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Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity
and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but
rather a view of how the authors’ findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by
which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis,
synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and
forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that
mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive
neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the
burden of disease in our communities.

Introduction
Regular aerobic exercise and moderation in energy intake pro-
mote health and reduce the risk of several major diseases, includ-
ing diabetes, cardiovascular disease, stroke, and cancers. The
rapid increase in the incidence of obesity, diabetes, and associated
diseases during only the past few generations is attributed mostly
to excessive consumption of high energy density processed foods
combined with sedentary lifestyles (Philippas and Lo, 2005; Pi-
Sunyer, 2009). Regular aerobic exercise has beneficial effects on
the brain, including improving mood and cognitive function,
and intermittent energy restriction (IER)/fasting may have gen-
erally similar positive effects on brain function (Mattson, 2012).
Less appreciated is evidence that the brain plays fundamental
roles in regulating peripheral glucose metabolism by pathways
and signaling mechanisms that are beginning to be understood
(Schwartz et al., 2013). In turn, circulating factors produced by
peripheral tissues in response to exercise and IER may stimulate
neuroplasticity and cellular stress resistance in the brain. Recent
findings described in this Symposium provide a window into the
molecular and cellular mechanisms by which exercise and IERs
bolster brainpower, protect neurons against injury and neurode-
generative disorders, and improve systemic energy metabolism
and function of the autonomic nervous system.

As with other animals, a major driving force for the evolution
of the human brain was the need to acquire the resources neces-
sary for survival and propagation of the species, including food,
mates, and shelter. Those individuals whose brains functioned
best during periods of resource scarcity would be the most suc-
cessful in meeting the challenges. From an evolutionary perspec-
tive, intermittent running and food deprivation (involuntary
fasting) have been the most common energetic challenges our
brains and bodies experience (Bramble and Lieberman, 2004;
Longo and Mattson, 2014). During sustained exercise and fast-
ing, it is critical that energy reserves be managed efficiently so as
to provide both peripheral tissues (particularly muscles) and the
brain with sufficient energy to survive and thrive. We therefore
focus on the results of studies of the effects of running and IER on
brain function and robustness (stress resistance and resiliency),
and on systemic energy metabolism. The ways in which intermit-
tent energetic challenges enhance stress resistance and forestall
disorders promoted by chronic stress (e.g., anxiety, depression,
and cardiovascular disease) will be described. Among such
mechanisms are improved cellular bioenergetics, repair or re-
moval of oxidatively damaged molecules, and reduced inflam-
mation (Fig. 1).

Molecular profiling studies show that most, if not all, brain
regions are affected by aerobic exercise and dietary energy restric-
tion, with changes in the expression of genes encoding proteins
involved in synaptic plasticity, neurotrophic factor signaling, cel-
lular bioenergetics, disposal of damaged proteins and organelles,
and cellular stress resistance (Tong et al., 2001; Kuhla et al., 2007;
Xu et al., 2007; Alirezaei et al., 2010; Stranahan et al., 2010).
Intermittent energetic challenges can also change the structure of
neuronal circuits by, for example, stimulating neurogenesis, neu-
rite outgrowth, and synapse formation (Voss et al., 2013).
Although the signaling pathways that mediate such adaptive re-
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sponses are undoubtedly complex, BDNF has been shown to play
particularly prominent roles (Marosi and Mattson, 2014). For
example, BDNF can stimulate mitochondrial biogenesis to im-
prove neuronal bioenergetics and enable synapse formation and
maintenance in the brain (Cheng et al., 2012), and can stimulate
DNA repair in neurons (Yang et al., 2014). Interestingly, admin-
istration of BDNF into the brain increases peripheral insulin sen-
sitivity (Nakagawa et al., 2000) and parasympathetic tone (Wan
et al., 2014), thereby improving glucose metabolism and cardio-
vascular function. We therefore highlight BDNF signaling as
playing a key role in the integration of CNS neuronal networks
with peripheral neuroendocrine pathways that mediate adaptive
responses to energetic challenges.

