Symposium

The Journal of Neuroscience, November 12, 2014 - 34(46):15159-15169 - 15159

More Than a Pore: Ion Channel Signaling Complexes
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Voltage- and ligand-gated ion channels form the molecular basis of cellular excitability. With >400 members and accounting for ~1.5%
of the human genome, ion channels are some of the most well studied of all proteins in heterologous expression systems. Yet, ion channels
often exhibit unexpected properties in vivo because of their interaction with a variety of signaling/scaffolding proteins. Such interactions
can influence the function and localization of ion channels, as well as their coupling to intracellular second messengers and pathways,
thus increasing the signaling potential of these ion channels in neurons. Moreover, functions have been ascribed to ion channels that are
largely independent of their ion-conducting roles. Molecular and functional dissection of the ion channel proteome/interactome has
yielded new insights into the composition of ion channel complexes and how their dysregulation leads to human disease.

Introduction

Ion channels are multimeric assemblies consisting of a central
ion-conducting pore and a variable number of additional pro-
teins. These channel-interacting proteins (CIPs) may act as obli-
gate subunits in that their only known function is to regulate
channel parameters, such as gating, permeation, and/or traffick-
ing to the cell surface or particular subcellular microdomains.
Voltage-gated Na *, K*, and Ca*" channels each associate with
one or more non—pore-forming subunits that are structurally
and functionally distinct (Li et al., 2006; Buraei and Yang, 2010;
Dolphin, 2013; Calhoun and Isom, 2014; Jerng and Pfaffinger,
2014). Other CIPs are common signaling or scaffolding proteins
that can influence the function of ion channels and/or their cou-
pling to downstream pathways. For example, A-kinase anchoring
protein (AKAP) tethers cAMP-dependent protein kinase and cal-
cineurin, which can regulate the phosphorylation status, and
modulation, of the Ca,1 L-type Ca** channel (Dittmer et al.,
2014; Fuller et al., 2014) and the K,7 M-type K * channel (Zhang
etal.,2011), as well as the role of Ca, 1 channels in transcriptional
signaling (Zhang and Shapiro, 2012; Murphy et al., 2014).
G-protein-coupled receptors represent another class of CIPs that
associate with a variety of ion channels, including N-methyl-
D-aspartate receptor (NMDAR) glutamate-gated channels.
NMDARSs associate with D, and D, dopamine receptors, which
mediate inhibition of NMDAR function in response to D, and D,
receptor agonists (Lee et al., 2002; Liu et al., 2006).
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Genetic variations that disrupt the association of ion channels
with CIPs cause a variety of human disorders, such as Liddle
syndrome, cardiac arrhythmia, diabetes mellitus, and epilepsy
(Jackson and Nicoll, 2011; Kline and Mohler, 2014; Bao and
Isom, 2014 ; O’Malley and Isom, 2014). Moreover, drugs that
stabilize CIP/channel interactions are being developed as novel
therapeutic strategies (Andersson and Marks, 2010). Therefore,
the characterization of the ion channel proteome/interactome
has been the subject of intense investigation, requiring an inter-
disciplinary battery of proteomics, biochemistry, and electro-
physiology, combined with the development of new animal
models. These studies have greatly expanded our view of ion
channels as macromolecular signaling complexes, the constitu-
ents of which define the properties and function of these channels
in a cell-type-specific manner. Given the wealth of knowledge
that has emerged on ion channel-signaling complexes, this review
is not meant to be comprehensive but highlights some recent
advances in our understanding of CIP/ion channel interactions
in the context of neuronal signaling.

Analyzing native ion channels by “functional proteomics”
The comprehensive analysis of ion channels and CIPs in their
native cellular environment represents a major challenge. Such
analysis ideally requires the intact isolation of the “native” ion
channels and the unbiased identification of their constituents.
Technical limitations have hampered such strategies, leaving
more indirect approaches based on molecular biology (such as
expression or siRNA-based cloning and yeast-two-hybrid arrest)
or on genetic analysis of distinct (disease-related) phenotypes.
However, recent advances in protein biochemistry and, in partic-
ular, high-resolution mass spectrometry, have enabled direct ac-
cess to native ion channels in their microenvironments through
unbiased proteomics technologies (for review, see Schulte et al.,
2011).



15160 - J. Neurosci., November 12, 2014 - 34(46):15159-15169

The respective workflow, termed “functional proteomics”
(Miiller et al., 2010), comprises several distinct experimental
steps:

(1) Initially, appropriately solubilized membrane fractions
are set up that are prepared from the tissue expressing the
channel of interest and finally come as a suspension of
inhomogeneous membrane-surrounded vesicles/frag-
ments (Mena et al., 1980). Prepared from brain, these
protein fractions are often called “synaptosomal frac-
tions” as they show some enrichment of presynaptic and
postsynaptic membranes/proteins, but, important to
note, also contain membranes/proteins from cell bodies
and dendrites, as well as from the various intracellular
membrane compartments (Miiller et al., 2010). Solubili-
zation requires careful selection of detergents as they may,
in addition to acting as a solvent, destabilize protein—
protein interactions and thus perturb the integrity of pro-
tein complexes. Consequently, the preservation of higher
molecular weight assemblies of the target protein must be
assessed, most directly by native gel electrophoresis
(Berkefeld et al., 2006; Schwenk et al., 2012).

