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The abuse of synthetic psychoactive substances known as “designer drugs,” or “new psychoactive substances” (NPS), is increasing at an
alarming rate. NPS are purchased as alternatives to traditional illicit drugs of abuse and are manufactured to circumvent laws regulating
the sale and use of controlled substances. Synthetic cathinones (i.e., “bath salts”) and synthetic cannabinoids (i.e., “spice”) are two types
of NPS that have received substantial media attention. Although low recreational doses of bath salts or spice compounds can produce
desirable effects, high doses or chronic exposure often leads to dangerous medical consequences, including psychosis, violent
behaviors, tachycardia, hyperthermia, and even death. Despite the popularity of NPS, there is a paucity of scientific data about
these drugs. Here we provide a brief up-to-date review describing the mechanisms of action and neurobiological effects of synthetic

cathinones and cannabinoids.

Introduction

Over the past few years, there has been an alarming increase in the
abuse of synthetic psychoactive substances known as “designer
drugs” or “legal highs” (Rosenbaum et al., 2012; Johnson et al.,
2013; Nelson et al., 2014). These substances are purchased as
alternatives to traditional illicit drugs of abuse and are manufac-
tured to intentionally circumvent the laws regulating the sale and
use of controlled substances. Countries of the European Union
have adopted the term “new psychoactive substances” (NPS) to
denote this category of emerging drugs, and we will use this no-
menclature here (Brandt et al., 2014). NPS are synthesized by
clandestine chemists who hijack the medical and patent literature
to identify compounds targeting specific transporters or recep-
tors implicated in the effects of psychoactive drugs (Collins, 2011;
Lewin et al., 2014). Internet sales and marketing have made NPS
easily available on a global scale. Synthetic cathinones (i.e., “bath
salts”) and synthetic cannabinoids (i.e., “spice”) are two types of
NPS that have received substantial media attention. Synthetic
cathinones produce amphetamine- or cocaine-like subjective ef-
fects by activating monoamine systems in the brain and periphery
(Baumann et al., 2013a; De Felice et al., 2014), whereas synthetic
cannabinoids produce marijuana-like effects by activating the
endocannabinoid system (Fattore and Fratta, 2011; Wiley et al.,
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2014a). Low recreational doses of bath salts or spice compounds
produce the expected desirable effects, but high doses or chronic
exposure can lead to dangerous medical consequences, including
psychosis, violent behaviors, tachycardia, hyperthermia, and
even death (Prosser and Nelson, 2012; Hermanns-Clausen et al.,
2013; Kronstrand et al., 2013).

Because of the public health risks posed by NPS, the govern-
ments of many countries, including the United States, have
passed legislation to ban the sale, possession, and use of specific
synthetic cathinones and cannabinoids (Drug Enforcement Ad-
ministration, 2011, 2013; German et al., 2014). Unfortunately,
such legislation has fostered the emergence of new “replacement”
analogs that are manufactured to skirt regulatory control, and
this trend is expected to continue (Shanks et al., 2012; Seely et al.,
2013). Very little information is available regarding the mecha-
nisms of action, pharmacological effects, and toxicological pro-
file for most NPS. The present brief review is based upon the
minisymposium, “Bath Salts, Spice and Related Designer Drugs:
The Science Behind the Headlines,” presented at the Society for
Neuroscience annual meeting held in Washington, DC in 2014.
Here we aim to provide the most up-to-date information about
the pharmacology of synthetic cathinones and cannabinoids,
with a specific focus on the neurobiology of these agents.

“Bath salts” cathinones interact with monoamine
transporters

Psychoactive “bath salts” first appeared in the recreational drug
marketplace of the United States during late 2010. By early 2011,
there was a dramatic spike in reports of bath salts overdose to
poison control centers and an influx of patients admitted to
emergency departments with toxic exposures (Spiller et al., 2011;



Baumann et al. @ Bath Salts, Spice, and Related Designer Drugs

Cathinone

(0]
NH,
CHj3

Amphetamine

NH»
SR

Methamphetamine

H
N-cH,
CHsy

Mephedrone Methylone
o) 0 4

H
. N
ch CH3 O CH3

Figure 1.
compound cathinone.

