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The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the
music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting
sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory
system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual
attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the
spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to
acquire meaning, with important lessons to other sensory systems as well.

The auditory system extracts an astounding amount of informa-
tion about the world from seemingly simple signals � sound
waves reaching the two ears. The initial sound representations, at
the auditory nerve that connects the inner ear with the CNS, as
well as in brainstem stations, such as the cochlear nucleus and the
superior olivary complex, are well described. Indeed, the cochlear
nucleus can compete with the retina for being the best under-
stood CNS structure, and technological standards, such as the
MP3 sound coding scheme, are based in part on the deep under-
standing that already exists regarding these initial sound repre-
sentations in the early stages of the auditory system.

There is, however, a large gap between these early representa-
tions, which are centered on the physical structure of the sound
waveform, and perceptual representations, which are related to
the actual “things” that occur in the world. Following the ground-
breaking work of Bregman and his collaborators (Bregman,
1990), this process is referred to as auditory scene analysis. Devi-
ating from Bregman’s original proposal, we tend to call the re-
sulting “things” auditory objects (Griffiths and Warren, 2004;
Winkler et al., 2009; McDermott et al., 2011; Schnupp et al., 2011;
Cervantes Constantino et al., 2012). The formation of auditory
objects is considered a crucial step in auditory processing. Sta-
tions from the midbrain up to auditory cortex are thought to be

involved in this computation. We think that the representation of
auditory objects forms the main output of the auditory system
and that it is these that are used by the rest of the brain to guide
behavior (e.g., listening to music, responding to someone’s voice,
or localizing a sound source in space around us).

Interestingly, although many laboratories work on the per-
ception of auditory objects, a commonly accepted definition of
what they are is lacking; instead, different groups concentrate on
different clusters of properties that auditory objects are likely to
have, and use them as a handle for accessing the more general
concept. In a symposium in this year’s Society for Neuroscience
annual meeting, we will illustrate the richness and vividness of
this research area by addressing four different computational
problems that the auditory system has to solve to create auditory
objects, as summarized below.

Humans and animals can attend to a sound source and segre-
gate it rapidly from a background of many other sound sources,
often with little learning or prior exposure to the specific sounds.
For humans, this is the essence of the well-known “cocktail party
problem” in which a person can effortlessly conduct a conver-
sation with a new acquaintance in a crowded and noisy envi-
ronment (Cherry, 1953; Bregman, 1990). For many animals,
including frogs, songbirds, and penguins, this ability is vital for
locating a mate or an offspring in the midst of a loud chorus
(Aubin and Jouventin, 2002; Singh and Theunissen, 2003; Bee
and Micheyl, 2008; Velez et al., 2012). This capacity is matched by
comparable object segregation feats in vision and other senses
(Ison and Quiroga, 2008; Henderson et al., 2009; Rust and
Stocker, 2010), and hence understanding auditory object segre-
gation will shed light on the neural mechanisms that are funda-
mental and ubiquitous across all sensory systems.
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In contrast to visual scenes, in which nearby bits of the scene
are likely to belong to the same object, elements of a given audi-
tory object are not necessarily local in the basic auditory repre-
sentation, which is based on frequency. Instead, bits of the same
object may occupy different frequency bands. For example, har-
monic relationships are extremely important for deciding which
frequency bands are bounded together for forming an object, and
indeed sounds that have harmonic structure produce pitch: one
can play melodies with them (Schnupp et al., 2011). The study of
pitch has a long history (Turner, 1977), going back to the mid-
Nineteenth Century with Helmholtz and Ohm (who mistakenly
claimed that pitch perception requires the physical existence of
the fundamental frequency of the harmonic complex) and See-
beck (who actually proved that pitch can be evoked by stimuli
missing the fundamental).