(2) The channel protein(s) are then extracted from these sol-
ubilized membrane fractions by affinity matrices consist-
ing of immobilized antibodies targeting the ion channel
of interest, either via the pore-forming «-subunit or
tightly associated auxiliary subunits. This step benefits
from the use of multiple antibodies recognizing different
epitopes because single antibodies may exhibit cross-
reactivity to other proteins or may extrude interacting
proteins from the target (Schulte et al., 2011). Alterna-
tively, the ion channel complexes may be isolated by
native gel electrophoresis and excision of the target-
containing gel sections (Schwenk et al., 2012).

(3) The isolated/enriched protein samples are then analyzed by
high-resolution nano-flow mass spectrometry (LC-MS/
MS). This approach provides unbiased information on
both the amount (intensity of precursor ions in the MS
spectra) and identity of any protein in the sample (via
fragmentation resulting in MS/MS spectra resulting from
fragmentation). The protein amounts can be quantified
by various methods (Beynon et al., 2005; Ong and Mann,
2006; Cox and Mann, 2008; Nanavati et al., 2008; Bildl et
al., 2012), of which label-free quantification of MS signals
from precursor peptides is favored because of its extended
dynamic range of up to as much as four orders of magni-
tude (Bildl et al., 2012).

(4) Finally, the protein amounts are used to discriminate the
proteins that are specifically copurified with the target
(ion channel) from background. For this purpose, pro-
tein amounts in affinity purifications with the target-
specific antibodies are first related to two types of negative
controls: affinity purifications with preimmunization im-
munoglobulins (IgGs) and affinity purifications with the
target-specific antibodies from membrane fractions of
target knock-out animals. Subsequently, all proteins
dubbed specific for any individual target-specific anti-
body are probed for consistent appearance across all
target-specific antibodies to discard all the single “hits”
resulting from the particular properties of individual tar-
get antibodies. With these criteria of specificity and con-
sistency, one can identify the entire set of proteins that
reconstitute a given ion channel in native membranes,
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termed “proteome” (or sometimes “interactome”) of that
particular channel (Miiller et al., 2010; Schwenk et al.,
2012).

This workflow has been successfully applied to various types
of ion channels (Nadal et al., 2003; Berkefeld et al., 2006; Schulte
et al., 2006; Marionneau et al., 2009; Schwenk et al., 2009; Zolles
et al., 2009; Miiller et al., 2010; Schwenk et al., 2012). Of these,
glutamate receptors of the AMPA-type (AMPARs) represent an
ideal example to demonstrate the benefit of unbiased proteomic
analysis for studying architecture and function of ion channels in
the context of native cells and/or tissue.

Based on molecular cloning and phenotype analysis, AMPARs
were assumed to consist of four GluA proteins and a family of
transmembrane AMPAR regulatory proteins (TARPs) (Tomita
et al., 2003; Milstein et al., 2007). However, comprehensive pro-
teomic analysis with 10 different antibodies against the four pore-
forming GluA proteins identified AMPARs in the rodent brain as
macromolecular complexes assembled from a pool of >30 dif-
ferent proteins, mostly transmembrane proteins of different
classes and secreted proteins (Schwenk et al., 2012). These find-
ings revealed unanticipated molecular diversity for native
AMPARSs but also defined some principles behind their assembly.
AMPARSs exhibit a “layered” architecture, consisting of a defined
core and a more variable periphery (Schwenk et al., 2012). The
receptor core is formed by tetramers of the pore-forming
GluA1-4 proteins (Seeburg, 1993; Hollmann and Heinemann,
1994) and up to four members of three distinct families of mem-
brane proteins that serve as classical auxiliary subunits: TARPs
(TARPs, y-2, y-3, y-4, ¥-5, y-7, y-8), the cornichon homologs 2
and 3 (CNIH2, 3) (Schwenk et al., 2009), and the GSG1-1 protein
(Fig. 1A) (Schwenk et al., 2012; Shanks et al., 2012). The periph-
ery of the receptors is built from a set of transmembrane and/or
soluble proteins that include CKAMPs 44, 52 (von Engelhardt et
al., 2010), CPT-1, C9orf 4, Brorin2, Noelins1-3, Neuritin, PRRTs
1,2, and LRRT4 (Siddiqui et al., 2013), as well as four isoforms of
the MAGUK family (Schwenk et al., 2012) (Fig. 1A,B).