Ross et al., 2012). Patients intoxicated with bath salts can display
severe symptoms, including psychosis, hallucinations, agitation,
tachycardia, hypertension, and hyperthermia, often accompanied
by combative or violent behaviors. Forensic analysis of bath salts
products revealed the presence of three main synthetic cathino-
nes, depicted in Figure 1: 4-methyl-N-methylcathinone
(mephedrone), 3,
4-methylenedioxy-N-methylcathinone (methylone), and 3,4-
methylenedioxypyrovalerone (MDPV) (Spiller et al., 2011;
Shanks et al., 2012). These compounds are structurally related to
the parent compound cathinone, which is a naturally occurring
B-keto amphetamine with known psychostimulant properties
(Schechter and Glennon, 1985; Kalix and Glennon, 1986). Some
bath salts powders consist of relatively pure preparations of one
synthetic cathinone, but others contain mixtures of two or more
different cathinones, along with adulterants, including caffeine,
lidocaine, or piperazines (Davies et al., 2010; Zawilska and Wo-
jcieszak, 2013). Like other stimulant drugs, synthetic cathinones
target monoamine transporters expressed on nerve cells and
other cell types (Hadlock et al., 2011; Lopez-Arnau et al., 2012;
Martinez-Clemente et al., 2012). Monoamine transporters are
members of the SLC6 solute carrier family of proteins that medi-
ate the sodium-dependent uptake of monoamine neurotransmit-
ters, and there are specific transporters for norepinephrine
(NET), dopamine (DAT), and 5-HT (SERT) (Kristensen et al.,
2011). Drugs that interact with transporters can be divided into
two types: (1) amphetamine-like substrates or (2) cocaine-like
blockers (Rothman and Baumann, 2003; Sitte and Freissmuth,
2010). Both types of drugs increase extracellular concentrations
of monoamines, but substrates induce transporter-mediated in-
ward currents (i.e., depolarization) and transmitter efflux (i.e.,
release), whereas blockers do not. Additionally, the transporter
selectivity for a given drug is predictive of behavioral effects be-
cause drugs that are selective for DAT are powerful locomotor
stimulants, but drugs selective for SERT are not (Rothman and
Baumann, 2006; Howell and Kimmel, 2008).

Several research groups have examined the interaction of syn-
thetic cathinones with monoamine transporters using a variety of
methods. In rat brain synaptosomes, mephedrone and methyl-
one are nonselective transporter substrates, thereby evoking the
release of preloaded [*H]neurotransmitters at DAT, NET, and
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SERT (Baumann et al., 2012). The effects
of mephedrone and methylone in synap-
tosomes mimic those of the illicit drug
3,4-methylenedioxymethamphetamine
(MDMA). By contrast, MDPV is a trans-
porter blocker that potently inhibits
[*H]neurotransmitter uptake at DAT and
NET, with little effect at SERT (Baumann
et al., 2013b). Importantly, MDPV is 50
and 10 times more potent than cocaine as
a blocker at DAT and NET, respectively.
Although studies in synaptosomes pro-
vide the advantage of high-throughput
drug screening in native tissue, experi-
ments in cells allow more detailed assess-
ment of drug-transporter interactions.
Assay systems using human transporters
expressed in HEK293 cells show that
mephedrone, methylone, and other ring-
substituted cathinones are substrates at
hDAT, hNET, and hSERT, whereas
MDPYV is a potent blocker at hDAT and
hNET only (Eshleman et al., 2013; Simmler et al., 2013, 2014).
Thus, results from human transporters are consistent with results
from rat brain synaptosomes. Perhaps the most sophisticated
method for examining drug—transporter interactions involves
the measurement of transporter-mediated ionic currents using
voltage-clamp techniques in cells expressing human transporters
(Sonders et al., 1997; Sitte et al., 1998; De Felice et al., 2014). An
electrophysiological signature provides definitive information
about the mechanism of drug action at the molecular level. Be-
cause substrates are translocated through the transporter along
with sodium ions, these agents produce transporter-mediated
inward currents. Blockers bind to the transporter but are not
translocated, so these agents produce outward currents (due to
block of an endogenous leak current). As specific examples, am-
phetamine and mephedrone induce hDAT-mediated inward
currents, whereas cocaine and MDPV induce outward currents
(Cameron et al., 2013a, b; Kolanos et al., 2013). Together, the
data from several lines of evidence agree that ring-substituted
cathinones, such as mephedrone and methylone, are nonselective
transporter substrates. MDPV is not a transporter substrate, most
likely because the drug molecule is too large to fit through the
transporter, but acts as a potent blocker at DAT and NET with
minimal activity at SERT.