Exercise, endurance factors, neurogenesis, and spatial
pattern separation
Basic research in animals has shown that exercise affects multiple
brain areas and systems. The underlying central mechanisms that
have been investigated include neurotransmitters, neurotro-
phins, fine neuronal morphology, angiogenesis, and hippocam-
pal neurogenesis (van Praag, 2008). More recently, the peripheral
triggers that may lead to the benefits of exercise for brain function
have begun to be researched. In particular, the possibility that
skeletal muscle activation by exercise or pharmacological agents
underlies cognitive effects of aerobic activity became of interest
with the identification of transcriptional factors regulating mus-
cle fiber contractile and metabolic genes (Wang et al., 2004). The

peroxisome proliferator activated receptor � (PPAR�) is a tran-
scription factor that regulates fast-twitch muscle fiber contrac-
tion and metabolism. PPAR� overexpression increased oxidative
muscle fiber number, and administration of the selective agonist
GW501516 increased endurance when combined with training
(Narkar et al., 2008). PPAR� is controlled by the AMP-activated
protein kinase (AMPK), a master metabolic regulator important
for glucose homeostasis, appetite, and exercise physiology (Har-
die, 2004). AMPK agonist 5-aminoimidazole-4-carboxamide ri-
boside (AICAR) administration enhanced running endurance by
45% in sedentary mice (Narkar et al., 2008). Subsequently, we
tested whether pharmacological activation of skeletal muscle in-
duces cognitive effects comparable with exercise. Our studies
suggest that AICAR treatment can enhance spatial learning and
hippocampal neurogenesis in young mice (Kobilo et al., 2011a).
Moreover, in old mice, AICAR administration elevates expres-
sion of genes important for energy metabolism in both muscle
and the hippocampus. In addition, synaptic plasticity genes in the
hippocampus are enriched, and spatial memory in the Morris
water maze (Morris et al., 1982) is enhanced by AICAR in aged
female mice (Kobilo et al., 2014).

The above studies suggest that brain plasticity is maintained
throughout the lifespan and that it can be enhanced by exercise
and other interventions that activate AMPK. An important struc-
tural process therein is the genesis of new neurons in the dentate
gyrus (DG) of the hippocampus in the adult brain (Taupin,
2007). Running increases new DG neuron number in rodents

Figure 1. Exercise and IER/fasting exert complex integrated adaptive responses in the brain and peripheral tissues involved in energy metabolism. As described in the text, both exercise and IER
enhance neuroplasticity and resistance of the brain to injury and disease. Some of the effects of exercise and IER on peripheral organs are mediated by the brain, including increased parasympathetic
regulation of heart rate and increased insulin sensitivity of liver and muscle cells. In turn, peripheral tissues may respond to exercise and IER by producing factors that bolster neuronal bioenergetics
and brain function. Examples include the following: mobilization of fatty acids in adipose cells and production of ketone bodies in the liver; production of muscle-derived neuroactive factors, such
as irisin; and production of as yet unidentified neuroprotective “preconditioning factors” (Dezfulian et al., 2013). Suppression of local inflammation in tissues throughout the body and the nervous
system likely contributes to prevention and reversal of many different chronic disease processes.
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(van Praag, 2008). Indeed, physical activity, rather than cognitive
stimulation, is required for the production of new hippocampal
neurons (Kobilo et al., 2011b; Mustroph et al., 2012; Grégoire et
al., 2014). This effect is associated with BDNF induction, a neu-
rotrophin that is known to be strongly upregulated in the hip-
pocampus by exercise (Neeper et al., 1995; Marosi and Mattson,
2013) and that, in turn, appears to be important for new neuron
survival and function (Bekinschtein et al., 2011; Vivar et al.,
2013). Consistent with this hypothesis, selective ablation of the
high-affinity BDNF receptor TrkB in progenitor cells abolishes
running-induced neurogenesis (Li et al., 2008). Enhanced neu-
rogenesis is associated with improved cognition, whereas a de-
cline in new neuron number is linked to aging and depression.
Indeed, in rodents, exercise improves synaptic plasticity and spa-
tial memory (van Praag, 2008). Ablation of adult neurogenesis
abolishes the running-induced cognitive enhancement in the
Morris water maze (Clark et al., 2008).

To better understand the precise functional role of adult neu-
rogenesis, it is essential to delineate the neural circuitry in which
the cells reside. The DG is part of the so-called “trisynaptic cir-
cuit.” Information is considered to be processed from entorhinal
cortex to DG, DG to area CA3 pyramidal cells, and from area CA3
to CA1 pyramidal cells to be ultimately stored in cortex (Amaral
and Witter, 1989). Each of these regions has specific cell types and
plasticity that contribute to learning and memory. The neuro-
genic DG and, to some extent, area CA3 are deemed important
for pattern separation, or the differential storage of highly similar
stimuli and experiences (Marr, 1971). Reduction of adult neuro-
genesis impairs pattern separation (Clelland et al., 2009),
whereas, conversely, running improves the animal’s ability to
distinguish between closely related objects or events (Creer et al.,
2010). The hypothesis that the observed improvement in fine
spatial distinctions involves exercise-induced increase in adult
neurogenesis (Fig. 2) is supported by findings from a transgenic

mouse with enhanced adult hippocampal neurogenesis. These
mice are characterized by improved differentiation between
overlapping contextual representations, indicative of enhanced
pattern separation (Sahay et al., 2011).