The assembly of different proteins within this combinatorial
architecture can greatly influence AMPAR function. The inner
core largely determines the biophysical properties of the receptor
channels, which includes agonist-triggered gating, ion selectivity
and permeation, or block by polyamines, and influences their
biogenesis, protein processing, and/or trafficking (Chen et al.,
2000; Tomita et al., 2005; Bats et al., 2007; Cho et al., 2007; Soto et
al., 2007; Schwenk et al., 2009; Soto et al., 2009; Kato et al., 2010;
Coombs et al., 2012; Studniarczyk et al., 2013). In heterologous
expression experiments, TARPs, CNIHs, and GSG1I (Fig. 1A)
impact the gating of the AMPARs, either alone or in combina-
tion, by distinctly slowing deactivation and desensitization of
various GluA homo-tetramers or hetero-tetramers (Schwenk et
al., 2009, 2012). Among those auxiliary subunits, the two CNIH
proteins exert the strongest influence, slowing the time constants
of either channel-closing process by up to more than fivefold,
independent of the GluA composition of the pore (Schwenk et al.,
2009; Kato et al., 2010; Coombs et al., 2012). The neurophysio-
logical significance of CNIH2 in prolonging AMPAR currents
was demonstrated by the acceleration in the decay of EPSCs upon
virus-directed knock-down of CNIH2 in hippocampal mossy
cells and, vice versa, by the pronounced slowing of the postsyn-
aptic currents in the neighboring interneurons upon virus-
mediated expression of CNIH2 (Boudkkazi et al., 2014). The
proteins comprising the periphery of AMPAR influence various
aspects of AMPAR function (von Engelhardt et al., 2010) or traf-
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Figure 1. Molecular diversity of AMPAR assemblies. 4, B, Different macromolecular AMPAR
assemblies of distinct subunit composition as identified by functional proteomics in the whole
rodent brain (Schwenk et al., 2009, 2012). All proteins are presented as space-filling 3D models
thatare projected onto the postsynaptic membrane. The models were generated with the Maya
platform (Autodesk Maya 3D) (Takamori et al., 2006) using pdb-entries and molecular model-
ing for the indicated proteins.

ficking (Cantallops et al., 2000; Chen et al., 2000; Zhu et al., 2002;
Hussain et al., 2010; Siddiqui et al., 2013). It must be emphasized,
however, that many of the physiological implications of the
periphery-forming AMPAR constituents are not clear because
they currently lack defined primary functions.

Nevertheless, the characterization of the AMPAR proteome
will undoubtedly motivate investigations into the function of
these proteins and guide future analyses of the molecular mech-
anisms underlying the observed functional diversity of AMPARs.

CaBPs enhance the functional diversity and cellular
regulation of voltage-gated Ca,1 Ca** channels
Quantitative proteomic analyses have revealed that voltage-gated
Ca”" channels, like AMPARs, are embedded in complex protein
nano-environments (Miiller et al., 2010). Ca, channels consist of
a main pore-forming ¢, subunit and an auxiliary Ca, 8 and «,6
subunit (Fig. 2A), which alter channel activation, inactivation,
and/or cell-surface trafficking (Buraei and Yang, 2010; Dolphin,
2013; Simms and Zamponi, 2014). Of the multiple classes of Ca,
channels that have been characterized, Ca,1 Ca>* channels me-
diate L-type Ca’* currents in nerve and muscle. Ca,1.2 and
Ca, 1.3 are the most highly expressed Ca,1 channels in the brain
(Schlick et al., 2010), where they regulate neuronal excitability
(Marrion and Tavalin, 1998; Puopolo et al., 2007), activity-
dependent gene transcription (Ma et al., 2013), and synaptic plas-
ticity (Moosmang et al., 2005). Ca, 1.4 and Ca,1.3 are the primary
Ca,1 channels in retinal photoreceptors and cochlear inner hair
cells, respectively (Platzer et al., 2000; Brandt et al., 2003; Man-
sergh et al., 2005).

Ca,1 channels interact with a variety of CIPs (Calin-Jageman
and Lee, 2008; Dai et al., 2009), including the EF-hand Ca*"
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Figure2. Distinct modulation of Ca, 1 channels by CaM and CaBPs. 4, Ca, complexes consist
minimally of «t;, 8, and c, & subunits. CaM and CaBPs bind to the IQ domain, but other CaBP
binding sites exist in the N-terminal domain and IlI-IV linker (*). B, For Ca,1.2 and (a,1.3
channels, (DI due to CaM manifests s faster inactivation of Ca* (I,) currents compared with
Ba2" currents (left). CaBPs prevent (DI (right). Modified from Zhou et al. (2004). €, Current—
voltage relation demonstrating effect of CaBP4 in potentiation of Ca, 1.4 channels by causing a
negative shift in voltage-dependent activation (red trace). Modified from Haeseleer et al.
(2004).