MDPV
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Synthetic cathinones induce stimulant effects in

laboratory rodents

Consistent with their activity as transporter substrates and block-
ers, synthetic cathinones increase monoamine transmission in
laboratory rodents. In vivo microdialysis studies in rats demon-
strate that mephedrone and methylone elevate extracellular con-
centrations of dopamine and 5-HT in the nucleus accumbens,
whereas MDPV increases dopamine without affecting 5-HT
(Kehr et al., 2011; Baumann et al., 2012, 2013b; Wright et al.,
2012). All synthetic cathinones investigated to date produce
dose-dependent stimulation of motor activity when adminis-
tered to rats or mice (Lisek et al., 2012; Lopez-Arnau et al., 2012;
Marusich et al., 2012, 2014; Baumann et al., 2013b; Fantegrossi et
al., 2013; Gatch et al., 2013), probably due to enhancement of
dopamine transmission. Most studies agree that MDPV is 3-10
times more potent than mephedrone or methylone as a locomo-
tor stimulant. As noted above, bath salts products may contain a
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number of different cathinones, yet MDPV is the chief com-
pound found in blood and urine from fatal cases of bath salts
overdose in the United States (Spiller et al., 2011; Murray et al.,
2012; Kesha et al., 2013; Wyman et al., 2013). This intriguing
observation suggests that MDPV is the chief culprit involved with
adverse effects of bath salts. It is tempting to speculate that potent
blockade of DAT by MDPV is responsible for neurological symp-
toms and hyperthermia in bath salts overdose cases, whereas
blockade of NET could underlie cardiovascular stimulation. De-
termining the pharmacokinetics and metabolism of synthetic
cathinones in rodent models is essential because clinical data are
limited to isolated forensic cases. Mephedrone and methylone are
extensively metabolized in the rat (Kamata et al., 2006; Lopez-
Arnau et al., 2013; Martinez-Clemente et al., 2013), but the po-
tential bioactivity of various identified metabolites has not been
well studied. It is noteworthy that methylone and MDPV possess
a 3,4-methylenedioxy ring-substitution akin to the illicit drug
MDMA, a compound that displays nonlinear kinetics in rodents
and humans (de la Torre et al., 2000; Kolbrich et al., 2008; Bau-
mann et al., 2009; Fantegrossi et al., 2009; Concheiro et al., 2014).
The phenomenon of nonlinear kinetics is characterized by
greater-than-predicted plasma concentrations of MDMA due to
autoinhibition of drug metabolism (Heydari et al., 2004; de la
Torre et al., 2004). Similar to MDMA, MDPV is metabolized by
O-demethylenation, thereby producing the ring-hydroxylated
metabolites, 3,4-dihydroxypyrovalerone and 4-hydroxy-3-meth-
oxypyrovalerone (Meyer et al., 2010; Strano-Rossi et al., 2010;
Anizan et al., 2014). 3,4-Dihyhdroxypyrovalerone is a potent
blocker of DAT and NET (Meltzer et al., 2006), so this metabolite
could contribute significantly to the in vivo pharmacology of
MDPV. 4-Hydroxy-3-methoxypyrovalerone is a long-lasting
metabolite that may prove useful for forensic validation of
MDPV exposure in human subjects (Anizan et al, 2014).
Whether methylone and MDPV display nonlinear kinetics simi-
lar to MDMA is an unresolved issue that warrants investigation.
No controlled clinical-laboratory studies with synthetic cathino-
nes have been performed, and such studies are needed to understand
the complex pharmacology of these drugs in humans.

