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Cells in injured and inflamed tissues produce a number of proalgesic lipid-derived mediators, which excite nociceptive neurons by
activating selective G-protein-coupled receptors or ligand-gated ion channels. Recent work has shown that these proalgesic factors are
counteracted by a distinct group of lipid molecules that lower nociceptor excitability and attenuate nociception in peripheral tissues.
Analgesic lipid mediators include endogenous agonists of cannabinoid receptors (endocannabinoids), lipid-amide agonists of peroxi-
some proliferator-activated receptor-�, and products of oxidative metabolism of polyunsaturated fatty acids via cytochrome P450 and
other enzyme pathways. Evidence indicates that these lipid messengers are produced and act at different stages of inflammation and the
response to tissue injury, and may be part of a peripheral gating mechanism that regulates the access of nociceptive information to the
spinal cord and the brain. Growing knowledge about this peripheral control system may be used to discover safer medicines for pain.

Introduction
Harmful stimuli are detected by a class of specialized sensory
neurons, called nociceptors, which are housed in the trigeminal
and DRG and project their axons to the periphery of the body.
These neurons are divided into two subclasses that are both struc-
turally and functionally distinct. Medium-sized “A�” nociceptors
convey the localized sharp pain sensation that acts as a warning
sign of injury, whereas small-sized “C” nociceptors mediate the
more diffused and delayed pain that promotes defensive behav-
iors and supports tissue repair. In addition to mechanical and
thermal insults (two common causes of body damage), nocicep-
tors also respond to a variety of chemical irritants (e.g., defensive
compounds produced by plants and insects) as well as to endog-
enous chemicals, such as protons, nucleotides, peptides, and
lipid-derived mediators (for review, see Piomelli and Sasso,
2014).

Cells in injured and inflamed tissues generate a variety of pro-
algesic (pain-inducing or pain-enhancing) lipid mediators,
which include membrane-derived phospholipids (e.g., lysophos-
phatidic acid and lysophosphatidylinositol), and oxidative

metabolites of polyunsaturated fatty acids (PUFAs) (e.g., prosta-
glandin E2, hydroxylated derivatives of linoleic acid) (Piomelli
and Sasso, 2014) (Fig. 1). These molecules increase the excitabil-
ity of nociceptive neurons by engaging selective G-protein-
coupled receptors or ligand-gated ion channels. The specific roles
played by each of these substances, if any, are often unknown, but
their importance in inducing and maintaining pain has been rec-
ognized since the 1970s (Ferreira, 1972). Only recently has it
become clear, however, that the proalgesic influence of these me-
diators is countered by the actions of a distinct set of bioactive
lipids that modulate nociception by lowering sensory neuron ex-
citability. These analgesic lipids include endocannabinoids, such
as anandamide and 2-arachidonoyl-sn-glycerol (2-AG), lipid-
amide agonists of peroxisome proliferator-activated receptor-�
(PPAR-�), such as palmitoylethanolamide (PEA) and oleoyle-
thanolamide (OEA), and various products of oxidative PUFA
metabolism (Fig. 1). Here we review evidence indicating that
these lipid-derived mediators modulate pain initiation by regu-
lating the transmission of nociceptive signals from injury sites in
peripheral tissues to the CNS.

Endogenous cannabinoid agonists
Anandamide and 2-AG are part of a signaling complex that also
comprises G-protein-coupled cannabinoid receptors that medi-
ate their effects (CB1 and CB2) as well as proteins responsible for
their production, transmembrane transport, and breakdown. These
agents are produced and degraded through distinct enzyme-
mediated routes (for review, see Guindon and Hohmann, 2009).
Anandamide is formed by cleavage of a membrane phospholipid
in which the amine group of phosphatidylethanolamine is cova-
lently linked to arachidonic acid. Newly released anandamide
acts near its sites of production, as an autocrine or paracrine
messenger, and is rapidly eliminated through a process consisting
of carrier-mediated transport into cells (the molecular mecha-
nism of which remains unclear) followed by hydrolysis catalyzed
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by the intracellular serine amidase, fatty acid amide hydrolase
(FAAH) (Ueda et al., 2013). Anandamide can be also trans-
formed by cyclooxygenase-2 into proalgesic metabolites called
prostamides (Gatta et al., 2012). There are no known inhibitors of
anandamide formation. By contrast, anandamide deactivation
can be interrupted using agents that block membrane transport
(e.g., AM404 or ARN272) (Fu et al., 2012), FAAH-mediated degra-
dation (e.g., URB597) (Kathuria et al., 2003) (Fig. 2), or substrate-
selective cyclooxygenase metabolism (e.g., LM-4131) (Hermanson et
al., 2013).