Harmonically related frequency components are produced by
music instruments of many types whose designs result in modes
with harmonic frequencies. Harmonic sounds are also produced
by vocal apparatuses of humans and many animal species (rang-
ing from avian to rodents and primates). Any periodic sound is
harmonic, and sounds emitted by animals tend to be periodic.
Thus, it is not too exaggerated to say that we live in and have
evolved from an acoustic environment full of sounds with har-
monically related frequency components. The perception of
auditory objects based on harmonic relationships among compo-
nent frequencies is essential for both speech and music perception.

In addition to harmonically related frequency components
encountered in the acoustic environment around us, the auditory
system also produces harmonics internally (Pickles, 1988). The
cochlea generates nonlinear distortion products that may contain
harmonics of frequencies included in the physical stimulus. Fur-
thermore, nonlinear processing in the auditory nerve and subse-
quent brainstem and midbrain structures leading to auditory
cortex also generate harmonic byproducts. The combination of
exogenous and endogenous harmonics may have led to the for-
mation of neural circuitry in the central auditory system, and in
particular in auditory cortex, to process harmonic sounds. It has
been proposed that a fundamental organizational principle of
auditory cortex is based on harmonic structures of sounds
(Wang, 2013). Such an organization has important implications
for understanding how the brain processes speech and music.

A typical auditory neuron throughout the ascending auditory
system is most sensitive to one particular frequency (the charac-
teristic frequency or best frequency) within the hearing range of a
species. In auditory cortex, however, a number of studies have
shown that many neurons are “multipeaked”: they are sensitive
to multiple frequencies, and these frequencies are often harmon-
ically related. Multipeaked cortical neurons have been found in a
variety of mammalian species, from bats (Suga et al., 1983), cats
(Sutter and Schreiner, 1991), to nonhuman primates (Kadia and
Wang, 2003; Sadagopan and Wang, 2009). Such neurons may be
components of an underlying neural circuitry in auditory cortex
that process harmonic patterns embedded in natural sounds. Re-
cent neuroimaging studies in humans (Patterson et al., 2002;
Penagos et al., 2004; Norman-Haignere et al., 2013) and neuro-
physiology experiments in marmoset monkeys (Bendor and
Wang, 2005; Bendor et al., 2012; Osmanski et al., 2013) have
identified regions of nonprimary auditory cortex that have selec-
tive responses to the fundamental frequency of harmonic com-
plex sounds that evoke the perception of pitch in humans and
marmosets (referred to hereafter as “pitch-selective neurons”).
The pitch-selective neurons identified in nonprimary auditory
cortex of marmosets are not only tuned to low-frequency pure

tones, but also to missing fundamental harmonic complex
sounds with a pitch near a neuron’s characteristic frequency
(Bendor and Wang, 2005). These pitch-selective neurons do not,
however, respond to individual components in a harmonic com-
plex tone that are outside its tone-derived excitatory frequency
response area, suggesting that such neurons extract pitch of an
auditory object from spectrally separated but harmonically re-
lated frequency components (Bendor and Wang, 2006; Wang
and Walker, 2012). New experimental evidence to be discussed in
this symposium has revealed more widespread harmonic pattern
processing in auditory cortex beyond the range of pitch.

Although harmonicity is an important auditory processing
primitive for fusing the percept of multiple acoustic components,
the separation of ongoing sound sources into separate “streams”
involves primarily sequential relationships in time. Temporal co-
incidence is thought play a key role in the streaming of sources
such that a unified sound source is perceived only when all of its
attributes or features are bound together by being temporally
coherent with each other, and also incoherent with the attributes
of all other concurrent sources.

