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Abstract

Ordinal responses are very common in longitudinal data collected from substance abuse research 

or other behavioral research. This study develops a new statistical model with free SAS macro’s 

that can be applied to characterize time-varying effects on ordinal responses. Our simulation study 

shows that the ordinal-scale time-varying effects model has very low estimation bias and 

sometimes offers considerably better performance when fitting data with ordinal responses than a 

model that treats the response as continuous. Contrary to a common assumption that an ordinal 

scale with several levels can be treated as continuous, our results indicate that it is not so much the 

number of levels on the ordinal scale but rather the skewness of the distribution that makes a 

difference on relative performance of linear versus ordinal models. We use longitudinal data from 

a well-known study on youth at high risk for substance abuse as a motivating example to 

demonstrate that the proposed model can characterize the time-varying effect of negative peer 

influences on alcohol use in a way that is more consistent with the developmental theory and 

existing literature, in comparison to the linear time-varying effect model.
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Introduction

Substance use outcomes are often ordinal in nature with participants classified in terms of 

degrees of use [1]. For example, a well-known annual survey of U.S. high school seniors, 

Monitoring The Future [2], asked the participants to report their alcohol or other substance 

use in their lifetime, during the last 12 months, or during the last 30 days on an ordinal scale: 
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(1) 0 occasions; (2) 1–2; (3) 3–5; (4) 6–9; (5) 10–19; (6) 20–39; (7) 40 or more. An 

important feature of this type of data is that they tend to be skewed to the right due to high 

frequencies at the lower end. Although it is common practice to use linear models (for 

continuous responses) to analyze ordinal responses with several categories, such practice has 

been shown to produce misleading results, especially when the data contain excess 

minimum values [3].

Bauer and Sterba [4] investigated the common practice of analyzing longitudinal data with 

ordinal outcomes and pointed out the main reasons why researchers may be reluctant to fit 

an ordinal rather than linear mixed model [5], including familiarity with linear models and 

lack of existing studies that expressly examined the consequences of fitting a linear mixed 

model to ordinal outcomes. To fill in the important knowledge gap, they conducted a 

simulation study and found that when the longitudinal response was ordinal, the 

performance of the linear mixed model was acceptable (i.e. with bias < 10%) only if the 

response had 7 or more categories and was distributed like a bell shape; the generalized 

linear mixed model [6] with a cumulative logit link, on the other hand, performed well 

across different numbers of categories (3, 5, 7) and distribution shapes (bell shaped, 

polarized, skewed).

Linear mixed models [5] and generalized linear mixed models [6] have been applied mostly 

in the settings involving time-invariant effects (i.e. assuming that the association between an 

outcome of interest and a covariate is constant over time). This convention, however, has 

been challenged in recent years because there are many practical settings where the 

phenomenon of time-varying associations exists [7]. For example, a smoking-cessation 

study found that the effect of negative affect on urge to smoke changed in a complex and 

dynamic way during various stages of the smoking-cessation process [8]. Tan and 

colleagues [9] introduced a time-varying effect model (TVEM) for longitudinal data with 

continuous responses to social and behavioral science researchers. They also developed a 

SAS macro to implement a P-spline approach to estimating TVEM using SAS PROC 

MIXED. This macro was later extended to handle binary, count, and zero-inflated count 

responses [10]. Yet, the TVEM for ordinal responses has not become available. 

Furthermore, it is unclear if the consequences of fitting a linear mixed model to ordinal 

outcomes found in the previous study [4] can be generalized to the case of TVEM.

