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Abstract

The developmental regulation of globin gene expression has served as an important model for 

understanding higher eukaryotic transcriptional control mechanisms. During human erythroid 

development there is a sequential switch from expression of the embryonic ε-globin gene to the 

fetal ɣ-globin gene in utero, and post-partum the ɣ-globin gene is silenced as the β-globin gene 

becomes the predominantly expressed locus. Because the expression of normally silenced fetal ɣ-

type globin genes, and resultant production of fetal hemoglobin (HbF) in adult erythroid cells can 

ameliorate the pathophysiologic consequences of both abnormal β-globin chains in sickle cell 

anemia and deficient β-globin chain production in β-thalassemia, understanding the complex 

mechanisms of this developmental switch has direct translational clinical relevance. Of particular 

interest for translational research are the factors that mediate silencing of the ɣ-globin gene in 

adult stage erythroid cells. In addition to the regulatory roles of transcription factors and their 

cognate DNA sequence motifs, there has been a growing appreciation of the role of epigenetic 

signals and their cognate factors in gene regulation, and in particular in gene silencing through 

chromatin. Much of the information about epigenetic silencing stems from studies of globin gene 

regulation. As discussed here, the term epigenetics refers to post-synthetic modifications of DNA 

and chromosomal histone proteins that affect gene expression and can be inherited through 

somatic cell replication. A full understanding of the molecular mechanisms of epigenetic silencing 

of fetal hemoglobin expression should facilitate development of more effective treatment of β-

globin chain hemoglobinopathies.
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Introduction

DNA methylation was the first well described epigenetic signal and was long posited to 

have a role in gene regulation (1-3). Vertebrate globin genes were among the first in which 

an inverse relationship between cytosine methylation and transcription was demonstrated 

(4-7). Both histone and non-histone chromosomal protein post-synthetic modifications have 

also been shown to have important roles in gene regulation, a concept formalized as the 

histone code (8-10). These relationships have been described in detail in a recent review 

(11). The current discussion will focus primarily on the epigenetic mechanisms involved in 

developmental human β-type globin gene silencing (and hence fetal hemoglobin silencing) 

and the preclinical and potential clinical translational avenues for overcoming this silencing 

in context of the treatment of inherited β-globin gene disorders.

In all vertebrates that have been studied, a switch from embryonic, or primitive, to definitive 

hemoglobin production occurs in erythroid cells during development. In humans and old 

world primates, as well as certain ruminants, an intermediate fetal hemoglobin (HbF) 

predominates during mid to late gestational stages and persists at a low level post-partum in 

definitive erythroid cells after adult hemoglobin (HbA) predominates (Table 1). The details 

of this switch have been reviewed extensively (12, 13).

As with much of human biology, the ability to identify important regulatory mechanisms 

that are physiologically relevant is a major challenge requiring robust pre-clinical models for 

understanding ɣ-globin gene silencing in adults and successfully targeting those 

mechanisms therapeutically. Because of a high degree of evolutionary conservation of gene 

regulatory mechanisms in erythroid cells, transgenic mice bearing a yeast artificial 

chromosome containing an intact human β-globin gene locus (β-globin YAC), have 

provided a valuable model system for studying developmental globin gene regulation. The 

transgenic mouse model also allows for testing the effects of modulating epigenetic 

processes in the context of whole animal physiology. At the same time the β-globin YAC 

mouse model is limited by the fact that the mouse lacks a true analog of the human fetal 

erythroid compartment, such that the transgenic human ɣ-globin gene is regulated like the 

murine embryonic β-type globin genes, which are repressed several orders of magnitude 

more than the human ɣ-globin gene in adult humans (14), (Table 1).

Cultured primary human erythroid cells derived from CD34+ progenitors induced to 

erythroid differentiation provide another powerful model for studying human ɣ-globin gene 

silencing (15, 16). The limitations of cultured primary erythroid cells include their limited 

life span and the fact that achieving terminal erythroid differentiation while maintaining cell 

viability is often challenging.