sensor, calmodulin (CaM). Tethered to a consensus IQ domain
in the C-terminal domain of the Ca,1 «, subunit (Fig. 2A), CaM
binds incoming Ca** ions and initiates conformational changes
in the channel protein that underlie Ca*"-dependent inactiva-
tion (CDI) (Fig. 2B) (Peterson etal., 1999; Qin et al., 1999; Ziihlke
et al., 1999; for review, see Ben-Johny and Yue, 2014). In the
heart, Ca**/CaM-driven CDI accelerates the decay of Ca,l.2
channel Ca®" currents, which prevents excessively long cardiac
action potentials that can cause arrhythmia (Alseikhan et al.,
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2002). CDI has also been described for Ca, channels in neurons
(Budde et al., 2002) and may be neuroprotective in preventing
excitotoxic Ca®" overloads (Nigerl et al., 2000). Multiple factors
can influence the extent to which Ca,l channels undergo CDI
(Christel and Lee, 2012). In hippocampal neurons, AKAP an-
choring of cAMP-dependent protein kinase promotes phosphor-
ylation and potentiation of Ca,1 channels. This in turn primes
channels to undergo CDI, here due to dephosphorylation by cal-
cineurin associated with the AKAP/Ca, 1 channel complex (Ditt-
mer et al., 2014).

Other CIPs that play important CDI-modulatory roles are a
family of CaM-like Ca** binding proteins (CaBPs) that are
highly expressed in the brain, retina, and inner ear (Seidenbecher
et al., 1998; Haeseleer et al., 2000, 2004; Yang et al., 2006; Cui et
al., 2007; Kim et al., 2014). Like CaM, CaBPs have 4 EF-hand
Ca** binding domains, at least one of which is nonfunctional
(Haeseleer et al., 2000). In heterologous expression systems,
CaBPs inhibit CDI of Ca, 1.2 and Ca, 1.3 (Zhou et al., 2004; Yang
etal., 2006; Cui et al., 2007; Tippens and Lee, 2007) (Fig. 2B). The
mechanism likely involves displacement of CaM from the Ca,1
o, IQ domain (Zhou et al., 2004; Findeisen et al., 2013; Oz et al.,
2013) (Fig. 2A). However, CaBPs can bind to multiple sites in
Ca,l a;, and so, may allosterically modulate CaM interactions
with the channel (Zhou et al., 2005; Oz et al., 2011; Yang et al.,
2014).

The distinct tissue distribution of CaBP family members sug-
gests that they may regulate different Ca, 1 channels (Haeseleer et
al., 2000, 2004). Alternative splicing produces 3 CaBP1 variants
(CaBP1-S, CaBP1-L, and caldendrin), which associate with
Ca, 1.2 channels in the brain (Zhou et al., 2004; Tippens and Lee,
2007). When coexpressed with Ca,1.2 in heterologous systems,
both CaBP1 and caldendrin strongly suppress CDI, but through
slightly different molecular determinants. Although mutations of
the IQ domain strongly diminish the impact of both caldendrin
and CaBP1, CaBP1 but not caldendrin binds to the N-terminal
domain of Ca, 1.2 a;, and deletion of this N-terminal site inhibits
modulation by CaBP1 but not caldendrin (Zhou et al., 2004;
Tippens and Lee, 2007). Caldendrin is expressed at higher levels
than either CaBP1 variant and, in the frontal cortex, undergoes a
developmental increase in expression that parallels the time
course of cortical synaptogenesis (Laube et al., 2002; Kim et al.,
2014). Caldendrin may be important for prolonging Ca,1 Ca*"
signals that promote the formation of dendritic arbors during
development (Redmond et al., 2002), although caldendrin also
regulates synapse number via NMDA receptor signaling (Diet-
erich et al., 2008).

In the cochlea, antibodies against CaBP1, CaBP2, CaBP4, and
CaBP5 strongly label inner hair cells (Yang et al., 2006; Cui et al.,
2007). In transfected HEK293T cells, all four CaBPs inhibit CDI
of Ca, 1.3 channels (Yang et al., 2006; Cui et al., 2007; Schrauwen
et al., 2012). Unlike the transient Ca,1.3 Ca*" currents due to
CaM-driven CD], the sustained Ca,1.3 Ca®" currents caused by
CaBPs would support tonic glutamate release necessary for
sound coding at the inner hair cell ribbon synapse. A mutation
that impairs CaBP2 modulation of Ca,1.3 CDI causes autosomal
recessive hearing loss in humans (Schrauwen et al., 2012), al-
though the phenotype is not as severe as the profound deafness
seen in patients with a loss-of function mutation in the
CACNA1D gene encoding Ca, 1.3 «; (Baigetal., 2011). The pres-
ence of other CaBPs may compensate for a deficit in CaBP2 mod-
ulation. However, other mechanisms may jointly suppress CDI
of Ca, 1.3 in inner hair cells, such as alternative splicing of Ca,1.3
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o transcripts (Shen et al., 2006) or interactions with other inner
hair cell proteins (Gebhart et al., 2010).