This paper aims to fill in the current knowledge gap by extending the TVEM to handle 

ordinal responses and conducting a simulation study to examine the consequences of fitting 

the linear TVEM to ordinal responses. We also evaluate the performance of the proposed 

proportional odds TVEM when the number of levels on the ordinal scale, the sample size, 

the number of waves, and the distribution shape were varied. We organize the paper as 

follows. In Section 2, we specify the ordinal TVEM and propose the procedures to 

practically implement the estimation. In Section 3, we present a motivational example using 

longitudinal data from the Flint Adolescent Study (FAS). In Section 4, we conduct a 

simulation study to assess the performance of the ordinal TVEM relative to the linear 

TVEM under different situations. Discussion and concluding remarks are presented in 

Section 5. Example SAS codes are given in the appendix to demonstrate how to use the SAS 

macro’s developed in this study.
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2. The Statistical Model

Consider the following proportional odds model for time-varying effects on an ordinal 

response Y. Label the categories on Y as 0, 1, …, K − 1. Let X1, …, XP be the covariates 

whose relationships with Y are assumed to vary over time, and U1, …, UQ be the covariates 

whose relationships with Y are assumed to be constant at each time. For observation j on 

subject i, taken at time tij, we define a continuous latent variable Ўij as follows:

where ai is a random effect for subject i (assumed normal with a variance of τ2) and eij is a 

standard logistic error term (hence has a variance of π2/3 ≈ 3.29). We then assume that the 

ordinal variable is defined by the following thresholding rule:

where θ1 < … < θK−1. Thus

(1)

for k = 1, …, K − 1.

As in much previous work (e.g., [9][11]), we represent the time-varying coefficients using 

basis expansions. Thus, the nonparametric function βp (t) is treated as a linear combination 

of several known parametric functions ϕ1(t), …, ϕD(t). We chose to use a spline basis to 

represent βp(t) as a piecewise cubic function. On each of several intervals defined by knots, 

the spline function is cubic. At a knot, the spline function is continuous and has continuous 

first and second derivatives, although the third derivative may be discontinuous at the knots. 

This allows any smooth shape to be approximated well if enough knots are used. 

Specifically, we use a B-spline basis (see [12] for technical details and the recursive formula 

for computing ϕd(t)), which can be automatically generated by most commonly used 

statistical software packages such as SAS and R, for a given set of knots. The basis 

functions are always nonnegative, and each is zero over most of the interval, so that each 

knot’s basis function is orthogonal to the other basis functions except for its closest knot 

neighbors. This is more favorable from a numerical standpoint than alternatives such as a 

polynomial regression basis or a truncated power spline basis ([13]), because those functions 

tend to be highly intercorrelated and thus can potentially lead to a poorly conditioned 

regression matrix. Nevertheless, overfitting may still occur with a B-spline basis if too many 

knots are used. For simplicity, in this paper, we follow Shiyko and colleagues [14] in using a 

small number of equally spaced knots and treat the selection of the number of basis 

functions D as a model selection problem.
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After defining the basis functions using the B-spline formula, the problem can be treated as 

parametric with (P + 1)D + Q scalar regression coefficients ζ, with K − 1 scalar threshold 

coefficients θ, and with one variance component τ2. Specifically, Equation (1) becomes

(2)

where ϕ1, …, ϕD are known functions of time defined using the recursive B-spline formulas. 

One could use different numbers of knots for different parameters, but we use the same D 

for each here for simplicity. The parameters are estimated by maximum likelihood.

Because Equation (2) is a generalized linear mixed model (GLMM), the log-likelihood is 

complex and dealing with it directly would involve difficult numerical integration. Standard 

software such as SAS PROC GLIMMIX handles this problem using successive 

approximation. The default approach in GLIMMIX is a doubly iterative method in which 

the nonlinear model is successively locally approximated as a linear mixed model that is 

estimated using the Newton- Raphson algorithm. Specifically, it involves the residual 

pseudo-likelihood with subject-specific linear approximation (see the technical details in 

[15] and Pages 2829, 2945–2950 in [16]). An alternative approach, also available in 

GLIMMIX, is to fit the GLMM model directly, but approximate the likelihood function 

using Gaussian quadrature (see the technical details in [17] and Pages 2831, 2953–2954 in 