The primate baboon model has also been quite useful given that the developmental β-type 

globin gene repertoire of the baboon is very similar to humans, including a fetal hemoglobin 

(17). Other vertebrate models and cultured cell systems have provided important early 

insights into epigenetic control of globin gene silencing, but the discussion of pre-clinical 

translational studies is directed primarily at the above models.
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Much of the focus of research on developmental ɣ-globin gene silencing has been on trans-

acting transcription factors. The discovery of the quantitative trait locus BCL11A on 

chromosome 2p16 (18, 19), identified this factor as an important regulator of fetal 

hemoglobin expression. Subsequent studies have shown that BCL11A binds to an intergenic 

region in the β-globin locus and has a dominant silencing effect on murine embryonic β-

type H1 and εγ-globin, as well as human ε- and ɣ-globin gene expression in β-YAC 

transgenic mice (12, 20).

Knockdown of BCL11A in cultured primary human adult erythroid cells also results in a 

significant upregulation of ɣ-globin gene expression, although the magnitude of this effect is 

much less than in the β-YAC mouse model (19). The transcription factor SOX6 also 

mediates embryonic βH1 and εγ-globin gene silencing in the mouse, and it is known to 

interact with BCL11A (21, 22).

Krüppel-Like Factor 1(KLF1), originally known as Erythroid krüppel-like factor (EKLF), 

was initially shown to be critical for adult β-globin gene transcription (23), and to increase 

the ability of the β-globin promoter to compete with the ɣ-globin promoter for the enhancer 

function of the erythroid-specific β-globin Locus Control Region (LCR) (24, 25). A more 

direct role of KLF1 in ɣ-globin gene silencing occurs through its stimulation of BCL11A 

expression (26, 27).

The MYB gene has also been implicated in regulating fetal hemoglobin levels through both 

quantitative trait locus studies and functional assays (18, 28-30).

A number of other transcription factors having been implicated in embryonic/fetal β-type 

globin gene silencing. These include GATA1 in association with FOG1 and the NuRD 

complex (31-34), NF-E4 (35), the TR2/TR4/DRED complex (36, 37), Ikaros in association 

with the PYR co-regulatory complex (38).

As the transcription factors involved in fetal globin gene silencing have been recently 

reviewed, the remainder of this review will focus on epigenetic silencing mechanisms (39).

Epigenetic Regulators – Writers and Readers

There are only a few examples in which an epigenetic modification of DNA or a 

chromosomal protein has a direct effect on structure or function (40). An exception is 

histone acetylation which does appear to directly alter chromatin structure (11, 41). In most 

cases, epigenetic marks serve as a recognition signal for a protein or protein complex which 

ultimately carries out the specific associated regulatory function. A useful organizing 

concept for identifying potential targets for perturbing epigenetic fetal globin gene silencing 

is that of writers and readers. Writers are the enzymes that deposit or remove an epigenetic 

mark, while readers are the proteins or complexes that interpret those marks and carry out 

the associated regulatory function.
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DNA Methylation

DNA methyltransferases (DNMTs) are a major category of epigenetic writers, as DNA 

methylation was the first well established epigenetic regulatory signal. The most well-

characterized of these are the denovo methylases, DNMT 3A and 3B, which symmetrically 

methylate cytosines in the dinucleotide CpG on both strands of unmethylated DNA, and 

DNMT1, a so-called maintenance methylase, that adds a methyl group to the symmetric 