Three cortical mechanisms may underlie the use of temporal
coincidence for auditory scene analysis. The first is the rich and
diverse nature of sound representation in the auditory cortex in
which multiscale spectral and dynamic features, as well as loca-
tion and pitch cues are extracted and encoded explicitly by the
primary auditory cortical responses. These representations, how-
ever, are shown to be highly plastic, rapidly adapting within frac-
tions of a second, to modulate their sensitivity and saliency
according to the objectives and target of attention during behav-
ior. The second cortical mechanism critical for source segrega-
tion and formation is coherence analysis through which all
temporally coincident features of a single source are identified,
grouped, and eventually segregated away from other sources. Fi-
nally, the third set of critical mechanisms reviewed involves the
attentional influences that target specific features as anchors so as
to bind all other elements of a source.

To illustrate the versatility of the temporal coincidence prin-
ciple in sound segregation, a computational implementation of
these ideas has been developed in which sound is first trans-
formed by a model of the early auditory stages to its cortical
representation (Chi et al., 2005). A subsequent stage computes a
coincidence matrix that summarizes the pairwise coincidences
between all pairs of responses making up the cortical representa-
tion. A final auto-encoder network is then used to decompose the
coincidence matrix into its different streams. The use of the cor-
tical representation here is critical as it provides a multiresolution
view of spectral and temporal features of the incoming sounds,
and these in turn endow the model with its robust character.

The auditory objects that are being generated by the mecha-
nisms described above have properties: for example, pitch (re-
lated to harmonicity), vowel identity (related to the multiscale
representations of the spectral envelope), location in space (re-
lated to both binaural response properties and to some monaural
spectral features), and so on and so forth. Each of these percep-
tual qualities is invariant to variations in many other sound qual-
ities. For example, we can identify the vowel ‘a’ across different
voice pitches and whether it is spoken, whispered, or sung. Being
able to extract certain stimulus attributes while generalizing
across others is what underpins our ability to identify and cate-
gorize sound sources in our environment. Although some of the
computations that might support perceptual invariance have
been elucidated in higher visual areas (Rust and Stocker, 2010),
relatively little is known about whether similar computations un-
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derlie our ability to identify sound sources (Bizley and Cohen,
2013).

The potential for formation of invariant representations
within auditory cortex has been demonstrated in previous studies
of neural activity in anesthetized animals. For example, the iden-
tity of a bird song is represented by a subset of single neurons
independently of its sound level (Billimoria et al., 2008). Other
work has explored the representation of perceptual features such
as pitch, timbre, and spatial location, and observed that neurons
throughout auditory cortex are modulated by multiple stimulus
features (Bizley et al., 2009). Although such an observation makes
it seem unlikely that any one of these perceptual features are
represented in an invariant manner, these same neural responses
can provide a robust representation of any one stimulus feature if
the neural response is considered within a distinct time window
(Walker et al., 2011). These studies demonstrate the potential for
neurons in early auditory cortex to contribute to perceptual in-
variance, but drawing stronger conclusions requires that we mea-
sure both neural coding and stimulus perception simultaneously.

A behavioral model was developed to study perceptual invari-
ance by training ferrets to identify artificial vowels in a two-
alternative forced choice task. Ferrets were able to generalize
vowel identity over a range of voice pitches and sound intensities
and were also able to accurately classify whispered vowels (Bizley
et al., 2013; Town et al., 2013). To explore the neural mechanisms
that support this perceptual invariance, multielectrode recording
arrays were implanted into auditory cortex and neural activity
recorded during behavioral discrimination. Neuronal responses
were decoded to quantify how unit activity discriminated the
following: (1) the identity of the target vowel across variation in
pitch or voicing, (2) pitch across the two vowel classes, and (3) the
associated behavioral response. Many neurons were informative
about the vowel identity, and the classification performance of a
subpopulation of neurons matched behavioral performance.
Neuronal responses were also informative about the pitch of the
target vowel, as well as (perhaps surprisingly) the behavioral de-
cision that the animal took. However, decoding performance was
highest for sound identity early in the sound, whereas pitch de-
coding was best achieved when considering time periods
throughout the duration of the sound, and decoding the behav-
ioral decision was best achieved toward the end of the sound.
These data suggest that, during behavior, neurons in auditory
cortex provide a robust estimation of the vowel identity across
variation in other stimulus features.