[16]). The quadrature approach may offer reduced small-sample bias (see [18] and Pages 

2957–2958 in [16]). Based on our preliminary simulations employing both approaches, the 

quadrature approach tends to be superior in terms of bias so we adopt it in our simulation 

study. As a caveat, it is possible that the subject-specific linear approximation approach 

might work better in other conditions differing from those in the simulation study (perhaps 

with fewer subjects and more observations per subject). Future research might clarify this 

further. In this study, we have developed a SAS macro that offers both approaches as 

options (see the Appendix). In either case, we also include a small ridge penalty to facilitate 

convergence of the Newton-Raphson algorithm (this is available as an option in GLIMMIX 

and has been recommended [19]).

The maximum likelihood procedure used by SAS provides an estimate for the ζ, θ and τ2 

parameters, and the covariance matrix of the ζ parameters. The estimated βp(t) function is 

then reconstructed as  and can be plotted as a function of t across 

the interval of interest. Cramér’s delta method [20] can then be used in a straightforward 

way to estimate the variance of βp(t) at any time t of interest, and thus provides approximate 

pointwise confidence intervals for fitted values of βp(t). These calculations are carried out 

automatically in the macro we developed.

3. A Motivating Example: The Flint Adolescent Study (FAS)

3.1. Description of the study and data

The Flint Adolescent Study (FAS) is an ongoing longitudinal study that aims to investigate 

both risk and protective factors for health risk behaviors including substance use, violence, 
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and HIV risk sexual behaviors from adolescence to adulthood [21]. The study recruited 

ninth-grade students with a GPA of 3.0 and below from the four public high schools in an 

economically disadvantaged school district in Midwest. The grade cutoff was used to select 

the youth who were at high risk for many deleterious outcomes. The high percentage (over 

80%) of Blacks makes the sample unique because the few large scale longitudinal studies of 

the risk and protective factors include predominantly White samples. We know relatively 

little about these issues among Black youth. A face-to-face interview was conducted 

annually from adolescence to adulthood in school or a location that participants identified as 

convenient for them and that provided adequate privacy with no interruptions. In addition, a 

questionnaire on substance use related behaviors was self-administered at the end of the 

interview to avoid under-report.

In this study, we analyzed longitudinal data from a sample of 698 participants (about 50% 

males) who completed at least four waves of assessment during the critical developmental 

period of substance use (ages 15–25). The impact of peer factors is, in general, hypothesized 

to become stronger during the course of adolescence and into early adulthood, as the youth 

gradually establishes his/her own social network outside the home. However, few studies 

have found that the developmental change in this effect may be nonlinear with the effect 

being nonsignificant at some points of time [22][23][24]. Our investigation, thus, aims to 

characterize the time-varying effect of negative peer influences (NPI) on alcohol use across 

this critical period of human development. The outcome variable is alcohol use in past 30 

days with a 0–6 ordinal scale (0=0 occasions; 1=1–2 occasions; 2=3–5 occasions; 3=6–9 

occasions; 4=10–19 occasions; 5=20–39 occasions; 6=40 or more occasions). The risk 

factor, NPI, was measured by the mean score of the following 13 items about how many of 

the participant’s friends were involved in delinquent or violent behaviors:

1. Drink beer or wine at least once a month?

2. Drink hard liquor (gin, whiskey, etc.) at least once a month?

3. Have a drug or alcohol problem?

4. Smoke marijuana at least once a month?

5. Have used cocaine?

6. Have been busted for selling drugs?

7. Have been busted for having drugs?

8. Get into fights?

9. Have carried a knife or razor?

10. Have carried a gun?

11. Shoplift from stores?

12. Have been busted for burglary or robbery?

13. Have dropped out of high school
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Each item was coded as a 1–5 ordinal scale (1=none; 2=some; 3=many; 4=most; 5=all). 