CpG on the unmethylated strand of DNA following DNA replication. Since the discovery 

that silent embryonic and fetal β-type globin genes are methylated, and that the cytidine 

analog, 5-azacytidine inhibits the processive methylation of hemi-methylated DNA 

following replication, many studies have focused on DNMT1 as a target for reversing globin 

gene silencing. Initial studies in animal models (42) were followed by clinical interventions 

that demonstrated increased fetal hemoglobin expression in patients with both sickle cell 

anemia and β-thalassemia who were treated with 5-azacytidine (43-45). The mechanism by 

which 5-azacytidine actually induces increased human fetal gamma globin gene expression 

has been debated, and mechanisms such as generalized cytotoxicity and induced erythroid 

cellular stress have been proposed (13, 46-50). Nonetheless in well-characterized primate 

and human β-globin gene locus-bearing transgenic mouse models, disruption of DNA 

methylation appears to be its major mechanism of relieving ɣ-globin gene silencing, 

although perhaps indirectly in part (51-56). Despite the development of more specific 

inhibitors of DNMT1, such as decitabine which, unlike 5-azacytidine, lacks effects on RNA 

metabolism, concerns about the safety of this class of agents have limited clinical 

application in β-hemoglobinopathies. However, a recent study of low dose decitabine in β-

thalassemia patients reported an increase in HbF without detectable short term cytotoxicity 

or genotoxicity (57).

The readers of DNA methylation are a group of proteins that preferentially bind to DNA 

containing symmetrically methylated CpG dinucleotides. The largest family of these are the 

Methyl cytosine Binding Domain (MBD) proteins, which include MBD1, MBD2, MECP2, 

and MBD4 (58). Of these, the role of MBD2 in regulating embryonic/fetal β-type globin 

gene silencing in adult erythroid cells is the most-well characterized. MBD2 binds 

preferentially to DNA containing a high density of methylated CpGs. MBD2 has been 

shown to bind directly to the avian embryonic ρ -globin gene and knockdown of MBD2 de-

represses the gene in adult erythroid cells in culture (59). Knockdown of MBD2 has also 

been shown to induce a large increase in expression of the silent human ɣ-globin gene in 

human β-globin locus bearing transgenic mice (53), and in human primary CD34 precursor 

derived adult erythroid cells (60). Importantly, complete knockout of MBD2 in transgenic 

mice does not result in any major deleterious phenotype (61), suggesting that its disruption 

postnatally in somatic cells may have minimal toxicity.

MBD2 mediates silencing by recruiting the Nucleosome Remodeling and Deacetylase 

(NuRD) complex to methylated DNA (62, 63). Structural studies of the MBD2-NuRD 

complex have identified a critical coiled-coil protein interaction between MBD2 and p66α/β, 

another NuRD complex component. Enforced expression of the p66 coiled-coil protein 

results in release of the Mi2β chromatin remodeling ATPase from the NuRD complex, and 
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de-repression of the silenced embryonic and fetal β-type globin genes, presumably by 

decoupling MBD2 from the NuRD chromatin remodeling function (60).

A closely related member of the MBD family, MBD3, also associates with a NuRD 

complex, but does not bind to methylated versus non-methylated DNA with high affinity 

(58, 64). Moreover, the presence of MBD2 and MBD3 in association with NuRD complex 

appears to be mutually exclusive (65). MBD3-NuRD is associated with the ɣ-globin gene 

promoter primarily through association with the GATA1 transcription factor associated 

protein, Friend of GATA1 (FOG1), (32, 33) or other complexes (66). Disruption of 

expression of the Mi2β subunit of NuRD results in increased ɣ-globin gene expression in 

transgenic mice (34), cultured mouse CID hematopoietic cells bearing a human β-globin 

gene locus and cultured primary human erythroid cells (67).