In the retina, CaBP4 is highly localized in photoreceptor ter-
minals, where it interacts with the IQ domain of the Ca,1.4 «;
subunit (Haeseleer et al., 2004). Unlike Ca,1.2 and Ca, 1.3, Ca,1.4
channels undergo little CDI even in the absence of CaBPs. CaM
can still bind to the Ca 1.4 @, IQ domain, but this interaction is
disrupted by an autoregulatory C-terminal domain (ICDI: inhib-
itor of CDI). Deletion of the ICDI permits CaM-dependent CDI
(Singh et al., 2006; Wahl-Schott et al., 2006), which is then
blunted by CaBP4 (Shaltiel et al., 2012). The similar effects of
CaBP4 and the ICDI in suppressing CDI are likely due to each
competing for occupancy of the IQ domain (Shaltiel et al., 2012).
However, a second, and likely the major, effect of CaBP4 is to shift
the voltage dependence of activation to more negative voltages
(Haeseleer et al., 2004; Shaltiel etal., 2012) (Fig. 2C). This effect of
CaBP4 is prevented by deletion of the ICDI (Shaltiel et al., 2012),
suggesting that interactions between the ICDI, CaBP4, and the IQ
domain are required for modulation of channel gating by CaBP4.
Association of Ca, 1.4 channels with CaBP4 would promote Ca**
influx at the relatively depolarized membrane potential of pho-
toreceptors in darkness (~—40 mV). This in turn may enhance
the gain of rod photoreceptor synapses by ensuring sufficient
activation of postsynaptic metabotropic glutamate receptors and
subsequent hyperpolarization of ON rod bipolar cells in dark-
ness. Mice lacking CaBP4 exhibit impaired rod bipolar responses
to light stimuli, consistent with loss of function of Ca,1.4 (Hae-
seleer et al., 2004). Moreover, mutations in the CaBP4 gene,
which disrupt CaBP4 modulation of Ca, 1.4, cause vision impair-
ment in humans (Zeitz et al., 2006; Littink et al., 2009; Shaltiel et
al., 2012). Together, these studies illustrate the importance of
CaBPs as CIPs that can facilitate Ca,1 Ca*" influx in various
neuronal cell types.

Na, 3 subunits are multifunctional regulators of neuronal
excitability and cell adhesion

Voltage-gated Na, Na* channels generate the rising phase and
propagation of the action potential in excitable cells, including
neurons and cardiac myocytes. Like Ca, channels, Na, channels
are comprised of one pore-forming « subunit (Fig. 3A). The Na,,
a subunit can associate with one or more 8 subunits, which are
structurally distinct from Ca,  subunits (Fig. 3A). Originally
characterized as “auxiliary” subunits that solely regulate Na,
channel function, Na, 8 subunits are now known to play essential
and diverse roles in a variety of cell types with or without Na, «
subunits. The physiological importance of Na, 3 subunits is il-
lustrated by the numerous and severe disorders linked to muta-
tions in the encoding genes. These include epilepsy (e.g., Dravet
Syndrome with sudden unexpected death in epilepsy), cardiac
arrhythmia, and sudden infant death syndrome. In addition,
changes in Na, B subunit expression are thought to modulate
pain, demyelinating and neurodegenerative disorders, cancer,
and autism spectrum and mood disorders (O’Malley and Isom,
2014). Five Na, 3 subunit proteins are encoded by a family of four
genes, denoted SCNXB: B1 and its splice variant S1B (SCNIB);
B2, B3, and B4 (SCN2B, SCN3B, and SCN4B, respectively)
(O’Malley and Isom, 2014).

In heterologous expression systems, 31 can negatively shift
the voltage dependence of Na, channel activation and inactiva-
tion, and speed inactivation kinetics (Isom et al., 1992). Although
these actions of B1 on Na, properties are subtle in vivo, genetic
inactivation of SCNIB severely impairs cellular excitability in the
brain and heart (Chen et al., 2004; Lopez-Santiago et al., 2007;



Lee et al. @ lon Channel Signaling Complexes

A
g
S\ } ':\/Extracellular
[32 Nav(l B1
0
) \j U ) Intracellular
C’ N c
C
B
Extracellular
Intracellular
Intracellular Bt i N
raft /P
c \ / Y181
% C
B1 g g /L I31

i

Fyn

l

Neurite outgrowth

__~ contactin
V=

Figure 3.  Auxiliary and nonauxiliary roles of Na,(3 subunits. A, One or more /3 subunits
interact with and regulate Na, o subunits. 3, (and (3,) are covalently linked, whereas 3, (and
35) are noncovalently linked, to the « subunit. B, Role of Na, 3, in cell adhesion. (3, is localized
in lipid rafts with contactin and forms trans-homophilic interactions with other 3, subunits.
This is postulated to activate fyn kinase signaling and neurite outgrowth. AnkyrinG (AnkG) is
recruited to sites of cell— cell contact through interactions with the C-terminal domain of 3,.
When a specific tyrosine residue in the 3, Cterminus is (Y181, *) phosphorylated (presumably
by fyn kinase), AnkG association is inhibited.