Synthetic cathinones have abuse liability in rodent models

Recently, the addictive potential of synthetic cathinones has been
investigated in rodent models. In preclinical abuse liability stud-
ies, the intravenous self-administration model is considered the
“gold standard” because of its high degree of face and predictive
validity (Watterson etal., 2013). From a neurobiological perspec-
tive, stimulation of mesolimbic dopamine transmission is a key
mechanism underlying drug self-administration behavior (Wil-
luhn et al., 2010; Espana and Jones, 2013). In the self-
administration procedure, rats fitted with indwelling jugular
catheters are placed in operant chambers equipped with two le-
vers. Presses on the “active” lever result in a computer-controlled
intravenous drug infusion and simultaneous presentation of a
stimulus complex (light + tone). Presses on the other lever (i.e.,
“Inactive”) produce no consequences but are recorded as a mea-
sure of nonspecific behaviors. Comparisons between MDPV and
methylone in the self-administration model are of interest be-
cause these drugs have structural similarity but differ in their
mechanism of action and selectivity for DAT versus SERT (see
above). For MDPV, rats readily acquire self-administration
across a range of doses (0.05—0.5 mg/kg/infusion) (Aarde et al.,
2013a; Watterson etal., 2014). Under a progressive ratio schedule
of reinforcement, in which the number of lever presses for drug
infusion increases exponentially with each successive infusion,
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MDPV breakpoints are positively correlated with drug dose
(Watterson et al., 2014). Moreover, MDPV breakpoints are sim-
ilar to those produced by methamphetamine at the same dose
(0.05 mg/kg/infusion). Escalation of MDPV intake is observed at
0.1 and 0.2 mg/kg/infusion doses across 6 h access sessions. This
escalation of intake is similar in magnitude to that observed with
0.05 mg/kg/infusion of methamphetamine and is typically seen
with other drugs that support compulsive use in humans
(e.g., cocaine and heroin). For methylone, rats display self-
administration across a range of doses (0.1-0.5 mg/kg/infusion)
(Watterson et al., 2012). As with MDPV, a positive relationship
between methylone dose and breakpoints is observed under pro-
gressive ratio conditions. However, unlike MDPV, escalation of
drug intake is not observed with methylone. These data suggest
that the serotonergic effects of methylone may dampen certain
reinforcing properties of the drug. Nevertheless, under some
conditions, rats will self-administer methylone to the point
of convulsions and death, highlighting the dangers of synthetic
cathinone use and corroborating reports of methylone-associated
deaths in humans (Cawrse etal., 2012; Pearson et al., 2012). Overall,
the available evidence shows that MDPV and methylone are read-
ily self-administered by laboratory rats, and these findings agree
with reports showing that mephedrone is also self-administered
by rats (Hadlock et al., 2011; Aarde et al., 2013b; Motbey et al.,
2013). Escalation of drug intake, a cardinal feature of drug addic-
tion, is observed in laboratory rodents self-administering certain
synthetic cathinones. Together, these preclinical studies suggest a
high abuse potential for synthetic cathinones, such as MDPV,
methylone, and mephedrone.

“Spice” cannabinoids interact with the endocannabinoid
system
Plant-derived phytocannabinoids (e.g., A°-tetrahydrocanna-
binol [THC]) and synthetic cannabinoids produce their psycho-
active effects through activation of the endocannabinoid system
in the brain. This neuromodulatory system is comprised of two
identified receptors (CB; in the brain and periphery, and CB,
primarily in the periphery), at least two endogenous ligands
(anandamide and 2-arachidonoyl glycerol), and associated syn-
thetic and metabolic enzymes (for review, see Pertwee, 2008).
Discovered in the late 1980s and early 1990s (Devane et al., 1988,
1992; Matsuda et al., 1990), the endocannabinoid system con-
tributes to a number of physiological and pathological processes,
including appetite, pain, mental illness, reward, and neurodegen-
erative diseases (Berry and Mechoulam, 2002; Mechoulam et al.,
2002; Walker and Huang, 2002; van der Stelt and Di Marzo, 2003;
Di Marzo et al., 2004). Development of the first research canna-
binoid compounds that would later appear in products confis-
cated from drug users also occurred during this time span
(Huffman et al., 1994; Lainton et al., 1995), although illicit diver-
sion of these compounds did not occur until the early 2000s. The
primary goals of the original research were to identify and differ-
entiate structural properties of the newly discovered CB, and CB,
receptors (Huffman, 2000, 2005; Huffman and Padgett, 2005;
Huffman et al., 2005), but the purpose of currently available
cannabinoid NPS is to achieve a marijuana-like intoxication.
Compared with marijuana, however, abuse of these synthetic
substances is associated with a higher prevalence of severe adverse
effects, such as hypertension, tachycardia, hallucinations, agita-
tion, seizures, and panic attacks that often require immediate
medical care (Seely et al., 2012; Fantegrossi et al., 2014).