Recently it was shown that as little as a 50% knockdown of Mi2β in primary human 

erythroid cells results in a ∼10-fold increase in ɣ-globin gene expression without affecting 

erythroid differentiation, compared to control CD34+ progenitor derived erythroid cells 

treated with scramble shRNA (67). The degree of differentiation in control cells in these 

studies leads to a level of 1% ɣ/ɣ+β RNA, which is comparable to normal adult reticulocyte 

levels. Interestingly, in these studies, the effect of Mi2β on ɣ-globin gene silencing did not 

appear to be due largely to an effect on MBD2-NuRD or MBD3-NuRD. Rather at least part 

of the effect was through down regulation of BCL11A and KLF1 in Mi2β knockdown 

erythroid cells. The purposed relationships of MBD2-NuRD, MBD3-NuRD and Mi2β in ɣ-

globin gene silencing in the context of other major epigenetic regulatory factors are depicted 

in Figure 1, (67). Based on the preponderance of evidence, it appears that MBD2 plays a 

greater role than MBD3 but not than Mi2β, in silencing ɣ-globin gene expression, while 

Mi2β plays a greater role than either MBD2 or MBD3.

Histone Acetylation

Increased histone acetylation has long been posited to be associated with decompressed 

chromatin and active gene expression (68, 69). The writers for histone acetylation are 

histone acetyltransferases including P300/CBP; PCAF and TAF(11)250, (70) as well as 

histone deacetylases (which might be more properly thought of as “erasers”). The 

complexity of histone acetylation and its relationship to gene regulation has been intensively 

studied and will not be reviewed in detail here. The consensus is that acetylation of lysines 

at histone tails results in charge neutralization and loosening of the interaction of 

nucleosomes with their associated DNA (11).

A number of inhibitors of histone deacetylases have been identified or synthesized, the 

prototype being butyric acid (69). Butyric acid and derivatives were shown to induce 

expression of silenced embryonic and fetal β-type globin genes in several animal models 

(71, 72). While increased fetal hemoglobin expression was associated with increased histone 

acetylation in the vicinity of the ɣ-globin gene, (54) it is important to recognize that histone 

deacetylases might potentially affect acetylation of transcription factors and other non-

histone proteins. Moreover, butyrate and other HDAC inhibitors have been shown to affect 

other signaling pathways including the STAT5, cAMP and MAP kinase systems (73-75). 
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Thus the exact molecular mechanism(s) of ɣ-globin gene activation by HDACs are not fully 

known. Nonetheless, treatment of patients with sickle cell anemia and β-thalassemia with 

sodium butyrate and butyric acid was shown to induce increased HbF expression (76, 77). 

The effect of naturally occurring butyrates is somewhat variable, possibly reflecting 

phenotypic differences in their metabolism or in the factors that are responsible for the 

mechanisms of action. Extensive efforts have been made to improve on the effectiveness of 

histone deacetylase inhibitors while decreasing unwanted side effects. Recent large scale 

chemical genetic studies independently identified HDAC1 and HDAC2 inhibitors as 

inducers of ɣ-globin gene expression, (78) affirming the likely mechanism of action of 

butyric acid and some of its derivatives.

Histone Methylation

Unlike histone acetylation, which is generally associated with both active chromatin 

configuration and gene expression, histone methylation can signal either gene activation, 

gene silencing, or a bivalent state. For example, histone H3K4me3 methylation is usually 

associated with open chromatin and gene transcription while histone H3K9 and H3K27me3 

methylation are most frequently associated with gene silencing (8, 79, 80). The presence of 

both H3K4me3 and H3K27me3 is associated with a poised bivalent state (81).

The major writers of histone methylation are the SET domain lysine specific methylases and 

the protein arginine methyltransferases (PRMT). A PRMT5-dependant multi-protein 

complex has been shown to contribute to human ɣ-globin gene silencing. Moreover, 

symmetric methylation of histone H4 arginine 3 (H4R3 Me2s) serves as a binding target for 

DNMT3A leading to methylation at the ɣ-globin gene promoter. The histone lysine methyl 

transferase Suv4-20h1 and components of the NuRD complex are also associated with these 

complex (66, 82). Recently, the methyltransferase inhibitor, adenosine-2′, 3′ dialdehyde 

(Adox) was shown to induce ɣ-globin gene expression in human primary erythroid cells in 

culture, suggesting that PRMT5 enzymatic activity may be mechanistically linked to 

silencing. As with most inhibitor studies, the possibility remains that the effects of Adox 

may be through another methyltransferase (83).