To obtain a more comprehensive insight as to how
exercise-induced neurogenesis enhances pattern separation,
we recently set out to map the specific inputs to adult born
neurons using a combination of retroviral- and rabies virus-
based methods (Vivar et al., 2012). We observed that, under
sedentary conditions, newly born neurons receive sequential
direct innervation from structures important for memory for-
mation and function, but not from brain areas considered
relevant to stress, motivation, and motor behavior, such as the
amygdala and striatum. Initially, a local circuit of septal– hip-
pocampal cells provides input to new neurons, including tran-
sient innervation from mature dentate granule neurons as well
as direct feedback from area CA3 pyramidal neurons. Subse-
quently, entorhinal cortical regions deemed relevant to inte-
gration of sensory and environmental information provide
innervation to new neurons. Removal of this input by excito-
toxic lesions caused spatial pattern separation deficits (Vivar
et al., 2012). Determining how exercise influences the devel-
opment and quantity of both local and long range projections
to new neurons is an important priority for future studies.

Exercise and stress robustness
The body and brain respond to exercise in ways that enhance the
functionality and stress resistance of many organ systems. Expo-
sure to acute stressors evokes a highly adaptive integrated physi-
ological response that functions to facilitate fight/flight responses
and promote survival in the face of challenges. The acute stress
response dilates the pupils, increases heart rate and respiration,
increases circulating glucocorticoid, catecholamine, and glucose
levels to facilitate energy mobilization into brain and other tissues
and optimize blood flow to muscle, elevates inflammatory cyto-
kines and chemokines, and primes innate immunity to better
respond to injury. If the stress response, however, is repeatedly or
chronically activated, or the stressors are excessive and severe, the
brain/mind and body can be adversely affected (Thompson et al.,
2014). Regular physical activity, in contrast, is broadly beneficial
for both brain/mind and body. One important benefit of regular
physical activity is increased stress robustness. There is evidence
from human and animal studies that a sedentary lifestyle is asso-
ciated with stress vulnerability, whereas a physically active life-
style is associated with stress robustness (Brown and Siegel, 1988;
Fleshner et al., 2011; Boschloo et al., 2014). Stress robustness is a
state of both stress resistance (capable of enduring severe and/or
chronic stressors before experiencing negative consequences)
and stress resilience (ability to rapidly recover after experiencing
negative consequences).

Laboratory rodents housed with a running wheel will run con-
siderable distances, typically 5–15 km during a 12 h dark (active)
period. Wheel running appears to be a natural rodent behavior,
as mice and rats in the wild will choose to run on wheels (Meijer
and Robbers, 2014). Wheel running is rewarding; rats will display
conditioned place preference associated with wheel running and
activation of brain reward pathways (Lett et al., 2000, 2001; Foley
and Fleshner, 2008; Greenwood et al., 2011). And wheel running
produces metabolic improvements, including increased fitness
(Kennedy et al., 2005) and decreased abdominal adiposity
(Speaker et al., 2014).

Wheel running reliably produces stress robustness in rodents.
Insight into neural and physiological mechanisms of stress ro-

Figure 2. Running enhances adult hippocampal neurogenesis and the ability of a mouse to
discriminate between two adjacent identical stimuli, enabling pattern separation. Coronal sec-
tion through the mouse DG was immunofluorescent double-labeled for BrdU (green) and the
neuronal marker NeuN (red).