2-AG is produced in a series of reactions that starts with the
conversion of phosphatidylinositol-4,5-bisphosphate into 1,2-
diacylglycerol (1,2-DAG), which is catalyzed by phospholipase
C-�. 1,2-DAG is then cleaved by diacylglycerol lipase-� (DGL-�)
to form 2-AG and free fatty acid (Stella et al., 1997). Monoacylg-
lycerol lipase (MGL) is the main serine esterase involved in 2-AG
deactivation (Dinh et al., 2002; Hohmann et al., 2005), with �-�
hydrolase domain 6 (ABHD-6) participating in some cases
(Marrs et al., 2010). Like anandamide, 2-AG may be also metab-
olized by cyclooxygenase-2 to produce oxidized proalgesic deriv-
atives (for review, see Guindon and Hohmann, 2008). 2-AG
formation can be inhibited using relatively nonselective probes
that block either PLC (e.g., U73122) or DGL (e.g., tetrahydrolip-
statin) (Gregg et al., 2012). DGL-�-preferring inhibitors have
been recently disclosed but remain to be fully characterized (Ap-
piah et al., 2014). Agents interfering with 2-AG deactivation in-
clude compounds that target MGL (e.g., URB602 and JZL-184)
(Hohmann et al., 2005; Long et al., 2009) and ABHD-6 (e.g.,
WWL-70) (Marrs et al., 2010) (Fig. 2).

Endocannabinoid control of
peripheral pain
Although highly expressed in neurons of
the brain and spinal cord (Herkenham,
1991), CB1 cannabinoid receptors are also
present in neural and non-neural cells
throughout the body (for review, see
Guindon and Hohmann, 2009). They are
synthesized in cell bodies of DRG neurons
and are transported to peripheral nerve
terminals, where they are localized appro-
priately to control pain initiation in re-
sponse to agonist stimulation (Hohmann
and Herkenham, 1999). Indeed, cell-
specific deletion of CB1 in mouse nocice-
ptive neurons impairs the antinociceptive
effects of local or systemic (but not intra-
thecal) administration of cannabinoid
agents (Agarwal et al., 2007). CB2 recep-
tors, on the other hand, are primarily
found in immune cells, such as B-
lymphocytes and macrophages, but are
also present in skin keratinocytes and
other cell types (Dhopeshwarkar and
Mackie, 2014). Their expression in noci-
ceptors is very low under baseline condi-
tions but can be enhanced by injury or
inflammation (Wotherspoon et al., 2005;
Svízenská et al., 2013). Antihypersensitiv-
ity mechanisms mediated by peripheral
CB1 receptors were first documented us-
ing local injections of anandamide (Calig-
nano et al., 1998; Richardson et al., 1998).

In subsequent studies, the antinociceptive actions of this com-
pound were confirmed to be CB1-dependent, whereas the anti-
nociceptive effects of 2-AG were shown to require activation of
both CB1 and CB2 receptors (Guindon and Hohmann, 2009).
When administered at the site of injury, cannabinoid agonists
suppress the activity of nociceptive neurons in the spinal cord,
suggesting that cannabinoid receptor occupancy outside the CNS
is sufficient to control nociception (Nackley et al., 2003a, b, 2004;
Sagar et al., 2005). In addition to cannabinoid receptors, anand-
amide can activate various ligand-gated ion channels, including
transient receptor potential vanilloid-1 (TRPV-1) (Akopian et
al., 2009). This activation requires, however, relatively high con-
centrations of anandamide, which are unlikely to occur in vivo,
and its physiological significance remains unclear. For example,
submicromolar concentrations of anandamide suppress the ac-
tivity of somatosensory neurons (Khasabova et al., 2008),
whereas the same neurons are excited by anandamide at concen-
trations �10 �M through a TRPV-1-dependent mechanism
(Price et al., 2004). Notably, a variety of lipid mediators have been
shown to engage TRPV-1 more potently than does anandamide,
including the nonendocannabinoid FAAH substrate OEA (LoV-
erme et al., 2006).

Several laboratories have attempted to harness the therapeutic
potential of peripheral endocannabinoid signaling using inhibi-
tors of anandamide and 2-AG deactivation, with a goal of allevi-
ating pain states without causing unwanted CNS-based side
effects. Pharmacological blockade of either MGL or FAAH at
injury sites produces marked antinociception: FAAH and MGL
inhibitors, administered locally into the paw, reduce behavioral
hypersensitivity provoked by intraplantar injections of capsaicin