Another member of the protein arginine methyltransferase family, PRMT1, has been 

associated with human ɣ-globin gene silencing through association with a protein named 

friend of PRMT1 (FoP) (84). Knockdown of FoP resulted in increased ɣ-globin gene 

expression in cultured primary human erythroid cells. Interestingly, PRMT1 has also been 

shown to facilitate a number of histone acetylation events including acetylation of Lys9/

Lys14 and subsequent transcription of the adult β-globin gene (85). This result suggests that 

the enzymatic activity of PRMT1 also may contribute to ɣ-globin gene silencing through 

increasing the β-globin gene's ability to compete for the β-globin locus control region 

enhancer activity.

Specific lysine demethylases are also involved in ɣ-globin gene silencing in both murine and 

human adult erythroid cells. The Lysine-specific demethylase 1 (LSD1) has been shown to 

associate with the transcription factor BCL11A through a complex containing the repressor 

element-1 silencing factor co-repressor-1 (CoREST) (86), and to mediate part of BCL11A's 
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strong ɣ-globin gene silencing activity. LSD1 also has been shown to associate with the 

TR2/TR4/DRED complex, along with several other co-repressor complexes (87). Inhibition 

of LSD1 by either RNA interference, or the LSD1 enzymatic activity inhibitor, 

tranylcypromine results in increased ɣ-globin gene expression in β-globin locus-bearing 

transgenic mice and cultured primary human erythroid cells (86, 88). However, since LSD1 

is required for normal erythroid maturation, it has been suggested that its inhibition 

potentially might adversely affect that process (86).

The Interplay between DNA Methylation and Histone Modification in 

Regulating Gene Expression

Studies in vertebrate model systems have demonstrated a close and often reinforcing 

relationship between DNA methylation and repressive histone modifications in gene 

silencing (89, 90). In some instances DNA methylation and associated Methyl binding 

domain proteins recruit co-repressor complexes that contain SET domain proteins that 

catalyze H3K9 methylation (91). Other studies have demonstrated that repressive histone 

marks such as H3K9 methylation may recruit DNA methyltransferases (92). Conversely, 

histone acetylation has been shown to prevent extinction of gene expression and subsequent 

DNA methylation (41, 93). The self-reinforcing nature of these interactions are depicted in 

Figure 2.

MicroRNA and RNA Interference

Frequently microRNA (miRNA) and small inhibitory RNA (siRNA) are included in the 

category of epigenetic regulatory mechanisms. These small RNAs are capable of well-

characterized post transcriptional gene silencing, but also have been shown to direct 

epigenetic modifications in plants and animals (94). Several miRNAs have been implicated 

in the regulation of ɣ-globin gene expression. Lin28B and the associated let-7 miRNA 

family are regulated during fetal to adult erythroid development. Enforced expression of 

LIN28B resulted in increased ɣ-globin gene expression in cultured adult primary human 

erythroid cells, while LIN28B knockdown decreased ɣ-globin gene expression in fetal cord 

blood derived human erythroid cells which normally express high levels of HbF (95). At 

least part of this effect was attributed to the effect of LIN28B on expression of BCL11A. 

Similarly, microRNA-486-3p was shown to bind to the BCL11A mRNA 3′untranslated 

region and down regulate its expression concomitant with upregulation of ɣ-globin gene 

expression in cultured human erythroid cells (96). The role of direct epigenetic changes in 

the actions of either LIN28B or microRNA-486-3p remains unknown.