The broad structural diversity of cannabinoid agonists was
recognized early, as observed in the array of structurally distinct
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classes of compounds that produce cannabinoid activity, in-
cluding tetrahydrocannabinols, bicyclic cannabinoids, ami-
noalkylindoles, and anandamide analogs. WIN55212-2, an
aminoalkylindole, was the template for synthesis of the original
series of indole-derived synthetic cannabinoids (Eissenstat et al.,
1995; Wiley et al., 2011). Subsequent studies reported an orderly
structure—activity relationship between structural variation in
these molecules (e.g., length and branching of the chain) and
cannabinoid binding (Huffman et al., 1994; Lainton et al., 1995;
Aung et al., 2000) and, when tested, in vivo cannabimimetic ac-
tivity (Wiley et al., 1998, 2012a, b, 2014a). Interestingly, some of
the compounds in this series with the best CB, receptor affinities
are the ones that were identified in earliest “spice” products, dem-
onstrating that clandestine chemists are mining the scientific lit-
erature to guide manufacture.

Yet, despite similarity to THC in much of its pharmacology,
WIN55212-2 differs from other classes of cannabinoids in its
molecular interactions with cannabinoid receptors, having at
least one unique site of attachment that is not shared by other
cannabinoid agonists or by the CB, antagonist rimonabant
(Petitet et al., 1996; Song and Bonner, 1996). In addition,
WIN55212-2 has higher affinity for peripheral cannabinoid CB,
receptors than for CB, receptors in the brain (Showalter et al.,
1996), a property it shares with many of the synthetic cannabi-
noids that have been identified in confiscated NPS (Huffman and
Padgett, 2005; Manera et al., 2008). Because the physiological
functions of CB, receptors are not completely understood, it is
possible that agonist action at these receptors may modulate the
pharmacological profile of WIN55212-2 and other indoles. In
addition, WIN55212-2 and many other indole-derived cannabi-
noids are full agonists at CB, receptors, compared with the weak
partial agonist activity of THC (Atwood et al., 2011; Brents et al.,
2011, 2012; Chimalakonda et al., 2012). Finally, several lines of
research have suggested that WIN55212-2 (and perhaps other
structurally related synthetic cannabinoids) interacts with non-
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cannabinoid receptors in the brain
(Breivogel et al., 2001; Héjos et al., 2001;
Monory et al.,, 2002). These actions may,
in turn, modulate in vivo drug effects,
leading to unexpected psychoactive ef-
fects and peripheral toxicities.

As of 2009, the most prevalent syn-
thetic cannabinoids identified in spice or
herbal incense products were classified
into seven structural groups, as depicted
in Figure 2: naphthoylindoles (e.g., JWH-
018, JWH-073, AM-2201), naphthylme-
thylindoles (JWH-185), naphthoylpyrroles
(JWH-030), naphthylmethylindenes (JWH-
176), phenylacetylindoles JWH-250, RCS-4),
cyclohexylphenols (CP47,497), and tetrahy-
drocannabinols (A°-THC, HU-210) (Euro-
pean Monitoring Centre for Drugs and
Drug Addiction, 2010); however, in-
creased legal restriction has resulted in ex-
ploitation of new structural motifs from
the scientific literature or led to the inven-
tion of new structures. For example, after
CHs the United States Drug Enforcement
Administration banned JWH-018 and
other naphthoylindoles, novel tetrameth-
ylcyclopropyl ketone indoles (UR-144,
XLR-11) started being identified in con-
fiscated products (Fig. 2). The sheer number of possible combi-
nations of structural constituents is staggering and complicates
prediction of which NPS are likely to be included in the next
round of “product.”

.