Figure 1. Peripheral gating of nociception by lipid-derived mediators. Lipid messengers generated by neural and non-neural
cells during injury or inflammation regulate the excitability of peripheral nociceptors. Proalgesic lipids, which heighten nociceptor
excitability, include prostanoids, such as prostaglandin E2 (which binds to G-protein-coupled EP-type receptors), phospholipids,
such as lysophosphatidic acid (LPA) (which binds to LPA receptors), and oxidized PUFA derivatives, such as 13-hydroxy-
octadecenoic acid (13-HODE), which activates TRPV-1. Persistent TRPV-1 activation can lead to desensitization and consequent
reduction in nociceptive signaling. Analgesic lipids, which dampen nociceptor excitability, include endocannabinoids, such as
anandamide and 2-AG (which bind to CB1 and CB2 cannabinoid receptors), endogenous ligands for PPAR-�, such as PEA, and
oxidized PUFA derivatives, such as 14,15-EET. Anandamide can also activate TRPV-1, but at concentrations that are unlikely to be
reached under most physiological conditions.
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in a modality-specific fashion and with
nonoverlapping patterns of pharmaco-
logical selectivity (Spradley et al., 2010).
Local MGL inhibition with the com-
pound JZL-184 suppresses capsaicin-
evoked nocifensive behavior and heat
hypersensitivity through both CB1- and
CB2-selective mechanisms, without al-
tering capsaicin-evoked mechanical al-
lodynia. By contrast, local injection of
the FAAH inhibitor URB597 selectively
blocks capsaicin-evoked mechanical allo-
dynia, through CB1 activation, without
changing nocifensive behavior or heat hy-
persensitivity (Spradley et al., 2010). In a
model of inflammatory nociception, MGL
inhibitors act peripherally to heighten the
effects of endogenously produced 2-AG via
both CB1 and CB2 receptors (Guindon et
al., 2011). By contrast, in the same model,
the antinociceptive effects of FAAH inhib-
itors are exclusively mediated by CB1,
whereas their anti-inflammatory actions
require CB2 and PPAR-� (presumably via
PEA/OEA augmentation, see Endogenous
PPAR-� agonists) (Guindon and Hohm-
ann, 2009; Clapper et al., 2010). The de-
velopment of a brain-impermeant FAAH
inhibitor, URB937, allowed researchers to
demonstrate unambiguously that anand-
amide controls pain initiation through a
peripheral CB1-dependent mechanism
(Clapper et al., 2010). URB937, which is
actively extruded from the CNS by the ac-
tion of an ATP-binding cassette trans-
porter (Moreno-Sanz et al., 2011),
suppresses formalin-evoked pain behav-
iors and neuronal activation in the spinal
cord and produces CB1-mediated antino-
ciception in models of nerve injury and
inflammation (Clapper et al., 2010; Sasso et al., 2012). Collec-
tively, these observations indicate that anandamide and 2-AG
play nonredundant roles in the control of peripheral nociception.

In a model of peripheral neuropathy caused by the chemo-
therapeutic agent, cisplatin, the globally active FAAH inhibitor,
URB597, prevents the development of allodynia, normalizes
cisplatin-induced decrease in conduction velocity of A�/A�-
fibers and reduces the increase in immunoreactivity for TRPV-1
and the injury marker ATF3 in DRG neurons (Khasabova et al.,
2012). Its brain-impermeant counterpart, URB937, and the
MGL inhibitor JZL-184 are also effective in suppressing mechan-
ical and cold allodynia but act through distinct mechanisms: CB1,
CB2, and TRPV-1 antagonists block the antiallodynic effects of
URB937 (and URB597), whereas those of JZL-184 are prevented
by CB1 and CB2 antagonists only (Guindon et al., 2013). The
finding that TRPV-1 antagonists block the antinociceptive actions
of URB937 underscores the complexity of the molecular response to
FAAH inhibition, which cannot be simplistically equated to en-
hanced anandamide activity at cannabinoid receptors.

Cisplatin stimulates the mobilization of anandamide and
2-AG in lumbar spinal cord tissue but lowers 2-AG content in
DRG (Guindon et al., 2013). In lumbar spinal cord, cisplatin
heightens FAAH transcription, suggesting that compensatory

changes in FAAH activity may result from the ability of this cy-
totoxic drug to elevate anandamide levels (Guindon et al., 2013).
Moreover, traumatic nerve injury increases anandamide and
2-AG content, as well as CB1 expression, in DRG (Mitrirattanakul
et al., 2006). It appears, therefore, that antinociceptive endocan-
nabinoid signaling is upregulated in both CNS and peripheral
nervous system during painful states.