Interplay Between Transcription Factors and Epigenetic Regulators

Any discussion of epigenetic regulation of globin gene expression must account for the 

interplay between transcription factors and co-regulatory complexes with which they 

interact and which in turn often contain both “writers” (eg. Histone acetylases and 

deacetylases), and “readers” (eg. Methyl-cytosine binding proteins) of epigenetic chromatin 

marks. Several transcription factors that are involved in embryonic fetal β-type globin gene 

silencing are known to associate with one or more co-repressor complexes. Among these, 
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BCL11A has emerged as a dominant regulator of developmental globin gene silencing in 

mice and is also implicated as a strong mediator of ɣ-globin gene silencing in cultured 

human primary erythroid cells (19). BCL11A has been shown to associate with the MBD3-

NuRD complex, as well as the LSD1/CoREST complex, Sin3A, NCoR/SMRT, and DNMT1 

(86). Another transcription factor complex associated with embryonic globin gene silencing, 

the TR2/TR4/DRED orphan nuclear receptor complex, has been shown to associate with a 

number of epigenetic co-regulatory proteins, including the MBD3-NuRD, LSD1/CoREST, 

Sin3A complexes and DNMT1 (87). Thus the effectors of these transcription factors may be 

in large part epigenetic.

Another connection between epigenetic regulators and transcription factors that are involved 

in ɣ-globin gene silencing is through epigenetic regulation of expression of the transcription 

factors themselves. It was recently shown that Mi2β/CHD4, independently of the NuRD 

complex, is required for high level expression of both KLF1 and BCL11A in primary human 

adult erythroid cells and that Mi2β/CHD4 binds directly to BCL11A (67), (See Figure 1).

It is important to note that virtually all of the epigenetic and transcriptional regulatory 

factors that are discussed here and depicted in Figure 1, have been shown to play a role in 

normal developmental globin gene switching. However, the relative effect of a given factor 

in the totality of ɣ-globin gene silencing appears to vary considerably in developmental 

globin silencing or “switching” versus maintenance of silencing in the adult erythroid 

compartment.

A summary of the co-regulatory complexes that contain known epigenetic readers and 

writers and that are associated with transcription factors involved in developmental 

regulation of ɣ-globin gene expression is presented in Table 2.

Translational Clinical Trials Targeting Epigenetic HbF Silencing

The first clinical trials aimed at reversing fetal hemoglobin silencing in patients with sickle 

cell anemia and β-thalassemia targeted DNA methylation with 5-azacytidine (43-45). While 

subsequent trials with cytotoxic agents raised questions as to the exact mechanism of 5-

azacytidine induced HbF expression (13), a number of preclinical studies support a major 

role for DNA hypo-methylation (51-53, 55, 56). As noted previously, concerns about 

adverse effects of hypo-methylating agents with known cytotoxicity have limited the 

widespread use of 5-azacytidine and decitabine in the clinic.

The use of histone deacetylase inhibitors represents the other major example of clinical trials 

aimed at targeting epigenetic silencing of HbF expression in patients with β-globin gene 

disorders (76, 77, 97). Recent trials with oral butyrate derivatives have shown activity in 

patients with β-thalassemia. One such agent Sodium 2, 2 dimethyl butyrate was shown to be 

tolerated in Phase I/II trial (98). While butyrate and derivative compounds have 

demonstrated effectiveness in some patients, the effects are variable. The nature of this 

variability remains unknown and could involve differences in metabolism of various HDAC 

inhibitors or genetic heterogeneity in acetylated protein targets or downstream regulatory 

factors in different patients.
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Based on the preclinical studies described previously, a number of epigenetic modulators are 

either in early phase clinical trial testing or such trials are being planned. Among these are 

inhibitors of the histone lysine demethylase, LSD1 (86, 88), the histone arginine methylase 

PRMT5 (83), as well as selective HDAC1 and HDAC2 inhibitors (78). The development of 

more selective HDAC inhibitors may increase their effectiveness while decreasing the 

unwanted side effects of these agents.

In the face of a large number of epigenetic targets for inducing HbF expression in patients 

with β-thalassemia and sickle cell anemia, consideration of several factors should guide the 

further development of targeting strategies. The same considerations also apply to 

therapeutic targeting of transcription factors such as BCL11A and KLF1. The first is 

selection of the most informative preclinical model systems to identify promising agents. 