van Praag et al. • Exercise, Energy Intake, Glucose Homeostasis, and Brain J. Neurosci., November 12, 2014 • 34(46):15139 –15149 • 15141



bustness has come from rodent models
that involve running wheel exercise and a
titratable stressor (5 s, 1.5 mA unpredict-
able, inescapable tail shock). The negative
consequences of exposure to inescapable
shock that are mitigated by wheel running
include increases of anxiety/depression
(Moraska and Fleshner, 2001; Greenwood
et al., 2003b, 2005, 2012a; Greenwood and
Fleshner, 2008), learning impairments
(Greenwood et al., 2003b; Greenwood
and Fleshner, 2008), excessive activation
of the sympathetic nervous system
(Greenwood et al., 2003a; Fleshner, 2005),
antigen-specific immunosuppression
(Fleshner, 2000, 2005; Moraska and
Fleshner, 2001), and adipose inflamma-
tion (Speaker et al., 2014). Additionally,
wheel running facilitates the recovery
of stress-evoked disruptions in diurnal
rhythms of physiology and sleep architec-
ture (Fleshner et al., 2013; R.S. Thompson
and M.F., unpublished observations), im-
proves corticosterone response habituation (Sasse et al., 2008),
and elicits plasticity in serotonergic, noradrenergic, and dopami-
nergic stress-responsive brain circuitry (Greenwood et al., 2003b,
2012b; Greenwood and Fleshner, 2011; Loughridge et al., 2013).
Finally, wheel running shifts the stressor response threshold, such
that physically active rats have little or no stress response (corti-
costerone) to lower intensity stressors, but equal or greater cor-
ticosterone responses to high intensity stressors (Campeau et al.,
2010; Speaker et al., 2014).

Each of these effects of exercise on stress physiology and
behavior is mediated by unique adaptations in brain circuitry
and peripheral tissues. For example, progress has been made
in understanding the neural and physiological mechanism by
which physical activity protects animals from the negative
cognitive and emotional consequences of inescapable stress
(IS). For these outcomes, the primary neural adaptation in-
volves central serotonergic (5HT) stress-responsive circuits
(Fig. 3). We have reported that habitual wheel running (6
weeks) is sufficient both to produce changes in dorsal raphe
nucleus (DRN) 5HT neuronal activation and to prevent
learned helplessness behaviors (i.e., reduced social explora-
tion, exaggerated fear, and shuttle box escape) tested 24 h after
exposure to IS (Greenwood et al., 2003b, 2005). Through a
series of studies, we have established that wheel running in-
creases the expression of 5HT1A inhibitory autoreceptors in
the DRN (Day et al., 2004; Loughridge et al., 2013) and de-
creases activation of DRN 5HT neurons during inescapable
stress (Greenwood et al., 2003b). This results in constraint of
DRN 5HT activation and release of 5HT to DRN projection
sites (i.e., amygdale) (Amat et al., 1998) and dorsal striatum
(P. J. Clark and M.F., unpublished observations).

Wheel running also produces changes in postsynaptic
5HT2C receptor expression in DRN projection sites (amygdala and
dorsal striatum) (Greenwood et al., 2012b). This is important
because 5HT2C in dorsal striatum and amygdala are involved
in the expression of learned helplessness behaviors (Strong et
al., 2009, 2011). In total, the changes produced by wheel run-
ning serve to constrain the excessive DRN 5HT response to IS.
This change, in addition to the downregulation in 5HT2C
receptor expression in amygdala and dorsal striatum, would

dampen 5HT signaling and prevent neuronal sensitization of
this circuit produced by IS.

Maier and Watkins (2010) have reported that inescapable
shock, but not controllable tail shock, produces neuronal sen-
sitization of 5HT circuits and learned helplessness behaviors.
Similar to the effect of exercise, controllable tail shock also
constrains activation of this circuit; however, instead of up-
regulation of 5HT1A, the constraint produced by controllable
stress is due primarily to increased inhibitory input to the
DRN from the medial prefrontal cortex (Amat et al., 2005,
2006; Baratta et al., 2008). Interestingly, stress robustness con-
ferred by wheel running does not depend on this constraint
pathway because lesioning the medial prefrontal cortex does
not prevent the protective effect of wheel running on learned
helplessness behaviors (Greenwood et al., 2013). Thus, regular
physical activity produces changes in 5HT stress-responsive
circuits that constrain the response during inescapable shock
and prevent the cognitive (shuttle box escape deficits) and
emotional (reduced social exploration and exaggerated fear)
negative consequences of IS. Evidence suggests that BDNF
mediates anxiolytic and antidepressant effects of exercise and
antidepressant drugs in animal models (Duman et al., 2008;
Licznerski and Duman, 2013). It will therefore be of interest
to determine if and how BDNF signaling influences serotoner-
gic signaling, and vice-versa, in stress-responsive neuronal
circuits.

