoff to dichotomize the estimated 

probability for each specimen in the test set, each training set is further subdivided into a 

“learning set” (90% of the training set) and an “evaluation set” (10% of the training set) [8]. 

For each learning set, a prognostic signature is developed. The estimated probability of an 

event for each specimen in the evaluation set is then predicted based on the signature. A fine 

grid of cutoffs in the range [0, 1] are applied to the predicted probability for each specimen 

in the evaluation set and the misclassification error with each cutoff is recorded. This 

process is repeated for each split of data within the training set. For each fixed cutoff, the 

average misclassification error across the 10 learning-evaluation splits is computed. The 

cutoff that yields the minimum average misclassification error is the chosen cutoff to be 

applied to the test set. A diagram of the two-layer procedure in Stage 1 of the TACO design 

is given in Figure 2.

1-3. Early test of model performance: Repeat steps 1-1 and 1-2 until all 10 training-test 

splits are exhausted. The average misclassification error across the ten test sets constitutes 

the unbiased 10-fold cross-validated error. Perform a statistical test at significance level α1 

based on the Dudoit and van der Laan procedure [7]. Specifically, we will reject the null 

hypothesis H0 in (4) and proceed to Stage 2 if

(7)

where θ1̂ is the 10-fold cross-validated error defined in (18) (with K = 10) and σ̂
1 is the 

estimated standard error term defined in (6) using Stage 1 data. Otherwise, if H0 is not 

rejected (the initial signature performance is unsatisfactory), terminate the study early.

Stage 2

2-1. Locked-down signature: Build a prognostic signature using all Stage 1 data, including 

the selection of a cutoff based on the second-layer procedure described in step 1-2.
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2-2. Independent validation: Apply the locked-down prognostic signature in step 2-1 to 

Stage 2 data, {( ), i = 1, …, n2}. Since Stage 2 data are completely independent from 

Stage 1 data and are not used for signature building, the estimated misclassification error 

 follows a binomial distribution, where f̂ denotes the signature 

built based on Stage 1 data. Based on normal approximation, we have

(8)

We will reject H0 at significance level α2 and conclude that the prognostic value of the 

signature is validated if

(9)

Otherwise, if H0 is not rejected, we will conclude that the prognostic signature fails to 

validate.

3. Simulation Studies

We conducted a simulation study to evaluate the operating characteristics of the proposed 

design under a variety of settings. We assumed that X is a 10-dimensional vector of 

biomarkers. We simulated the biomarkers from independently and identically distributed 

standard normal distributions. Assume that the collective ability of the 10-dimensional 

biomarkers to accurately classify patients into good (Y = 0) versus poor (Y = 1) prognosis 

subgroups is determined by the following logistic regression model

(10)

The binary outcome for the ith patient, yi, is thus drawn from a Bernoulli distribution with 

the probability of being in a poor prognosis subgroup:

(11)

We evaluate the operating characteristics of the design under the following four scenarios:

• Null Hypothesis (NH): θ = 0.35

• Alternative Hypothesis 1 (AH1): θ = 0.20

• Alternative Hypothesis 2 (AH2): θ = 0.25

• Alternative Hypothesis 3 (AH3): θ = 0.30
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Here we include three alternative scenarios representing varying magnitudes of 

improvement in order to evaluate the impact of the effect size on the operating 

characteristics of the design. In each scenario, we also vary the total sample size (n = 200, 

300, 400) and the proportion of samples used in Stage 1 (S% = 25%, 50%, 75%).

The ability of the prognostic signature to discriminate patient status is influenced by the β’s 

coefficients in the logistic regression model (10). However, there are infinitely many 

combinations of β’s values that would give rise to a specified true conditional risk θ. To 

simplify, we fixed the values of nine β’s coefficients in (10) and performed a fine grid 

search of the remaining β coefficient (with an increment 0.02) such that the true conditional 

risk is equal to the desired value. This is possible by recognizing that the true conditional 

risk θ decreases with increasing values of the remaining β. Details on the determination of 

the set of (β1, β2, …, β10) values that correspond to the true conditional risk in each of the 

above scenario are given in the Appendix (see Appendix 1).