Human β-globin locus bearing transgenic mice have provided a valuable model to identify 

important epigenetic and transcription factor silencers of embryonic/fetal β-globin gene 

expression. However, as noted previously because mice only have embryonic and adult β-

globin expression, this model may either underestimate or overestimate the effect that a 

given epigenetic or genetic fetal globin gene silencer will have in humans.

Cultured human primary erythroid cells derived from CD34+ progenitors also provide a 

valuable model for identifying epigenetic targets for inducing fetal hemoglobin expression. 

One important caveat for studies using these cells is that it is very important that the level of 

ɣ-globin gene expression be measured after extensive erythroid differentiation when the ɣ/ɣ

+β expression level in control cells approaches that in normal adult erythroid cells. Agents 

that interfere with differentiation might result in a sufficient increase in ɣ-globin gene 

expression in this model to be clinically useful, but may have deleterious effects on 

erythropoiesis. Variation in the level of erythroid differentiation achieved in studies of 

agents that disrupt ɣ-globin gene silencing in this cell model system must be taken in to 

consideration when assessing their relative therapeutic potential.

Another consideration is how specific the effect of a given type of epigenetic targeting 

might be. Clearly epigenetic regulatory factors have global effects on gene expression in all 

cell types, so that complete inhibition or ablation would likely be catastrophic in many 

instances. One exception might be the methyl binding domain protein MBD2, whose 

complete absence is tolerated in knockout mice with only a minimal phenotype (63). It is 

also generally believed that only genes that are in a poised state can be readily 

transcriptionally activated. Thus, if partial inhibition of multiple fetal globin gene silencing 

mechanisms can be achieved epigenetically, this might be highly effective with acceptable 

short and long term off target effects. Finally, the feasibility of targeting a given epigenetic 

regulator must be considered. Those that function through enzymatic activity such as DNA 

methylases, HDACs, histone demethylases, and histone methylases, and potentially the 

ATPase activity of Mi2β/CHD4, are more readily druggable. This is largely why clinical 

trials targeting these regulators already have been carried out or are underway. Like 

transcription factors, those epigenetic regulators such as MBD2-NuRD that function through 

protein-protein or protein DNA interactions have been considered “undruggable” in the past. 

However, recent success in developing agents such as covalently stapled peptides capable of 

disrupting protein-protein interactions in animal models (99-101), and targeting specific 
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proteins for degradation in the proteasome (102, 103) suggest that this class of epigenetic 

regulators may be targeted successfully in the future (Table 3).

In summary, epigenetic mechanisms play a key role in fetal globin gene silencing, both 

independently and in cooperation with specific transcription factor silencers such as 

BCL11A and KLF1. Among the first proof of principle targeted treatment trials in patients 

with β- hemoglobinopathies were those aimed at DNA methylation and histone acetylation, 

two key epigenetic marks of globin gene transcriptional activity. With further understanding 

of the specificity of epigenetic fetal globin gene silencing mechanisms, it is likely that 

targeting of this process will result in more successful future treatment of patients with β-

globin disorders through induction of increased HbF levels.
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Abbreviations

HbF Fetal hemoglobin

HbA Adult hemoglobin

β-YAC Beta-globin Yeast Artificial Chromosome

LCR Locus Control Region

NuRD Nucleosome Remodeling and Deacetylase

DNMT DNA methyl transferase

MBD Methyl cytosine Binding Domain

shRNA Short hairpin RNA

HDAC Histone deacetylase

PRMT Protein arginine methyl transferase

Adox Adenosine-2′, 3′-dialdehyde

FoP Friend of PRMT1 (Protein arginine methyl transferase)