CHs
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Synthetic cannabinoids display complex pharmacokinetics
and metabolism

In addition to the obvious risk of using compounds with un-
known pharmacological properties, synthetic cannabinoids have
an additional set of potential risks associated with exposure to
pyrolytic byproducts of the compound or the plant material on
which it is sprayed (because smoking is the normal route of ad-
ministration) (Kavanagh et al., 2013), biotransformation to ac-
tive metabolites, and shared metabolic pathways with commonly
used medications, which may lead to drug—drug interactions.
Despite the popular use of these substances, little is known about
their pharmacokinetics or their in vivo pharmacology and toxi-
cology. The few published pharmacokinetic studies have shown
that, like phytocannabinoids, synthetic cannabinoids are highly
lipophilic and the parent compounds readily cross the blood—
brain-barrier and are distributed to areas high in CB, receptor
density (Dhawan et al., 2006; Wiebelhaus et al., 2012). Whereas
THC has only one major psychoactive Phase I metabolite (11-
hydroxy-THC) (Huestis et al., 1992), metabolism of synthetic
cannabinoids can proceed via several pathways, resulting in mul-
tiple metabolites. Earlier studies reported that several Phase I
hydroxylated metabolites of AM2201 (Chimalakonda et al,
2012),JWH-018 (Brentsetal.,2011),and JWH-073 (Brents et al.,
2012) retain high affinity for CB, receptors, often higher than
that of THC. In addition, these metabolites exhibit a range of
intrinsic efficacies at the CB, receptor, from neutral antagonists,
to partial agonists, to full agonists. Importantly, in vivo studies
demonstrate that these metabolites retain biological effects con-
sistent with their in vitro profiles, in some cases suggesting that
they continue to penetrate the brain, or are perhaps generated
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within the brain. In vitro studies using human recombinant P450
enzymes identified CYP2C9 and CYP1A2 as major isoforms re-
sponsible for the generation of these hydroxylated metabolites,
which can be detected in human blood and urine as glucuronic
acid conjugates (Chimalakonda et al., 2011; Patton et al., 2013).
Mechanistic studies have shown that selective inhibitors of
CYP2C9 (sulfaphenazole) and CYP1A2 (a-naphthoflavone)
block oxidation of JWH-018 and AM2201 in human liver micro-
somes (Chimalakonda et al., 2013), further demonstrating the
importance of these P450 isoforms in the detoxification of these
compounds. The in vitro evidence suggests that individuals with
certain allelic variants for these enzymes might be more likely to
experience increased toxicity following the use of synthetic can-
nabinoids. Urinary elimination of synthetic cannabinoids or
their metabolites may contribute to the kidney toxicity that has
been observed with some of these compounds (Sobolevsky et al.,
2010; Moran et al., 2011; Centers for Disease and Prevention,
2013).

Given their shared metabolism via P450 isoforms, combined
use of synthetic cannabinoids and various prescription medica-
tions may result in adverse drug—drug reactions. Commonly pre-
scribed drugs, such as valproic acid and sertraline potently inhibit
CYP2C9, whereas drugs, such as ciprofloxacin and fluvoxamine,
strongly inhibit CYP1A2. Additionally, CYP2C9 is a major poly-
morphic enzyme (Paine et al., 2006) and is responsible for the
metabolism of a number of clinically important drugs, such as
warfarin, phenytoin, tolbutamide, losartan, and ibuprofen. More
than five allelic variants have been identified, including two “loss
of function” variants (CYP2C9*4 and CYP2C9*5) (Seng and
Seng, 2008). Similarly, CYP1A2 is responsible for the metabolism
of numerous psychiatric medications, including olanzapine, clo-
zapine, haloperidol, thioridazine, imipramine, clomipramine,
fluvoxamine, and tacrine (Shirley et al., 2003) but is well con-
served without common functional polymorphisms (Hiratsuka,
2012). Hence, the possibility of drug—drug interactions is a seri-
ous consideration using synthetic cannabinoids.