Thus, the scale of NPI was continuous with the range of 1–5. This measure had high internal 

consistency with Cronbach’s α = 0.88 – 0.90 across waves [25].

3.2. Fitting TVEM on the data

For observation j on participant i, let tij be his/her age, Xij be the score of NPI (centered by 

subtracting the grand mean for all included observations), and Yij be alcohol use in past 30 

days. We consider two TVEM models for modeling Yij, conditional on tij and Xij

• Normal linear TVEM with random subject effects:

Yij = β0(tij) + β1(tij)Xij + ai + eij, with ai ~ N(0; τ2), eij ~ N(0; σ2).

• Proportional odds TVEM with random subject effects:

logit (Pr(Yij ≥ k)) = β0(tij) + β1(tij)Xij + ai − θk, for θ1 < … < θ6.

For each model, we estimated the coefficients by an unpenalized B-spline basis expansion, 

using AIC [26] to choose the optimal number of knots (0 to 10) and the optimal function 

order (linear, quadratic or cubic) between knots, as Shiyko and colleagues [14] did for linear 

TVEM models. For simplicity, we assume the same number of knots and function order for 

β0(t) as for β1(t), and equal knot spacing. For the linear TVEM model, a cubic spline with 3 

knots was chosen. For the proportional odds TVEM model, a cubic spline with 2 knots was 

selected.

The fitted functions for the linear TVEM are plotted in the upper two panels of Figure 1. 

Dotted lines represent estimated 95% pointwise confidence intervals. Times past age 24 are 

not shown because sparse data there caused an edge effect (wide confidence intervals and 

difficult-to-interpret local parameter values for the linear TVEM model). β0(t) here can be 

interpreted as the estimated mean drinking level for all population members having age t and 

the sample average level of NPI (because NPI was centered to have average 0). β1(t) can be 

interpreted as the estimated difference in mean drinking levels between population members 

at age t differing by 1 unit on the NPI scale. A disadvantage of this interpretation is that it is 

difficult to define what an average or difference represents on an ordinal scale which is 

simply being represented by integers, or to imagine how this would have a linear form. The 

estimated variance components are τ2 = .4404 and σ2 = 1.0566. Thus, the estimated 

intraclass correlation within persons is τ2/(τ2 + σ2) = .2942 [27].

The fitted functions for proportional odds TVEM are plotted in the lower two panels of 

Figure 1. β0(t) in this model is not well-identified in isolation, because one could obtain the 

same probability model by adding a constant to β0(t) and also adding the same constant to 

each threshold θk. Therefore, β0(t) − θk is plotted instead. β0(t) − θk represents the log odds 

of a drinking response greater than or equal to k, for a person with an average level of NPI 

(hence Xij = 0) and the average value of the random effect (hence ai = 0). By contrast, β1(t) 

is easier to interpret. It represents the log odds ratio for higher drinking levels between 

population members at age t having the same value on the random effect and differing by 1 

unit on the NPI scale. The estimated random effects variance is τ2 = 2.2156. Thus, the 

estimated intraclass correlation within persons for the latent Ў is τ2/(τ2 + τ2/3) ≈ .4024 [27].
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Comparison between Figure 1b and Figure 1d demonstrates different time-varying effects of 

NPI on drinking as characterized by the two models. The different magnitudes of the 

coefficients is not inherently of interest because they represent different models. However, 

the shapes of the coefficients differ. In particular, the linear TVEM suggests that the time of 

greatest peer influence is around age 22, while the proportional odds TVEM suggests that 

the time of greatest peer influence is around age 17. The later result is more consistent with 

the findings of existing studies [22][23][24]. Thus, this fitted proportional odds TVEM 

model was adopted as the true model to generate data in the simulation study.