Brackenbury etal., 2013). Paradoxically, dorsal root ganglion and
cortical neurons from SCNIB null mice are hyperexcitable
(Lopez-Santiago et al., 2007; Marionneau et al., 2012; Bracken-
bury et al., 2013), which may be due to effects of B1 on K, chan-
nels. B1 interacts directly with K 4.2 A-type K™ channels and
increases the cell-surface density of these channels. In layer V
cortical pyramidal cells from SCN1B null mice, A-type K* cur-
rent density is reduced and repetitive firing is increased (Marion-
neau et al., 2012). B1 also interacts with K 4.3 channels in the
heart and increases K,4.3 current density both in cardiac myo-
cytes and transfected HEK293 cells (Deschénes and Tomaselli,
2002; Deschénes et al., 2008). By partnering with either Na, or
K, channels, Na, 8 subunits can powerfully modulate cellular
excitability.

In addition to their role in modulating ion channel function,
Na, B subunits act as cell adhesion molecules (CAMs). All five 3
subunits contain an extracellular immunoglobulin (Ig; Fig. 3A)
domain homologous to V-type Ig loop motifs present in the Ig
superfamily of CAMs (Isom, 2001). Like other CAMs of the Ig
superfamily, B subunits can interact with each other trans-
homophilically to induce signaling in adjacent cells (Fig. 3B). In
Drosophila S2 cells, exogenously expressed B1 or 82 leads to ag-
gregation of cells and recruitment of ankyrinG at sites of cell-cell
contact. AnkyrinG interacts with 8 subunits and recruitment of
ankyrinG to cell-cell contacts, but not cell aggregation, is pre-
vented by deletion of the cytoplasmic C-terminal domain of ei-
ther B subunit and by phosphorylation of tyrosine (Y)181 in this
region (Malhotra et al., 2000, 2002) (Fig. 3B). In the heart,
phosphorylation of Y181 prevents the interaction of 81 with
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ankyrin but promotes the interaction of 81 with N-cadherin.
Moreover, 31 subunits with phosphorylated Y181 colocalize
with N-cadherin at intercalated disks, but not with ankyrin at
t-tubules (Malhotra et al., 2004). The intracellular domain of 81
interacts with receptor tyrosine phosphatase 3, which regulates
the modulatory impact of 81 on Na, channels in transfected
tsA-201 cells (Ratcliffe et al., 2000). By opposing phosphorylation
of Y181, receptor tyrosine phosphatase 8 could enhance interac-
tions of B1 with ankyrin, which may dynamically regulate the
subcellular localization of Na, channels.

In neurons, the association of Na, 3 subunits with distinct
subsets of proteins determines their subcellular localization and
function. At the axon initial segment, Na, 4 is recruited by Na,,
a subunits through a disulfide linkage formed between Na, a and
an extracellular cysteine in 84 (Buffington and Rasband, 2013).
Na, 4 mediates resurgent Na ™ current, a transient increase in
Na™ conductance upon membrane repolarization (Raman and
Bean, 1997; Grieco et al., 2005). Because the activity of Na, chan-
nels in the axon initial segment regulates action potential gener-
ation (Khaliq and Raman, 2006), the targeting of Na, 34 to the
axon initial segment should strongly influence neuronal excit-
ability. Consistent with this prediction, siRNA knockdown of
SCNA4B depresses repetitive firing in cerebellar granule neurons
(Bant and Raman, 2010). At nodes of Ranvier, 8 subunits colo-
calize with Na, a subunits and are thus positioned to modulate
channels during rapid saltatory conduction of action potentials
(Chen et al., 2002, 2004). In the paranodal subcompartment ad-
jacent to the nodal gap, B1 interacts with a trimeric complex of
axo-glial paranodal proteins consisting of contactin, Caspr, and
glial neurofascin-155 (Kazarinova-Noyes et al., 2001; McEwen et
al., 2004). The localization of B1 to this subcellular compartment
may contribute to the establishment and maintenance of paran-
odes and formation of the nodal gap: paranodal structure is ab-
normal in SCN1B null mice, which may contribute to the ataxia
observed in these animals (Chen et al., 2004).

In addition to ataxia, SCN1B null mice undergo spontaneous
seizures beginning around postnatal day (P)10 (Chen et al,
2004). Before the development of hyperexcitability at P5, SCN1B
null mice exhibit defects in neuronal proliferation, migration,
and pathfinding (Brackenbury et al., 2013). In cerebellar granule
neurons, Na, 1 promotes neurite outgrowth through trans-
homophilic interactions (Davis et al., 2004), and this effect re-
quires contactin and the lipid raft-associated tyrosine kinase fyn
(Brackenbury et al., 2008) (Fig. 3B). Interestingly, Na, 8 subunits
have been detected in lipid rafts, where they are substrates for
sequential cleavage by B- (BACE) and vy-secretases implicated in
the pathology of Alzheimer’s disease (Wong et al., 2005). These
results highlight a key role for Na, 8 subunits as CAMs required
for normal development of neural circuits, as well as multifunc-
tional regulators of ion channels and neuronal excitability in the
mature nervous system.