siRNA small inhibitory RNA, BCL11A, B-Cell Lymphoma/Leukemia A

EKLF Erythroid krüppel-like factor

KLF-1 Krüppel-like factor 1

TR2/TR4/DRED Nuclear receptor TR2/TR4 complex

Mi2β/CHD4 Chromodomain-helicase DNA binding protein 4

CID Chemical inducer of dimerization

PCAF P300-associated factor

CoREST REST-co-repressor

NCoR/SMRT Nuclear receptor co-repressor-1/Silencing Mediator for Retinoid and 

Thyroid Receptors

LSD1 Lysine-Specific Demethylase-1
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Figure 1. Mi2β-mediated epigenetic globin gene silencing through multiple mechanisms
Mi2β is a critical component of the MBD2/NuRD complex which regulates developmental 

globin gene silencing independently of BCL11A and KLF1/EKLF. Mi2β also binds to the 

distal promoter region of the γ-globin gene as part of the MBD3/NuRD/GATA-1/FOG-1 

silencing complex. Importantly, Mi2β binds to and activates expression of BCL11A and 

KLF1/EKLF which in turn silence ɣ-globin gene expression. In each of these processes, 

Mi2β has been shown to directly promote ɣ-globin gene silencing. As depicted, Mi2β is also 

associated with the BCL11A complex and the TR2/TR4/DRED complex through its 

association with NuRD, but as indicated by the non-colored symbol, its role in the action of 

these complexes has not been demonstrated directly. Likewise, other non-colored symbols 

designate epigenetic modulators that have not been shown directly to mediate silencing in 

association with factors designated by colored symbols.
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Figure 2. Interdependence of epigenetic gene silencing
Existing data suggest that DNA methylation and postsynthetic histone modification are 

dependent on one another and in turn reinforce each other. Either mark appears capable of 

establishing the other by recruiting epigenetic writer enzymes, thus resulting in a cycle that 

reinforces gene silencing. For example, as illustrated, DNA methylation recruits methyl 

cytosine binding proteins which recruit co-repressor complexes that contain histone 

modifying enzymes that catalyze loss of activating marks (Eg. Histone acetylation and 

methylation) or addition of repressive marks (Eg. Histone methylation). In turn, repressive 

histone modifications such as H3K9 methylation can recruit DNA methyltransferases that 

deposit the repressive methylation mark at CpG dinucleotides.
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Table 1
Developmental stage-specific human and mouse β-type globin gene and corresponding 
hemoglobin expression patterns

Developmental Stage Predominant β-type Globin (Hemoglobin)

Mouse Primitive βH1, εγ (Hb E) I-III

Definitive βmaj (Hb βmaj)

βmin (Hb βmin)

Human Primitive ε (Hb Gower-1, Hb Gower-2)

Definitive

 Fetal Gestational ɣ (HbF), (Hb Portland-1)

 Post-partum β (HbA)

δ (HbA2)
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Table 2
Association of ɣ-globin gene silencing transcription factors with epigenetic modulators

The epigenetic modulator factors may either act as effectors of transcription factor-mediated silencing 

(designated by †), or act to regulate expression of a specific transcription factor (designated by *).

Transcription Factors Associated Epigenetic Modulators

BCL11A MBD3-NuRD (HDAC1/2)†, CoREST†, N-CoR/SMRT†, LSD1†, Sin3A†, DNMT1†, Mi2β/CHD4*

TR2/TR4 MBD3-NuRD (HDAC1/2) † LSD1†, Sin3A†, DNMT1†

GATA1/FOG1 MBD3-NuRD (HDAC1/2)†

NFE4 DNMT3A†

KLF-1 BRG1/SWI/SNF†, Mi2β/CHD4*

Ikaros SWI/SNF†
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Table 3
Potential epigenetic therapeutic targets of ɣ-globin gene silencing

DNA methyl transferases

Histone deacetylases

Histone demethylases

Methyl-CpG binding domain protein 2 (MBD2)

Mi2p/CHD4 ATPase chromatin remodeler

PRMT5

Friend of PRMT1 (FoP)
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