4. Simulation

We adopted the fitted proportional odds TVEM model in the motivating example as the true 

model to generate simulated data that closely represent the structure of real data so that the 

results can be more generalizable to the substance abuse field [28]. The true β0(t) and true 

β1(t) functions were taken from the estimates based on the empirical data as a cubic spline 

with 2 equally spaced interior knots. We examined the effects of four factors on the 

performance of the proportional odds TVEM model, and on the relative performance of the 

linear TVEM model when it was used to fit on the ordinal data. The following factors were 

varied:

• The distribution of the ordinal response y had 5 levels (0 through 4), 7 levels (0 

through 6), or 9 levels (0 through 8).

• The number of subjects n was 300, 500 or 700.

• The number of observations (waves) per subject was J = 5, 7, or 9.

• The marginal distribution of y was bell-shaped (roughly as in the simulations of 

Bauer and Sterba [4]), somewhat skewed, or highly skewed. The highly skewed 

distribution was based on the marginal distribution observed in the FAS data.

For each of these 3 × 3 × 3 × 3 = 81 conditions, 1000 random data sets were simulated.

The observation times tij (considered as the age of simulated participants at each 

observation) was random but roughly equally spaced: specifically, for the jth wave in a J-

wave scenario, subject i was sampled at age  where uij comes from a 

standard uniform distribution between 0 and 1.

For each subject i, the values of xij were generated as follows. A latent normal value of zij 

was generated from a N(0,1) distribution with intraclass correlation 0.5, and then 

transformed to have a marginal Beta(1,4) distribution. Denoting the resulting variate as zij, 

we let xij = 4zij + 1. This procedure, thus, produced correlated skewed data with a marginal 

distribution very similar to the observed values of NPI in the empirical data. For simplicity, 

we set the marginal probability distribution of x to be independent of time, because x did not 

appear to have much systematic change over time in the empirical data.

The response values yij were then generated from a proportional odds TVEM model with the 

same β0(t) and β1(t) as the estimates based on the FAS data, and with θ parameters chosen to 

give approximately the marginal distributions (across time and subjects) shown in Figure 2. 

Dziak et al. Page 7

Stat Med. Author manuscript; available in PMC 2015 December 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The estimated τ2 parameter from the FAS data, 2.2156, was taken as the true value here. 

This leads to an ICC for the latent Ў|X of .4024 [27], or an estimated ICC for Y|X in the 

linear TVEM model of .29 to .40 depending on the condition.

Both the linear TVEM model and the proportional odds TVEM model were fit to each 

simulated data set. For simplicity, the number and location of knots were considered known 

and set to those of the data-generating model. The relative predictive accuracy of the two 

methods was compared as follows. For each observation Yij, the fitted value ŷij from the 

linear model was defined as the best linear unbiased prediction (BLUP) from the linear 

mixed model. For the proportional odds model, the BLUP for the subject-specific 

probability of each response level was obtained, and then used to calculate ŷij as Σ yij 

Pr(yij). The fitted value ŷij was compared with the subject-specific expected value μij = 

E(Yij|tij, xij, aij) based on the true model, and the sum of squared error Σi Σj (ŷij − μij)2 and 

the prediction bias  were calculated for each method. The 

relative efficiency for the proportional odds model was defined as the average across 

simulations of the ratio of the sum squared error of the linear model to that of the 

proportional odds model. Thus, a relative efficiency greater than one implies that the 

proportional odds model does a better job at predicting the expected value than the linear 

model.

For prediction, both the linear TVEM and proportional odds TVEM had very little bias in all 

conditions. Mean absolute prediction bias was always less than .003 for the linear TVEM 

model, and ranged from .002 to .030 for the proportional odds TVEM model, depending on 

the condition. The bias associated with the proportional odds TVEM model sometimes 

tended to represent a slight underestimate of the mean in scenarios with moderate or high 

skewness; it may have been related to the fact that the predicted response mean had to be 

estimated indirectly from the predicted response probabilities.