Physical activity, therefore, produces numerous changes in
the brain and the periphery that converge to promote stress
robustness. In general, regular exercise promotes stress re-
sponse efficiency. The stress response is physiologically pow-
erful and energy demanding, and a host of neuroendocrine
responses have evolved to meet this energy demand. Physically
active animals are able to constrain responses to mild stressors
for which a major response is unnecessary and rapidly return
physiological functioning to baseline when a stress response is
required. These types of adaptations improve stress robust-
ness and allow an organism to minimize the energy costs and
other negative consequences of repeated, chronic, or excessive
stress responses on mind/brain and body.

Figure 3. Working model of the 5HT neural circuit responsible for the emotional (social aversive and exaggerated fear) and
cognitive (shuttle box escape deficit) impact of uncontrollable stress in rats. Regular, moderate physical activity (6 weeks wheel
running) produces adaptations in the circuit that include upregulation of 5HT1A inhibitory autoreceptors on DRN cell bodies and a
downregulation in 5HT2C receptors in DRN projection sites, amygdala (AMG) and dorsal striatum (DS). Together, these changes
constrain the 5HT response to uncontrollable stress and prevent neural sensitization and the expression of learned helplessness
behaviors.
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The brain-centered glucoregulatory system
Exercise and dietary energy restriction can both improve en-
ergy metabolism by increasing insulin sensitivity (O’Neill,
2013; Longo and Mattson, 2014), but whether the brain par-
ticipates in these and other crucial aspects of glucose homeo-
stasis is an important unanswered question. Pancreatic islets
clearly play a central role in the control of glucose homeosta-
sis. When plasma glucose levels rise after a meal, the associated
increase of insulin secretion and action on key target tissues
exerts a potent glucose-lowering effect, both by inhibiting he-
patic glucose production and by increasing tissue glucose up-
take. When food is unavailable, islet hormones again play a
critical role to defend glucose homeostasis: falling plasma glu-
cose levels inhibit insulin secretion while enhancing the re-
lease of glucagon, a combination that increases hepatic
glucose production and prevents plasma glucose levels from
dropping out of the normal range. These fundamental obser-
vations, combined with evidence that diabetes pathogenesis
involves impairments of both insulin secretion and insulin
action, lay the foundation for our current islet-centered view
of glucose homeostasis. The clinical translation of this under-
standing has had an enormous impact on drug development
for the treatment of diabetes, which currently revolves around
administration of either insulin itself or drugs that enhance its
secretion or action (Kahn et al., 2014).

That the brain is capable of influencing glucose homeosta-
sis was first established some 160 years ago by the pioneering
work of Claude Bernard (Bernard, 1854), but the brain is not
widely seen as playing a role in either day-to-day blood sugar
control or diabetes pathogenesis (Kahn et al., 2014). To the
extent that the brain does play a role, many view it as one that
is likely secondary to the role played by islets. Yet a growing
literature has begun to challenge this view (Schwartz et al.,
2013) based on evidence that: (1) in normal animals, the con-
tribution of insulin-independent mechanisms (termed “glu-
cose effectiveness”) to glucose homeostasis is comparable with
that made by insulin (Best et al., 1996); (2) the brain can
rapidly improve glucose intolerance in obese mice by potently
and selectively increasing glucose effectiveness, with no effect
on either insulin secretion or action (Morton et al., 2013); (3)
the brain can normalize hyperglycemia and associated neu-
roendocrine derangements in animals with severe insulin-
deficient diabetes (German et al., 2011); and (4) in addition to
the direct action of insulin on the liver, insulin and nutrients
can inhibit hepatic glucose production via an indirect pathway
(Lu et al., 2012).

We recently synthesized these observations into a physio-
logical perspective of how islet- and brain-centered gluco-
regulatory systems (BCGSs) interact to control glucose
homeostasis (Schwartz et al., 2013). After a meal, both brain-
and islet-centered regulatory systems are proposed to partici-
pate in adaptive responses that restore glucose homeostasis.
The absorption of ingested nutrients into the circulation stim-
ulates insulin secretion and this response, through the actions
of insulin in muscle, fat, and liver, promotes glucose disposal
while inhibiting glucose production. At the same time,
insulin-independent mechanisms are recruited in part via ac-
tivation of the BCGS. Like the action of insulin, these insulin-
independent effects promote glucose disposal (e.g., through
increased liver glucose uptake, which is a major determinant
of postprandial glucose disposal and is largely insulin-
independent) while simultaneously inhibiting glucose pro-
duction. This two-system model therefore incorporates both

insulin-dependent and insulin-independent mechanisms to
promote the return of increased plasma glucose levels to basal
values after a meal. In the fasted state, islet–BCGS interactions
are similarly implicated in the increase of hepatic glucose pro-
duction and decrease of tissue glucose uptake that maintains
circulating glucose concentrations in the normal range.