For each hypothesis scenario and (N, S%) configuration, we simulated 1,000 independent 

realizations of {(xi1, …, xi10, yi), i = 1, …, N}. With each simulated dataset, we applied the 

proposed procedure using significance levels α1 = 0.25 and α2 = 0.2 for Stage 1 and Stage 2, 

respectively. A fine grid with 0.01 increment was used in the search of the cutoff value. In 

each setting, we recorded the empirical probability of stopping the study early, the 

probability of declaring that the prognostic signature is independently validated (this would 

represent the type I error under the null hypothesis and power under the alternative 

hypothesis), and the expected sample size E(SS). A reasonable design should terminate the 

study early with a high probability under the null hypothesis and hence minimizes the 

expected sample size but provides sufficient statistical power to detect a meaningful 

improvement in the prediction error of the classifier under the alternative hypothesis.

Table 1 and Table 2 present the results of the simulation studies. Under the null hypothesis, 

we note that the type I error is maintained under the overall level of 0.05 in all settings. 

Further, the probability of terminating the study early ranges from 77% to 84%. The 

percentage of saving in sample size (computed as the percent reduction in sample size 

compared with the total sample size) ranges from 19% to 62%, with an average of about 

39%. Under AH1 (an improvement of 15% in prediction error), the power exceeds 92% in 

all settings. Under AH2 (an 10% improvement), the power is generally acceptable (exceeds 

81% in most cases) except when the sample size in either stage is only 50 (power is 67% 

and 68%). Power is generally low when the targeted degree of improvement is as low as 5% 

(AH3). In AH1 and AH2, we note that for a fixed sample size N, the power tends to be 

maximized when sample size is equally split between the two stages. Intuitively this is 

because the power of the procedure depends on allocating adequate sample sizes to reject 

the null hypothesis in both stages. Overall, our simulation results demonstrate that desirable 

operating characteristics of the proposed design can be achieved when the total sample size 

is reasonably large (i.e. N > 200) with an equal split of sample size between the two stages. 

The power of the procedure in most cases is reasonable when the targeted degree of 

improvement in prediction error is at least 10%.
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4. Example: An Application to a Dataset

We illustrate the proposed design with a real dataset in patients with diffuse large-B-cell 

lymphoma (DLBCL). DLBCL is a curable disease for many patients using anthracycline-

based chemotherapy regimens such as a combination of cyclophosphamide, doxorubicin, 

vincristine and prednisone (CHOP) [9]. Recently, the addition of rituximab immunotherapy 

(R-CHOP) has also been shown to substantially prolong patient survival [10]. DLBCL is a 

biologically diverse disease and much research has been devoted to identify molecularly 

distinct subtypes. Rosenwald et al. described a study in which gene-expression profiling was 

performed in pre-treatment tumor-biopsy specimens of 181 newly-diagnosed DLBCL 

patients who received CHOP or similar treatment regimens [11]. In that study, two 

biologically and clinically distinct molecular subtypes of DLBCL were identified, namely 

the germinal-center B-cell-like (GCB) subtype and the activated B-cell-like (ABC) subtype. 

Patients with the GCB disease tend to have better long-term prognosis than those with the 

ABC disease (5-year overall survival were 60% and 30%, respectively). We refer to this 

signature as the “subtype” signature henceforth. Using the same training dataset but 

different analytical approaches, the same investigators discovered a number of other gene 

expression-based signatures: the “germinal-center B-cell” signature, the “proliferation” 

signature, the “major histocompatibility complex class II” (MHC) signature, the “stromal-1” 

signature and “stromal-2” signature. For a detailed description of the biological basis of 

these signatures, see Lenz et al. [12]. In addition to molecular signatures, many clinical 

variables such as patient age, ECOG status and Ann Arbor Stage have also been shown to 

have prognostic value for this disease population [13].

We obtained access from the investigators to an independent dataset of 175 newly diagnosed 

DLBCL patients. No aspect of identification of the gene-expression signatures or 

development of the survival model was performed with this dataset. These patients 

constituted an R-CHOP cohort that received similar chemotherapy plus rituximab. We 

illustrate the use of the proposed TACO design in this dataset with the goal to combine 

putative clinical prognostic variables with discoveries from the previous training dataset into 

one signature. The clinical outcome of interest is death at 18 months (a time point by which 

25% of the patients have deceased). ECOG status and Ann Arbor stage were analyzed as 

binary variables (≤ 1 or > 1). The subtype signature was binary in nature (GCB vs. ABC). 