The relative efficiencies of proportional odds TVEM versus linear TVEM for prediction are 

shown in Table 1. The proportional odds TVEM model always performed better than the 

linear TVEM model (relative efficiency > 1). Thus, although the linear TVEM estimate of 

the response was unbiased, it still had higher overall error than the proportional odds TVEM 

estimate because it did not take the true nature of the response distribution into account. In 

general, the number of subjects, the number of waves, or the number of levels of the ordinal 

scale had very little effect on relative efficiency. When the distribution of the ordinal 

responses was a bell shape, the two models performed at about the same level. However, 

when skewness was involved, the linear model’s performance was worse. This is 

particularly salient in the case of high skewness, which is very common in data on substance 

abuse.

For the proportional odds model, it is also of interest to compare the true and estimated β1(t) 

function. We omit this for the linear model, because the β1(t) function there requires 

different interpretations for the true (proportional odds) and fitted (linear) models, and 

therefore direct comparisons are less meaningful. In all conditions, the average bias for 

proportional odds TVEM in estimating β1 (t) was essentially zero (between −.002 and .002). 
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In addition to the bias, we calculated the mean squared error (MSE) in estimating β1(t) 

averaging over observation times t for the proportional odds TVEM. The results for MSE 

are summarized in Table 2. The MSE tended to be higher in scenarios where skewness was 

greater, or when the number of subjects, waves, or response levels was smaller. Pointwise 

coverage for 95% nominal confidence intervals for β(t) was also assessed. On average across 

replications and sampling times, this coverage was very close to nominal (94.4% to 95.7%). 

The Monte Carlo error rate for 1000 simulations is 

. Thus, the confidence intervals have excellent 

coverage.

5. Discussion

This study developed a new statistical model with free SAS macro’s that can be applied to 

characterize time-varying effects of risk factors on ordinal outcomes, which are very 

common in longitudinal data collected from substance abuse research. We also examined the 

consequences of fitting the linear TVEM to ordinal responses through simulations. The 

design of our simulation study is unique because it represents the special features of a well-

known longitudinal study on youth at high risk for substance abuse so that the results can 

inform future applications of the methodology to the substance abuse field.

The proposed model, in general, produced very small biases across different numbers of 

levels on the ordinal scale, sample sizes, numbers of waves, and distribution shapes, 

although there was a tendency for some slight bias to be found in more skewed distributions 

with fewer levels. Further, the MSE tended to be higher in scenarios where skewness was 

greater, or when the number of subjects, waves, or response levels was smaller. Our 

simulation also shows that fitting the linear TVEM to ordinal responses was particularly 

problematic when the ordinal scale was highly skewed. Contrary to a common assumption 

that an ordinal scale with several levels can be treated as a continuous scale, our results 

indicate that it is not so much the number of levels on the ordinal scale but rather the 

skewness of the distribution that makes a difference on relative performance of linear versus 

ordinal models.

The motivating example in this study demonstrates that the proposed model that was 

designed for longitudinal ordinal responses can characterize the time-varying effect of 

negative peer influences on alcohol use in a way that is more consistent with the 

developmental theory and existing literature in comparison to the linear TVEM model. 

Furthermore, Bauer and Sterba [4] provided some arguments against the use of linear 

models with ordinal outcomes, such as the possibility of generating impossible predicted 

values outside the range of the ordinal scale and the concern of dealing with 

heteroscedasticity. There is also another important practical advantage to modeling ordinal 

responses as they are: we can use the regression coefficients to calculate probabilities or 

odds ratios (e.g. the probability of engaging in binge drinking). A linear model is not 

adapted for this purpose.

Our approach to model selection in this paper and the accompanying macro is a rather 

simple one. We assumed that each coefficient function could be represented as a spline with 
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the same number of knots, and used the BIC penalized fit statistic to choose the best number 

of knots. It would be beneficial in the future to make the process more flexible. This can be 

done in one of two ways. The easiest way is to allow different numbers of knots for different 

functions (so that β0(t) might have a complicated shape while β1(t) had a simple one, or vice 

versa). However, a fit statistic would still have to be used to loop through each possible 

number of knots for each coefficient, and to choose the best combination, which may 

become time-consuming. A more automatic approach would use many knots but then 

implement a complexity penalty function (e.g. [29]) to regulate the magnitude of the change 

in the function which may occur at each knot. However, in our experience it was 

computationally difficult to estimate a model which included both a complexity penalty and 

a random effect in a generalized linear model using standard software. Therefore, more 

research here is needed.