Relevant to these considerations is the observation that,
when the adipocyte hormone leptin is administered at low
doses into the brain of rats or mice with uncontrolled, insulin-
deficient diabetes, pronounced hyperglycemia is completely
normalized despite persistent, severe insulin deficiency (da
Silva et al., 2006; German et al., 2011). From this observation,
we infer that BCGS activation can remedy diabetic hypergly-
cemia by, in effect, compensating for severe insulin deficiency.
Extending this reasoning, it follows that dysfunction of both
pancreatic islets and the BCGS may be required for diabetes to
occur (Schwartz et al., 2013), and available evidence suggests
that diabetes and BCGS dysfunction are linked tightly to one
another. For one, normal BCGS function requires input to the
CNS from both insulin and leptin, and states of insulin defi-
ciency trigger leptin deficiency as well (Havel et al., 1998).
Further, hypothalamic injury and gliosis occur in rodent mod-
els of obesity and Type 2 diabetes (Posey et al., 2009; Horvath
et al., 2010; Cai, 2012; Milanski et al., 2012; Thaler et al., 2012),
raising the possibility that defective BCGS function contrib-
utes to diabetes pathogenesis in obese individuals.

Recent work has begun to extend these observations to the
question of how exercise affects glucose homeostasis. In ro-
dent models of diet-induced obesity, for example, exercise
training can prevent hypothalamic inflammation and associ-
ated resistance to leptin and insulin (Krawczewski Carhua-
tanta et al., 2011; Chiarreotto-Ropelle et al., 2013). These
observations raise the possibility that improved BCGS func-
tion contributes to the beneficial effects of exercise on glucose
homeostasis, and additional studies are warranted to evaluate
this possibility. In addition, BDNF signaling in the brain,
which is known to be upregulated by exercise, can enhance
peripheral insulin-mediated glucose uptake (Nakagawa et al.,
2000). It is therefore important to understand if and how
specific components of the BCGS are regulated by BDNF.

Intermittent energy restriction/fasting and optimal
brain health
Metabolic adaptations to food deprivation are highly con-
served and ensure a constant supply of energy substrates to
neurons while also stimulating signaling pathways that bolster
stress resistance. IER refers to eating patterns that include
extended time periods during which little or no food is con-
sumed (typically 16 –24 h) interspersed with periods of ad
libitum eating. Rats and mice on an IER (alternate day fasting)
diet live up to 30% longer and exhibit improved overall health
as indicated by less accumulation of abdominal fat, increased
insulin sensitivity, reduced blood pressure and heart rate, and
a lower incidence of tumors (for review, see Longo and
Mattson, 2014). Physiological changes that occur during fast-
ing are highly conserved in rodents and humans. Upon deple-
tion of liver glycogen stores (typically within 12–16 h of the
last meal), fatty acids are mobilized from adipose cells and are
metabolized by liver cells to produce ketone bodies (�-
hydroxybutyrate and acetoacetate), which are released into
the blood and used as an energy source by cells throughout the
body and brain. Moreover, ketones have recently been shown
to have neuroprotective signaling functions that involve inhi-
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bition of histone deacetylases (Shimazu et al., 2013) and stim-
ulation of BDNF production (Marosi and Mattson, 2014). In
addition, during IER levels of insulin, IGF-1, and proinflam-
matory hormones (leptin) and cytokines (TNF, IL-1�, etc.)
are reduced, and production of anti-inflammatory hormones
(ghrelin and adiponectin) and cytokines (IL-10) is increased
(Johnson et al., 2007; Longo and Mattson, 2014). Together
with brain-autonomous responses to fasting and hunger, such
changes in circulating factors during fasting likely contribute
to some of the beneficial effects of energy restriction on brain
function and resistance to injury, stress, and disease as sum-
marized in the next three paragraphs.