Age and all other gene-expression signatures were analyzed as continuous variables. We test 

the null hypothesis that the conditional risk of the prognostic signature is greater than or 

equal to 35% (H0: θ ≥ 0.35) against the alternative hypothesis that the conditional risk is 

smaller than 35% (H1: θ < 0.35).

We split the dataset roughly equally between the two stages. Significance levels 0.25 and 0.2 

were used to test the performance of the prognostic signature in Stage 1 and Stage 2, 

respectively. Stepwise logistic regression, implemented with the step function in the R 

software [14], was used to build all prognostic models. In Stage 1, the resubstitution 

prediction error was 0.25 which represented an optimistically downwards estimate of the 

true conditional error. The 10-fold cross-validated error was 0.29. The test statistic in Stage 

1 based on (7) was Z1 =−1.14 (p-value = 0.13) leading to the rejection of H0 and 

continuation to Stage 2. A final prognostic signature was built based on all Stage 1 data. 
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Table 3 gives the final locked-down multivariable logistic regression model. Stage 1 data 

were also used to identify the cutoff based on the procedure described in step 1-2 of Section 

2.2. A fine grid with an 0.01 increment was applied and the resulting cutoff was 0.79.

In Stage 2, the probability of death by 18 months for each specimen was estimated using the 

logistic regression model developed in Stage 1, i.e.

(12)

The cutoff 0.79 was applied to the estimated probabilities to classify each specimen in Stage 

2 into either a “short survivor” (yi = 1) or a “long survivor” (yi = 0). The estimated 

prediction error using Stage 2 data was 0.26. The test statistic in Stage 2 based on (9) was Z2 

=−1.81 (p-value = 0.04) leading to the rejection of H0. Thus, the prognostic signature in (12) 

(including the cutoff 0.79) was independently validated.

5. Discussion

In practice, the suitable choice of the conditional risk θ0 depends on the particular clinical 

scenario and the targeted degree of improvement in signature performance. For example, 

suppose that the goal of the study is to develop a prognostic signature to predict 10-year 

disease recurrence. Assume that 35% of the patients are expected to experience disease 

recurrence within 10 years. The investigators consider a positive predictive value (PPV) (i.e. 

the probability that a patient truly experiences an event given that the signature predicts an 

event) and a negative predictive value (NPV) (i.e. the probability that a patient does not 

experience an event given that the signature predicts the patient to be event-free) of 70% to 

be unsatisfactory. Suppose an improvement in PPV by 10% and in NPV by 20% (i.e. PPV of 

80% and NPV of 90%, respectively) would be deemed clinically meaningful to warrant 

further assay development. In this case, the conditional risk under the null and the 

alternative hypothesis would be 30% and 14%, respectively (see Appendix 2).

Various components of the proposed design may be altered although further simulation 

studies are needed to evaluate the impact such changes have on the overall properties of the 

design. For example, the 10-fold cross-validation in Stage 1 may be substituted with other 

resampling methods such as bootstrap. In a more confirmatory setting where a reasonably 

large number of specimens is available, the difference in signature performance among 

different resampling methods may not be profound [3]. The use of stepwise logistic 

regression as a model building technique may also be replaced by other methods suitable for 

binary outcomes. For example, when a large number of input variables is present in the 

dataset, penalized regression methods such as LASSO or the Elastic Net are useful to help 

avoid overfitting [15, 16]. A vast literature on statistical model building exists [6]. While it 

is beyond the scope of this work to compare among different model building approaches, we 

stipulate that simplicity or complexity of the model should not dictate choice of a particular 

approach; rather, the overall performance of the model should serve as the primary 

consideration. We have chosen an indicator loss function for its practical appeal and ease of 

interpretation, but other loss functions are possible. For example, the mean squared error can 

be used to measure the difference between the true binary outcomes and the predicted 
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probabilities. In this case, a cutoff to dichotomize the predicted probability of an event into a 

binary outcome is not needed, hence obviating the need for the cutoff search in step 1-2. The 

choice of the signature performance metric may be context dependent. In this work, we 

focus on the conditional risk mainly because of its mathematical simplicity. For a binary 

classifier, other choices of performance metrics may include NPV, PPV and Area Under the 

ROC Curve (AUC). Minimizing the conditional risk θ may not be relevant to some clinical 

questions. In those settings, other performance metrics may be considered. Our general 

TACO framework may be tailored to test other performance metrics as long as a loss 

function can be properly defined. It should be noted, however, that the theoretical 

development of the TACO procedure is greatly simplified due to the choices of the loss 

function and performance metric necessary to construct the statistical testing procedure in 

Stage 1 and Stage 2. Any adaptations may not be mathematically trivial and will require 

further methodological development. Finally, the overall framework of the proposed design 

may be applied to “large p, small n” settings, although again the operating characteristics of 

the design will require further investigation.