Finally, as already alluded to above, the analysis of auditory
scenes requires figuring out sound properties within their tem-
poral context. The same bit of sound can be perceived differently
when embedded in different contexts: for example, a harmonic
that is part of a vowel may be “captured” by a different auditory
stream, causing vowel identity to change (Roberts and Holmes,
2006). Indeed, neuronal responses in the auditory system show a
rich context sensitivity. Importantly for computations involving
auditory objects, context sensitivity can span surprisingly large
time scales. In cortex, sequential effects may span the range from
seconds (Asari and Zador, 2009) up to minutes (Yaron et al.,
2012), even under anesthesia.

This type of context sensitivity has been studied extensively
under the name “stimulus-specific adaptation” (SSA). The basic
paradigm that is used for evoking SSA is the oddball sequence: a
sequence composed of two stimuli (one common and one rare).
Almost invariably, a second sequence, inverting the roles of the
two stimuli, is used as well, and the responses to the same stimu-
lus in the two sequences are compared. Very often, the response

to a stimulus when rare is larger than the response to the same
stimulus when common. Such effects may be thought of as a form
of predictive coding, with responses related to the “prediction
error,” here related to the probability of the sound that is cur-
rently presented, with that probability estimated from the recent
past. Indeed, predictive coding has been suggested to play an
important role in auditory scene analysis and the formation of
auditory objects (Winkler et al., 2009). SSA has been shown in
rodents (Anderson et al., 2009; Malmierca et al., 2009; Bäuerle et
al., 2011; Zhao et al., 2011), carnivores (Ulanovsky et al., 2003),
and primates (Fishman and Steinschneider, 2012), as well as in
nonmammalian species (Reches and Gutfreund, 2008). SSA is
present as early as the inferior colliculus, although it is weak in the
core, lemniscal pathway leading to primary auditory cortex (An-
tunes et al., 2010; Duque et al., 2012). In primary auditory cortex,
SSA is strong and robust (Taaseh et al., 2011; Hershenhoren et al.,
2014; Nelken, 2014), leading to the hypothesis that it is computed
at least twice in the auditory system: once in the nonlemniscal
subdivisions of the inferior colliculus and a second time in pri-
mary auditory cortex.

Cortical SSA has true deviance sensitivity: neurons in auditory
cortex (although not in inferior colliculus) respond more
strongly than expected to rare sounds embedded in oddball se-
quences, where their occurrence breaks down an expected regu-
larity, but do not show a similar amplification of their responses
to the same sounds with the same probability when embedded in
a multitone sequence (the “control” condition) (Jacobsen and
Schröger, 2001). Cortical neurons have been shown to be sensi-
tive to sequence regularity in other ways as well; for example,
when the deviants occur at fixed intervals rather than randomly,
responses are smaller than those evoked by the same sounds with
the same probability but occurring randomly (Yaron et al., 2012).
Although most studies of SSA used pure tones and tested sensi-
tivity to tone frequency, SSA is also produced by wideband stim-
uli (Nelken et al., 2013). When finely balanced in frequency,
broadband sounds do not produce SSA in the inferior colliculus,
even in subdivisions in which pure tones do show SSA, but they
do produce SSA in auditory cortex. Thus, SSA in auditory cortex
seems to be ideally placed for adapting cortical responses to the
statistics of the incoming sound sequence, reducing the sensitiv-
ity to common, irrelevant sounds and increasing the sensitivity to
deviations from the expected regularity.

This short and, admittedly, highly selective review demon-
strates the large variety of perceptual questions, experimental
approaches, and theoretical considerations that underlie research
into sound processing in auditory cortex today. The field is much
larger than what this review can cover, and we think that a great
deal can be learned generally about the brain, behavior, sensory
processing, and everything in between, by studying how we listen
to sounds in the real-world environment.
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