When rats are subjected to IER, their activity level increases
during both the fasting and feeding days compared with their
baseline activity during ad libitum feeding (Fig. 4A). However,
when on the IER diet, activity in the light period begins to
increase several hours earlier during fasting days compared
with feeding days. Body temperature is reduced on fasting
days and returns to the baseline level on feeding days (Fig. 4B).
Long-term IER results in improved performance of mice on a
range of cognitive tasks, which is associated with morpholog-
ical evidence of enhanced hippocampal plasticity (Li et al.,
2013). BDNF levels are increased in brain regions involved in
cognition, motivation, and sensory and motor behaviors in
response to IER (Arumugam et al., 2010). BDNF is known to
play important roles in synaptic plasticity and neurogenesis,
consistent with its involvement in the increased synaptic den-
sity and neurogenesis that occur in the hippocampus in re-
sponse to dietary energy restriction (Lee et al., 2002; Stranahan
et al., 2009). Interestingly, mitochondrial biogenesis plays
essential roles in the formation and maintenance of hip-
pocampal synapses and the ability of BDNF to promote syn-
aptogenesis (Cheng et al., 2012). The latter findings suggest
the possibility that exercise and IER can increase the number
of mitochondria in neurons, although this remains to be es-
tablished.

By activating multiple adaptive cellular stress response path-
ways, IER can protect CNS and peripheral neurons against dys-
function and degeneration in a range of animal models. IER
increases the resistance of hippocampal pyramidal neurons and
striatal medium spiny neurons to degeneration induced by the
neurotoxins kainic acid and 3-nitropropionic acid in rat models
relevant to temporal lobe epilepsy and Huntington’s disease, re-
spectively (Bruce-Keller et al., 1999). IER also protects dopami-
nergic neurons and preserves motor function in a mitochondrial
toxin-based model of Parkinson’s disease (Duan and Mattson,
1999), and is also beneficial in gene mutation-based models of
Alzheimer’s (Halagappa et al., 2007), Huntington’s (Duan et al.,
2003), and Charcot-Marie-Tooth (Madorsky et al., 2009) dis-
eases. In addition, energy restriction can protect the brain and
spinal cord against acute traumatic and ischemic injury (Davis et
al., 2008; Arumugam et al., 2010; Jeong et al., 2011), perhaps by
bolstering neurotrophic signaling, antioxidant defenses, protein
chaperones, autophagy, and DNA repair (Longo and Mattson,
2014). For example, IER in mice results in increased levels of
fibroblast growth factor 2, heme oxygenase 1 (an antioxidant
enzyme), and the protein chaperones HSP70 and GRP78 in the
cerebral cortex and striatum (Arumugam et al., 2010). In periph-
eral nerves, IER upregulates autophagy, which may protect cells
against the deleterious effects of mitochondrial dysfunction (Ma-
dorsky et al., 2009).

Although findings from studies of animal models demon-
strate numerous beneficial effects of IER on brain function

and resistance to injury and disease, evidence that similar ef-
fects occur in humans is limited. It is well known that sleepi-
ness typically occurs after eating a meal, thereby reducing
alertness and cognitive performance (Zammit et al., 1992).
Foregoing breakfast and/or lunch can therefore improve pro-
ductivity, not only by increasing the time available to work,
but also by promoting sustained cognitive function while
working. Indeed, one myth regarding eating patterns is that it
is important to eat at least three meals each day; “otherwise,
you will not have enough energy to work or exercise.” Indeed,
compared with glucose, the ketones produced during fasting
provide a more robust and steady energy substrate for
neurons, and experimental elevation of �-hydroxybutyrate
levels can improve cognitive function in subjects with Type 1
diabetes, and mild cognitive impairment or early Alzheimer’s
disease (Page et al., 2009). Moreover, dietary energy restric-
tion resulted in improved verbal memory during a 3 month
period in normal elderly human subjects (Witte et al., 2009).
The possible effects of IER on cognitive function, neuronal
network activity, and brain neurotrophic factor signaling re-
main to be determined.