Note that when α1 → 1 and α2 → α, the TACO design reduces to a simple split-sample 

approach in which Stage 1 data are used to build a prognostic signature without the 

possibility for early stopping and Stage 2 data are used to evaluate the signature 

performance. We evaluated the operating characteristics of the contrasting one-stage design 

(α1 = 1, α2 = 0.05) for each scenario in Table 1 and Table 2. In general, we found that the 

one-stage competing designs control the type I error at the nominal 0.05 level in all 

scenarios. Under all of the alternative hypotheses considered, the one-stage designs have 

slightly higher statistical power compared with their TACO counterparts when a larger 

percentage of specimens are allocated to Stage 2 (S = 25%). However, this power gain is 

accompanied by an increase in the sample size, which is equal to the total planned sample 

size since the one-stage design does not allow the possibility of stopping the study early. 

The TACO designs have higher statistical power than their competing one-stage designs in 

all other scenarios when the sample split is equal between the two stages (S = 50%) or when 

a larger percentage of specimens is allocated to Stage 1 (S = 75%).

In the data example and simulation studies, we chose the significance levels α1 and α2 such 

that the multiplication of the two is equal to some desired overall type I error (e.g. α = 0.05) 

(as a consequence of the independence between the datasets in two stages). In practice, the 

choice of α1 may be guided by the scarcity and the difficulty involved in obtaining the 

specimens. For example, for certain specimens that are extremely rare, one may choose a 

more stringent α1 (e.g. 0.25) to ensure that a reasonably promising prognostic value of the 

signature needs to be established at the early stage before attempting the rest of the 

specimens. The choice of α1 should be made in conjunction with α2 to ensure that sufficient 

rigor can be achieved in the validation of the signature at the second stage. Under the 

guiding principle that a more stringent statistical criterion should be reserved for the final 

validation of the signature, we recommend using the general rule: α1 ≤ 0.50 and α2 ≤ 0.20. 

A few examples that may be useful in practice are: (α1, α2) = (0.25, 0.2), (0.30, 0.17), (0.35, 

0.14). Further, when sample size permits, (α1, α2) may be chosen so that the product of the 

two values may be smaller than the conventional 0.05 level.
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A larger sample size in Stage 1 will on average result in a locked-down signature with 

higher classification accuracy in independent data. However, the trade-off is an inevitably 

smaller sample size for validating the signature performance in Stage 2. While the impact 

this trade-off has on the statistical power of the overall procedure may be context-dependent, 

in the limited number of scenarios we considered in our simulation studies, an equal split of 

sample size between the two stages appeared to yield optimal power. This finding is 

consistent with Dobbin and Simon who suggested that “the optimal proportion of cases for 

the training set tended to be in the range of 40% to 80% for the wide range of conditions 

studied”, although their investigation was focused on high dimensional data problems and 

did not consider a formal statistical test for the training data [17]. Furthermore, the marginal 

gain in classification accuracy as a result of a larger Stage 1 sample size may be less 

profound when the true conditional risk is closer to the zero boundary (or equivalently, when 

the true classification accuracy is closer to 100 %). This implies that the effect a larger Stage 

1 sample size has on the observed effect size (and consequently the Stage 2 test statistic) 

may depend on the value of the true conditional risk. In general, for fixed α1 and α2, the 

operating characteristics of TACO are jointly influenced by the true conditional risk, the 

Stage 1 sample size, and the Stage 2 sample size. Therefore, while the classification 

accuracy of the locked-down signature may be improved by maximizing the sample size in 

Stage 1, it is important to note that this strategy does not always lead to an optimal design. 