The proposed model was built upon the assumption of proportional odds which has the 

advantages of ensuring the proper order among the cumulative probabilities and providing 

simple interpretation of the effects of covariates. In some practical settings, however, this 

assumption may need to be relaxed. Interested readers may refer to [30] for a comprehensive 

review of alternative approaches. Particularly, in substance abuse research where the shift 

from no use to any use may be qualitatively different from shifts in level of use, the zero-

inflated proportional odds model [31] may be considered.

Model (1) accounts for subject-specific effects only through a random intercept at the latent 

level. Thus, latent values ўij and ўij′ are treated as equally correlated regardless of the size of 

the time difference between tij and tij′, and this may not be realistic in some settings. Popular 

longitudinal models assuming autocorrelation for the residuals eij (such as AR-1), on the 

other hand, treat the lag between each consecutive pair of measurements tij and ti,j+1 as 

equivalent. This assumption may not apply to those settings that involve random or 

inconsistent measurement times. A more straightforward way to incorporate longitudinal 

correlation, therefore, is to add a random subject-level slope bi alongside ai. That is, one can 

add a new term bitij to the right-hand side of Equation (1). This approach of adding a simple 

parametric random effects structure to a rich nonparametric fixed effects structure can work 

well and in fact has some precedent in the literature [32]. We adopted this approach to re-

analyze the empirical data but found that the estimated curves are not noticeably different 

from those in Figure 1. We also attempted to repeat the simulations as well to include a 

random slope, but we found that the GLIMMIX procedure sometimes failed to converge 

when faced with a proportional odds model with two random effects. Further research is, 

thus, warranted regarding how best to implement more complex random effect structures 

while still allowing the time-varying effects to be easily estimated and interpreted with 

standard software. Another option, besides random effects, could have been to take a 

marginal (GEE) approach with sandwich standard errors [33]. This is, however, beyond the 

scope of this paper.
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Appendix

SAS program example for using macro’s OrdinalTvem & OrdinalTvemLoop

In this study, we have developed two SAS macro’s that can be downloaded from the web 

site of the Methodology Center at the Pennsylvania State University (http://

methodology.psu.edu/OrdinalTvemPropOdds). The principal macro is OrdinalTvem which 

fits either a linear or proportional odds TVEM model with one or more covariates and an 

ordinal response. The macro optionally includes (1) no random effects, (2) a random 

intercept alone, or (3) a random intercept and random slope, in the model. The second 

macro, OrdinalTvemLoop, calls OrdinalTvem in a loop in order to facilitate the choice of 

the degree of spline and the number of knots. The input data format requires one row for 

each wave (see an example in [10]).

The code shown below runs an analysis similar to the one included in the paper, but with an 

addition of two covariates, family history of alcoholism and depression, which are assumed 

to have time-invariant effects on alcohol use. Note that whether a covariate’s value is time-

varying is independent of whether its effect is time-varying. All four combinations are 

possible. For example, family history of alcoholism is time-invariant but may have different 

effects on alcohol use at different developmental stages. On the other hand, a time-varying 

covariate such as depression can be given a constant coefficient for the sake of parsimony if 

its estimated coefficient function appears flat. While it is not necessary to tell the macro 

whether the value of a covariate is time-varying, covariates with time-invariant effects are 

indicated with cov and covariates with time-varying effects are specified under tcov.