Interactions of K* channels with cytoplasmic

signaling pathways

Within the ion channel superfamily, K* channels are the most
diverse at the molecular level, with >80 genes encoding K chan-
nel a subunits. In contrast to the single polypeptide forming the
pore of Na, and Ca, channels, functional K* channels are com-
prised of homomers or heteromers of four « subunits (Fig. 44;
two in the case of the K, subfamily). This diversity is unlikely to
represent functional redundancy and suggests that different
members of the K™ channel family have roles that go beyond
simply regulating K flux across the plasma membrane.
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A variety of studies have shown that A
K™ channels interact directly with cyto-
plasmic and cytoskeletal proteins and that
the gating of channels can trigger cyto-
plasmic signaling even when ion flux
through the pore of the channel has been
eliminated (Kaczmarek, 2006). Some sub-
families of voltage-gated K, K™ channels
have their own classes of auxiliary sub-
units (Li et al., 2006). These subunits are
not required for ion permeation but regu-
late trafficking and gating and may be re-
quired for modulation of the channels by
protein kinases or other signaling pathways
(Vacher and Trimmer, 2011). For example,
the pore-forming a-subunits of K1
channels interact with one of three K, 3
subunits. Two of these are functional
aldo-keto reductases that use NADPH as a
cofactor. Activation of these attached en-
zymes directly regulates inactivation and
amplitude of K1 currents. Moreover, di-
rect phosphorylation of the K, 8 subunits
is required for appropriate trafficking and
targeting of these channels to axons
(Vacher and Trimmer, 2011).
In some cases, K, channel auxiliary sub-
units mediate interactions with other ion
channels. For example, Ca**-activated BK
K" channels form complexes with Ca,
Ca’" channels (Berkefeld et al., 2006).
Ca, channels can also interact with K, B
channels via the K, auxiliary subunits.
KChiPs are members of a family of neuro-
nal Ca*"-binding proteins that interact
with K4 channels and regulate their volt-
age dependence of inactivation (Li et al,,
2006; Vacher and Trimmer, 2011). In
some neurons, KChiPs exist in ternary
complex with K.4.2 K* channels and
Ca,3 T-type Ca*" channels (Anderson et
al., 2010). These K,/Ca, channel com-
plexes would allow for precise timing of \V/
neuronal hyperpolarization following de-
polarization, due to very local regulation
of K, channels by Ca®" that enters
through the pore of the Ca, channel. |
Na *-activated K" channels represent
an additional class of K channels that
shape the excitability of neurons in the
CNS and are encoded by the Slack and
Slick genes (also termed Sl02.2 and Slo2.1,
or KCNTI and KCNT2, respectively)
(Joiner et al., 1998; Yuan et al., 2003; Bhat-
tacharjee et al., 2005). The fact that the
C-terminal cytoplasmic domains of these channels are particu-
larly large prompted a search for cytoplasmic proteins that may
interact with these domains. At least one such interacting protein
is the Fragile X Mental Retardation Protein (FMRP; Fig. 4A) (Brown
etal,, 2010; Zhang et al., 2012).
FMRP is an RNA-binding protein that is required for some
forms of activity-dependent protein translation within neurons
and may be particularly important for local translation in den-
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Interaction of the Slack Na ™ -activated K ™ channel with FMRP. 4, Slack subunits have six transmembrane domains
(51-56); four of these subunits form the channel. The bulk of the channel protein resides in the cytoplasmic C-terminal domain of
each subunit (solid and dashed lines), which contains two regulator of K * conductance domains (RCK1, RCK2). FMRP and its target
RNAs interact with the C-terminal domain of Slack. B, Injection of FMRP(1-298) hyperpolarizes membrane potential in Aplysia
neurons. Representative traces of the effect of injection of FMRP(1-298) or heat-inactivated FMRP(1—298) on action potentials of
Aplysia bag cell neurons. Action potentials were evoked by injecting 0.6 nA current pulses. Modified from Zhang et al. (2012).

drites or compartments other than the soma (Bassell and Warren,
2008). Loss of FMRP results in Fragile X syndrome, the most
common inherited form of intellectual disability in humans. This
condition is also associated with hypersensitivity to sensory stim-
uli, particularly auditory stimuli, and with an increased incidence
of epilepsy during childhood (10%-18%). Interactions between
FMRP and the cytoplasmic C-terminal domain of Slack have
been demonstrated by yeast two-hybrid and coimmunoprecipi-
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tation experiments (Brown et al., 2010). FMRP also interacts with
two other ion channels, BK K channels (Deng et al., 2013) and
Cay2.2 (N-type) Ca** channels (Ferron et al., 2014).