Synthetic cannabinoids produce THC-like stimulus effects in
animal models

To the extent that synthetic cannabinoids have been evaluated in
vivo, they share the capacity of THC to produce a tetrad of diagnostic
effects: locomotor suppression, antinociception, hypothermia, and
catalepsy (Wiley et al., 2014a). Synthetic cannabinoids also engen-
der THC-like discriminative stimulus effects in rodents and non-
human primates (Wiley et al., 1995; Wiley et al., 1998). Unlike the
situation with synthetic cathinones, a robust model of intrave-
nous THC self-administration in rodents has not been estab-
lished, although self-administration has been reported in squirrel
monkeys (Tanda et al., 2000; Justinova et al., 2003). WIN55212-2
self-administration has been reported in rodents (Fattore et al.,
2001; Deiana et al., 2007); however, its usefulness as a screening
tool for identification of synthetic cannabinoids likely to be
abused has been disputed (Lefever et al., 2014). Consequently,
THC discrimination in animal models remains the most phar-
macologically selective method for assessing the likelihood that
novel compounds will produce marijuana-like subjective effects
in humans (Balster and Prescott, 1992). Animals used in drug
discrimination learn to associate the interoceptive cues produced
by THC or vehicle with one of two responses. For example, to
receive food reinforcement, the animal must press a lever on the
right side of the test chamber if an injection of THC was given
before the session. If a THC injection was not given (e.g., vehicle
injection), the animal must respond on the left lever to receive
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food. After the discrimination is established, other compounds
are administered to determine whether they produce interocep-
tive cues similar to those produced by THC. Early research found
that a number of naphthoylindoles, naphthylmethylindoles, and
naphthoylpyrroles produce cannabinoid effects in rats or rhesus
monkeys trained to discriminate THC or CP55940 from vehicle
(Wiley et al., 1995, 1998). Later studies confirmed these results
with other naphthoylindoles (JWH-018, JWH-073, and
AM5983) (Jérbe et al., 2010, 2011, 2014; Ginsburg et al., 2012;
Marusich et al., 2013) and extended them to other classes of
indole-derived cannabinoids, including phenylacetylindoles
(Vann et al., 2009; Jarbe et al., 2011) and tetramethylcyclopropyl
ketone indoles (UR-144, XLR-11) (Wiley et al., 2013). In studies
where more than one compound has been evaluated, the rank
order of drug potency parallels CB, affinity, with compounds
showing the highest affinity for CB, also showing the highest
potency in drug discrimination. Reversal by the CB, antagonist
rimonabant provides further verification that CB, receptors me-
diate the THC-like discriminative stimulus effects of synthetic
cannabinoids (Jarbe et al., 2011; Ginsburg et al., 2012). In the
context of a THC discrimination procedure, cross-tolerance of
THC and synthetic cannabinoids (CP55940, JWH-018, and
JWH-073) has also been demonstrated in rhesus monkeys chron-
ically treated with THC (Hruba et al., 2012). More recently,
cross-substitution of THC and synthetic cannabinoids has been
reported in separate groups of rodents trained to discriminate
THC or JWH-018 from vehicle (Wiley et al., 2014b). To the lim-
ited extent to which they have been assessed, sex differences in the
discriminative stimulus effects of synthetic cannabinoids are not
apparent (J.L.W. and J.A.M., unpublished data). Finally, the du-
ration of action of some synthetic cannabinoids in drug discrim-
ination has been reported to be shorter than that of THC
(Ginsburgetal., 2012), suggesting that the synthetic drugs may be
administered more frequently with resultant enhancement of
abuse potential.

Conclusions

In conclusion, this brief review has summarized the latest scien-
tific data on the neurobiology of synthetic stimulants and canna-
binoids. The available information suggests that most of these
NPS resemble their progenitors (i.e., stimulants and THC) in
their basic pharmacology, but these substances may have unex-
pected toxicological effects related to factors, such as dosage, ef-
ficacy, or active metabolites, which remain largely unexplored
because most mechanistic research has focused on the stimulant
actions of cathinones and cannabimimetic effects of synthetic
cannabinoids. Potential “off-target” sites of action for most NPS
are not known. This paucity of scientific knowledge is in direct
contrast to the widespread availability of peer-to-peer informa-
tion and access via the Internet and other electronic media, par-
ticularly for adolescents (Wax, 2002; Castellanos et al., 2011).
Despite an alarming increase in the number of people seeking
medical attention following use of NPS (Spiller et al., 2011; Cen-
ters for Disease and Prevention, 2011; Harris and Brown, 2013;
Helander et al., 2014), the actual incidence of use is probably still
underestimated because tracking continues to be difficult, par-
tially due to inadequacy of detecting most substances. Mean-
while, the number of new “replacement” cathinones and
cannabinoids continues to grow. The challenge for scientists, cli-
nicians, and policymakers is to discover creative and effective
ways to maximize their efforts in responding to this rapidly
changing drug landscape.
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