Future directions
An abundance of questions remain to be answered concerning
how exercise and IER affect the functionality, durability, and
resilience of the brain. For instance, most animal studies of
exercise have focused on voluntary wheel running. What are
the types, intensity, duration, and frequency of exercise that
promote optimal neuroplasticity and cognitive function in
humans? Which neuronal circuits are active during running
and other exercises, and during fasting? Is the activity in those
neurons critical for the enhancement of neuroplasticity? Are
there neuronal activity-independent mechanisms involved in
the beneficial effects of exercise and IER on the brain? Do
exercise and IER produce similar or distinct changes in central
stress-responsive neurocircuitry? In addition to ketone bod-
ies, are there other factors produced in peripheral tissues that
mediate effects of exercise and IER on the brain? Are there
muscle-derived factors that mediate beneficial effects of exer-
cise on the brain? Recent findings suggest that, indeed, exer-
cise induces release of the protein irisin from muscle cells, and
circulating irisin can induce BDNF expression in hippocampal
neurons (Wrann et al., 2013). Is irisin release from exercising
muscle, the critical “muscle to brain” signal proposed to affect
stress-responsive neural circuitry? Such a concept is consistent
with evidence that activation of AMPK in muscle cells (which
occurs during exercise) can enhance spatial learning and
memory and motor performance in young mice (Kobilo et al.,
2011a) and aged mice, and that it also increases the expression
of genes important for synaptic plasticity in the hippocampus
(Kobilo et al., 2014). If and how do astrocytes and microglia
respond to exercise, and do glial cells contribute to exercise-
induced enhancement of synaptic plasticity and neurogenesis?
Is the cerebral vasculature affected by exercise and IER and, if
so, by what mechanisms? Recent findings have shown that
running increases vascular density in the hippocampus
(Pereira et al., 2007), but to what extent this angiogenesis is
critical for effects of exercise on brain function and disease
resistance remains to be determined. Another fundamental
question relevant to the ongoing epidemics of obesity, diabe-
tes, and associated diseases concerns the relative contributions
of activation of disease processes by overindulgent sedentary
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Figure 4. Alternate day fasting (ADF) increases activity levels and reduces body temperature in rats. Young adult male Sprague Dawley rats were implanted with transmitters to enable
continuous recording of activity and body temperature in the home cage. After recording activity and temperature on the usual ad libitum diet (baseline), the rats were maintained on an ADF diet
for 2 months. Examples of 24 h recordings of activity (A) and body temperature (B) from one rat are shown at baseline, on a feeding day and on a fasting day; food was either removed or supplied
at 16:00 h, which was 2 h before the start of the dark period. Overall activity is greater in both the dark and light periods when the rats are on the ADF diet compared with baseline, and that during
the fasting day there is a robust increase in activity beginning �2 h before feeding time. Values are mean � SEM (n � 6 rats).
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lifestyles versus lack of activation of the adaptive stress re-
sponse pathways engaged by exercise and IER.

Animals in the wild and hominid hunter-gatherers are of-
ten most physically active when motivated by hunger. Studies
of how fasting affects the brain’s responses to exercise, and the
impact of exercise on peripheral energy metabolism, may in-
form approaches for improving brain function and overall
health. In rodents, dietary energy restriction and running can
have additive effects on synaptic plasticity and BDNF levels
(Stranahan et al., 2009), suggesting that conditions that de-
manded optimal brain function during evolution may also
promote optimal brain function in modern humans. In sup-
port of the latter possibility, studies have shown that memory
is improved when encoding occurs during exercise (Schmidt-
Kassow et al., 2013) and that regular aerobic exercise can im-
prove cognitive performance in individuals at risk for AD,
including insulin-resistant elderly subjects (Baker et al., 2010).
It will be of considerable interest to determine whether IER
also improves cognitive function in humans and whether
combining IER with exercise can further bolster brain func-
tion and protect against cognitive impairment during aging.

Although challenging the brain and body intermittently
through physical exercise and energy restriction is beneficial
for overall health and brain health, there has been no con-
certed effort in our society to enable and implement such
energetic challenge-based daily and weekly routines. The re-
sults of human studies suggest that many people can adapt to
and even thrive on regular exercise and IER-based eating pat-
terns (Cao et al., 2009; Harvie et al., 2011). However, a period
of �1 month is required for the body and brain to adapt to
vigorous exercise and IER programs, particularly for those
who have previously been sedentary and eating three meals/
day plus snacks. A society-wide effort will be required to im-
plement “brain and body health” programs in the educational
and health care systems, communities, and workplaces. In this
regard, there are several major impediments to achieving the
latter goal, including the agriculture, processed/fast food, and
pharmaceutical industries. The omnipresence of calorie-
replete processed foods and advances in technologies that
eliminate the need to exercise have infiltrated societies and are
widely promoted in advertisements. Moreover, as a result of
promotion by the pharmaceutical industry and relative lack of
training in medical education, doctors generally do not rigor-
ously pursue exercise- and diet-based prescriptions and, in-
stead, prescribe drugs even at early stages of diseases (obesity,
diabetes, cardiovascular disease), which could be safely and
effectively reversed/cured by exercise and IER. The emerging
evidence that exercise and IER can improve and sustain brain
functionality, and may protect against neurodegenerative dis-
orders, provides a rationale for widespread dissemination of
this take-home message.
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