The association of Slack with FMRP links the C terminus of
the channel directly to mRNAs encoding proteins, such as Map1b
and Arc, which are targets of FMRP (Fig. 4A). In brains from
wild-type mice, but not those from Fmrl ¥ mice that lack
FMRP, these mRNAs can be coimmunoprecipitated with Slack
channels (Brown et al., 2010). The Slack/FMRP interaction leads
to a reversible activation of channel activity. Application of a
recombinant fragment of FMRP(1-298) that includes most of the
known FMRP protein—protein interaction domains to excised
inside-out patches containing Slack channels causes a twofold to
threefold increase in channel activity. This effect has been ob-
served both for Slack channels expressed heterologously in Xeno-
pus oocytes (Brown et al., 2010) and for native Na "-activated K
channels in the bag cell neurons of Aplysia, where injection of FMRP
produces a hyperpolarization of the membrane (Fig. 4B) (Zhang et
al., 2012). A second effect of FMRP on the gating of Slack channels in
both preparations is to largely eliminate subconductance states,
which are readily detected before application of FMRP(1-298). No
effect of FMRP(1-298) was detected on functional Slack channels
that were truncated at their distal C terminus, the putative site of
channel-FMRP interaction (Brown et al., 2010).

Slack and Slick are very widely expressed in central neurons
(Bhattacharjee et al., 2002, 2005), and Na *-activated K* cur-
rents have been characterized in a wide variety of neurons (Bhat-
tacharjee et al., 2005; Kaczmarek, 2013). Suppression of Slack
expression using siRNA techniques can reduce a major compo-
nent of total K™ current in several neuronal types (Budelli et al.,
2009; Luetal., 2010). One neuronal type that expresses Slack and
in which the characteristics of the native Na *-activated K * chan-
nels have been compared with those of Slack channels in heterol-
ogous expression systems is the principal neuron of the medial
nucleus of the trapezoid body (Yang et al., 2007). These neurons
fire at high rates with high temporal accuracy and are a compo-
nent of the brainstem circuitry that determines the location of
sounds in space (Kaczmarek et al., 2005). Increasing the level of
Na "-activated K™ current in medial nucleus of the trapezoid
body neurons in brainstem slices increases the temporal accuracy
with which action potentials lock to stimulus pulses (Yang et al.,
2007). The level of Na "-activated K * current in medial nucleus
of the trapezoid body neurons from Fmr1 ~/¥ mice is substantially
reduced compared with that in neurons from wild-type animal,
whereas no change in levels of Slack channels can be detected
(Brown et al., 2010). This finding is consistent with the hypoth-
esis that the interaction of Slack with FMRP in native neurons
serves to enhance Na " -activated K™ current amplitude.

The interaction of an ion channel with part of the biochemical
machinery that regulates translation of mRNAs suggests that
changes in channel activity may contribute to the regulation of
activity-dependent protein synthesis in neurons. Experiments
testing this hypothesis are in progress. Circumstantial support for
a role for Slack channels in the development of normal intellec-
tual function has come, however, from the characterization of
human mutations in the Slack gene (Barcia et al., 2012; Heron et
al., 2012; Ishii et al., 2013; McTague et al., 2013; Martin et al.,
2014; Milligan et al., 2014). Different mutations produce one of
three types of seizures that occur in infancy or childhood: (1)
malignant migrating partial seizures of infancy, (2) autosomal
dominant nocturnal frontal lobe epilepsy, and (3) Ohtahara syn-
drome. Most of the mutations are in the large cytoplasmic
C-terminal domain of Slack. The mutant channels conduct K™
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currents that are significantly greater than those of wild-type
channels (Barcia et al., 2012; Martin et al., 2014; Milligan et al,,
2014). In single-channel analysis, the mutant channels behave
like channels that are constitutively activated by FMRP in that
subconductance states are strongly suppressed or absent (Barcia
etal., 2012).

Each of the human Slack mutations is associated with very
severe intellectual disability and developmental delay (Kim and
Kaczmarek, 2014). It is possible that these are a consequence of
the abnormal electrical activity that occurs during the seizures.
Nevertheless, the finding that autosomal dominant nocturnal
frontal lobe epilepsy can be caused by mutations either in the
neuronal nicotinic acetylcholine receptor or in Slack channels,
but that intellectual disability only occurs for the Slack channel
mutations (Heron et al., 2012), suggests that the disruption of the
C-terminal protein—protein interactions of Slack with cytoplas-
mic signaling molecules contributes to the intellectual disability.

Perspectives

The encoding of information by patterns of neural activity de-
mands that ion channel signaling exhibits a high degree of spatial
and temporal precision. Molecular dissection of the ion channel
proteome and detailed analyses of the functional impact of ion
channel-associated proteins have greatly expanded our under-
standing of how such precision may be achieved. Moving for-
ward, it will be important to consider that channel-interacting
proteins may transform the biophysical features of ion channels
in ways that could influence their pharmacological properties, as
ion channels are major drug targets. Acknowledging that ion
channels and their interacting proteins may have nonconducting
roles, we may discover new and unexpected mechanisms by
which disease-causing mutations lead to channelopathies. Fi-
nally, the potential of mapping ion channel proteomes in differ-
ent neurons, and at distinct developmental time points, offers
new perspectives on how ion channel regulation may be tailored
to generate and maintain synapses and circuits.
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