In practice, we encourage the investigators to conduct simulation studies based on the 

particular clinical setting of interest to calibrate the design parameters (e.g. total sample size, 

sample split between the two stages) so as to optimize the operating characteristics of the 

design (i.e. power, type I error and expected sample size). The R functions for implementing 

our procedure and programs for simulating the operating characteristics of the design are 

available upon request from the authors.

In this article, we have studied the properties of the proposed design in settings where a 

relatively large sample size is available (N > 200). In reality it may be practically infeasible 

to set up large prospective studies with building a prognostic signature as the primary 

objective since the collection of clinical outcomes is a costly, resource-intensive and time-

consuming process. As such, we envision that the most suitable setting for the TACO design 

would be retrospective studies of biomarker signature development using archived 

specimens and clinical data previously collected in large single-arm therapeutic trials where 

patients are uniformly treated with some treatment regimen (or a sub-study on one treatment 

arm of a large randomized trial). Alternatively, our design can also be built into a 

prospective therapeutic clinical trial as a secondary objective with the goal to develop a 

prognostic biomarker signature using data collected during the trial. While the general 

framework of the two-stage design may be extended to include more than one treatment 

arms, the development of such predictive signatures requires more thought and is beyond the 

scope of this work.

A salient feature of our design is that it produces a single locked-down signature at the end 

of Stage 1 to facilitate future independent validations. In practice, the two-stage nature of the 

design can also help facilitate the implementation of an “honest broker” system in which the 

signature builder(s) in Stage 1 remains strictly blinded to the clinical outcomes in the 
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confirmatory dataset in Stage 2 until after individual predictions have been made for each 

specimen. Finally, some caution is required when interpreting the results of the study. While 

the term “validation” is widely used in practice, it may mean different things in different 

contexts or to different investigators. Within the context of our design, a “validated” 

signature by TACO would mean that it is highly probable that the signature in hand achieves 

certain accuracy (i.e. true positive + true negative), as defined by the hypothesis testing set-

up. In some situations, minimizing the misclassification error rate may not be most relevant 

to the underlying clinical question of interest. For example, in some disease settings, PPV 

and NPV may be more relevant metrics that investigators will rely on to judge if a signature 

is satisfactory. The meaning of PPV and NPV may also be different to the investigators 

depending on the specific signature. For some signatures or tests, a higher PPV may be 

desirable while a slightly lower NPV may be tolerated. For other signatures, NPV may be 

deemed more important on the contrary. In real life applications, it is likely that a more 

comprehensive assessment of various aspects (e.g. PPV, NPV, accuracy, etc.) is necessary 

depending on the specific disease setting and the intended clinical use of the signature. Even 

if the clinical validity is established by demonstrating that the signature has a suitable strong 

association with a clinical outcome of interest, it does not imply that the signature is ready to 

direct patient care [18]. Establishing the clinical utility of a signature will require evidence 

that the use of the signature to direct patient care will result in favorable balance between 

benefits and harm, thereby leading to meaningful improvement in health outcomes such as 

quality of life, prolonged survival or reduced cost.

In summary, we propose a two-stage design useful for developing and validating a 

prognostic biomarker signature which includes an early stopping in the event of a poor 

signature performance. Novel statistical designs like this are needed to allow rigorous 

evaluation of prognostic biomarker signatures while ensuring efficient use of specimens.
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6. Appendix 1: Determination of β’s coefficients that give rise to a true 

conditional risk θ

Assume there are ten biomarkers of interest and these markers are independently and 

identically distributed as a standard normal distribution. Assume further that the collective 

ability of the 10-dimensional biomarkers to accurately classify a patient into a good (Y = 0) 

or a poor (Y = 1) prognosis subgroup is determined by the following logistic regression 

model

(13)

The binary outcome for the ith patient, yi, is thus drawn from a Bernoulli distribution with 

the probability of being in a poor prognosis subgroup:
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(14)

Note that the ability of the prognostic signature to discriminate patient outcomes is 

influenced by the β’s coefficients in the logistic regression model. We wish to devise a data 

generating mechanism that gives rise to the true conditional risk θ in each of the following 

four scenarios:

• Null Hypothesis (NH): θ = 0.35

• Alternative Hypothesis 1 (AH1): θ = 0.20

• Alternative Hypothesis 2 (AH2): θ = 0.25

• Alternative Hypothesis 3 (AH3): θ = 0.30

There are infinitely many combinations of β’s values that would correspond to a specified θ. 