%INCLUDE "C:\Documents\OrdinalTvem.sas";

/* substitute here the location at which the macro is stored */

%OrdinalTvem(dataset=usable, /*data set name*/

id=ID, /* ID variable */

t=age, /* time variable */

cov=FamHistory Depression, /* name of the covariate(s) with time-invariant 

effect */

tcov=NegPeer, /* name of the covariate(s) with time-varying effect */

y=Drink30day, /* response variable name */

UsePropOdds=1,/* use a proportional odds TVEM;

specify "UsePropOdds=0" if using a linear TVEM */

UseRandom=1, /* 0 indicates no random effects;

1 indicates a random intercept;

2 indicates a random intercept and slope */

deg=3, /* the degree of the spline */

MinTToPlot=15, /* lower end of plot */

MaxTToPlot=25, /* upper end of plot */
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NumInteriorKnots=3 /* the number of interior knots, assumed evenly spaced 

*/);

The calculations for the macro mainly involve SAS PROC GLIMMIX (see the details in 

Section 2) so SAS version 9.2 or higher is required. In addition to the time-varying 

coefficients for the covariates specified under tcov (it is permissible to specify none at all), 

the macro automatically fits a time-varying intercept using B-splines without a penalty. 

When calling PROC GLIMMIX for proportional odds regression, we use the 

DESCENDING option and then reverse the signs of the resulting intercept constants [16]. 

This is needed because the default approach to proportional odds regression in SAS would 

model the probability of getting a lower, not higher value, which would make the 

interpretation of the β functions less intuitive. We reverse the signs of the intercept constants 

(so that θ1 < … < θK−1 instead of θK−1 < … < θ1) to make them more easily interpretable as 

thresholds which the latent variable must exceed in order for the observed variable to pass to 

the next level.

Three different approaches to doing the internal calculations can be specified in 

OrdinalTvem or OrdinalTvemLoop, using the optional keyword ComputationOption. 

If ComputationOption=1 is specified, then doubly iterative pseudolikelihood is used, with 

no nonnegativity constraint on the subject-level covariance parameter. If 

ComputationOption=2 is specified, then doubly iterative pseudolikelihood is used, but 

with a nonnegativity constraint on the subject-level covariance parameter. If 

ComputationOption=3 is specified, then approximate maximum likelihood by Gaussian 

quadrature is used. Based on our preliminary simulations, Option 3 is recommended.

Besides plots, several useful data files are created. The most useful are:

DataWithFitted The input dataset, merged with the fitted values and confidence 

intervals for the beta function of each covariate at each observed time point.

DataWithFittedByLevel Fitted values at the logit scale for each observation, for 

each level (in the proportional odds model).

Covparms Estimate for the random effects variance, if any.

ParameterEstimates Estimates for the regression parameters corresponding to the 

terms in the spline basis. Also, estimates for the level-specific cutoff parameters θ.

InvariantEffects Estimates and standard errors for the regression parameters, if 

any, specified by the user to have constant regression coefficients.

TheseFitStats Fit statistics for the model (e.g., AIC, BIC)

The second macro developed from this study is OrdinalTvemLoop which calls 

OrdinalTvem in a loop in order to facilitate the choice of the degree of spline and the 

number of knots. This macro creates an output data set called FitStats which contains fit 

statistics including AIC and BIC for each of many combinations of choices for degree and 

number of knots. These fit statistics come from PROC GLIMMIX via OrdinalTvem. The 

following is sample code for this macro.
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%OrdinalTvemLoop(dataset=usable,

id=ID,

t=age,

cov=FamHistory Depression,

tcov=NegPeer,

y=Drink30day,

UsePropOdds=1,

UseRandom=1,

ComputationOption=3);

PROC PRINT DATA=FitStats;

VAR degNumInteriorKnots

AIC___smaller_is_better_ BIC___smaller_is_better_;

RUN;
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Figure 1. 
The fitted TVEM models on the FAS data.
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Figure 2. 
The distribution shapes by response levels manipulated in the simulations.
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