To simplify, we fix the values of nine β’s coefficients and perform a fine grid search of the 

remaining β coefficient (with an increment 0.02) such that the true conditional risk is equal 

to the desired value. This is possible by recognizing that θ decreases with increasing values 

of the remaining β. Specifically, in all scenarios we fix β4 = β5 = ··· = β10 = 0. Further, we fix 

β1 = β2 = 0.5 for NH and AH3 and β1 = β2 = 1.3 for AH1 and AH2 such that the only β 

coefficient free to vary is β3. The following steps are then followed to search for the solution 

of β3 in each scenario:

1. For each fixed value of β3, simulate a very large dataset D1 = {(xi1, …, xi10, yi), i = 

1, …, M} (e.g. M = 10, 000) which represents the “universe” in which the 

conditional risk of a signature will be evaluated.

2. For the same fixed β3, simulate 1,000 datasets D2 = {(xi1, …, xi10, yi), i = 1, …, n1} 

where n1 represents the sample size in Stage 1 of the TACO procedure.

3. For each simulated dataset D2, build a prognostic signature, identify the cutoff 

based on the procedure described in step 1-2 of Section 2.2, and estimate the 

conditional risk of the signature (including the cutoff) in the “universe” D1.

4. Average the estimated conditional risks across 1,000 simulated D2 datasets.

5. If the average conditional risk in step 4 exceeds the targeted θ, increment β3 by a 

small amount (e.g. we used 0.02 in our simulation studies) and repeat above steps 

1-4. The search stops when the smallest β3 value that yields an average conditional 

risk smaller than θ is found.

7. Appendix 2: Translating PPV and NPV into conditional risk θ

In calculating the value of θ under H0 and HA, we first set up a 2 × 2 table as follows in 

which the rows represent the true disease status (Y = 0 if event-free, Y = 1 if event) and the 

columns represent the predicted disease status based on the signature (X = 0 if predicted to 

be event-free, X = 1 if predicted to be an event).
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Predicted Status

X = 0 X = 1

True Status
Y = 0 a b (a + b)

Y = 1 c d (c + d)

(a + c) (b + d) (a + b + c + d)

Let π1, π2 and w denote, respectively, the PPV, NPV, and the prevalence of disease, then

(15)

With some algebraic manipulations, we have

(16)

Re-expressing a, b and c in terms of d in (16) gives

(17)

Note that since a, b, c, d > 0, the system of equations in (17) requires that either Condition 

(i): 1–π2 < w < π1, or Condition (ii): π1 < w < 1–π2 to be satisfied.

Theoretical bounds for w depend on the disposition of π1 and π2. Specifically, consider the 

following scenarios:

S1 π1, π2 ≥ 0.5

S2 πi < 0.5 < πj(i ≠ = j) and π1 + π2 > 1

S3 π1, π2 ≤ 0.5

S4 πi < 0.5 < πj(i = ≠ j) and π1 + π2 < 1

It can be shown that w is bounded by Condition (i): 1–π2 < w < π1 for S1 or S2, and w is 

bounded by Condition (ii): π1 < w < 1–π2 for S3 or S4.
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Finally, using expressions in (17), the conditional risk θ can be expressed as a function of 

π1, π2 and w as follows:

(18)

where 1–π2 < w < π1 if S1 or S2, and π1 < w < 1–π2 if S3 or S4. Note a special case when π1 

= π2(≠ 0.50), it can be easily shown that θ in (18) reduces to (1–π1).

Polley et al. Page 17

Stat Med. Author manuscript; available in PMC 2015 December 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Flow chart of the two-stage adaptive cutoff (TACO) procedure. θ0 denote a pre-specified 

error rate below which a model would be deemed acceptable. The significance levels α2 and 

α2 are chosen so that (α1 × α2) does not exceed some pre-specified type I error α (e.g. 0.05).
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Figure 2. 
A diagram of the two-layer procedure in Stage 1 of the TACO design.
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Table 3

The final locked-down prognostic signature based on Stage 1 data of the DLBCL dataset

Coefficients Estimate Standard Error p-value

Intercept −8.48 2.97 0.004

ECOG (> 1 vs. ≤1) 1.61 0.58 0.005

Subtype (GCB vs. ABC) −1.74 0.61 0.004

Stromal-2 (continuous) 0.96 0.37 0.009
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