The data summarized above suggest that activation of CB1,
CB2, and possibly other receptors downstream of inhibition of
endocannabinoid degradation alleviates pain via a peripheral
mechanism. Are both CB1 and CB2 required for this response or
is CB2 activation alone sufficient to control pain? To address this
question, the antinociceptive efficacy of the CB2-preferring ago-
nist AM1710 was evaluated in a model of chemotherapy-induced
pain. Chronic dosing with AM1710 caused a marked suppression
of pain responses (Deng et al., 2014). Importantly, these effects
were absent in mutant mice lacking CB2 receptors and occurred
in the absence of tolerance, CB1-dependent withdrawal or cardi-
nal signs of CB1 activation (Deng et al., 2014). Additionally, treat-
ment with AM1710 decreased transcription of mRNAs encoding
for proinflammatory cytokines (e.g., tumor necrosis factor-�)
and chemokines (e.g., monocyte chemoattractant protein-1) in
lumbar spinal cord (Deng et al., 2014). Thus, similarly to periph-

Figure 2. Targeting analgesic lipid-derived mediators for pain control. Protecting analgesic lipid messengers from enzyme-
mediated degradation enhances the intrinsic actions of these agents in animal models and offers multiple opportunities to develop
medications that control pain without exerting unwanted centrally mediated side effects. A, Anandamide is hydrolyzed by FAAH,
which is inhibited by globally active compounds, such as URB597 and PF’7845, and by peripherally restricted compounds, such as
URB937. B, 2-AG is hydrolyzed by MGL and, to a minor extent, by ABHD-6. MGL is inhibited by URB602 and JZL-184, whereas
ABHD-6 is inhibited by WWL-70. C, PEA and OEA are hydrolyzed by NAAA. ARN077 inhibits NAAA with high potency and selectivity
but is metabolically unstable and cannot be used systemically. D, Epoxides of polyunsaturated fatty acids, such as 14,15-EET, are
hydrolyzed by sEH, which is inhibited by compounds such as 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU).
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eral blockade of endocannabinoid degradation, CB2 receptors
activation exhibits a favorable therapeutic ratio marked by sus-
tained efficacy in the absence of tolerance, physical withdrawal,
CB1-mediated side effects, and drug abuse liability.

Endogenous PPAR-� agonists
PPAR-� is a lipid-activated nuclear receptor that serves key func-
tions in the control of energy metabolism (Gervois and Man-
souri, 2012). In addition to liver and muscle, where PPAR-� is
highly expressed, the receptor is also found in other cell types,
including DRG neurons (LoVerme et al., 2006) and macrophages
(Gervois and Mansouri, 2012). Consistent with this localization,
synthetic PPAR-� agonists (e.g., GW7647 and Wy-14643) sup-
press pain-related behaviors produced in rats and mice by injec-
tion of carrageenan, formalin, or magnesium sulfate (Taylor et
al., 2002; LoVerme et al., 2006), prevent formalin-induced firing
of rat spinal cord neurons (LoVerme et al., 2006), and show
remarkable anti-inflammatory properties in animal models
(Taylor et al., 2002; Kostadinova et al., 2005; LoVerme et al.,
2005). Moreover, PPAR-� agonists reduce thermal and mechan-
ical hyperalgesia evoked in mice by nerve injury or inflammation
(LoVerme et al., 2006). PPAR-�-null animals are insensitive
to the antinociceptive effects of PPAR-� agonists but are hyper-
sensitive to various proalgesic and proinflammatory stimuli
(Devchand et al., 1996; Ruiz-Medina et al., 2012), which is sug-
gestive of a role for PPAR-� in the tonic control of nociception
and inflammation.

A variety of naturally occurring fatty-acid derivatives are ago-
nists for PPAR-�. These include low-potency ligands, such as free
fatty acids, and high-potency ligands, such as OEA and PEA (Fig.
1). The median effective concentration (EC50) values for PPAR-�
activation are 0.12 �M for OEA and 3 �M for PEA (Fu et al., 2003;
LoVerme et al., 2005). Evidence indicates that OEA and PEA
exert a tonic inhibitory control over the induction of nociceptive
responses. First, DRG neurons produce substantial amounts of
these lipid amides, even in the absence of external stimuli. Be-
cause of this constitutive production, OEA and PEA reach single-
digit micromolar concentrations in nonstimulated cells, which
should be sufficient to engage a substantial fraction of local
PPAR-� (Piomelli and Sasso, 2014). Second, proinflammatory
stimuli suppress the formation of OEA and PEA. For example,
macrophages exposed to bacterial endotoxin respond with a per-
sistent decrease in OEA and PEA content (Solorzano et al., 2009),
which results from a downregulation in the transcription of
N-acylphosphatidylethanolamine-selective phospholipase D
(Zhu et al., 2011), the enzyme responsible for the biosynthesis of
these lipid mediators (Rahman et al., 2014). Consistent with a
role for OEA and PEA in inflammatory pathology, synovial fluid
from subjects with rheumatoid arthritis and osteoarthritis con-
tains lower concentrations of these lipid amides than does syno-
vial fluid from healthy controls (Richardson et al., 2008).

The idea that lipid-amide agonists of PPAR-� are homeostatic
regulators of nociception is supported by experiments using
pharmacological agents that block N-acylethanolamine acid ami-
dase (NAAA) (Solorzano et al., 2009; Khasabova et al., 2013;
Sasso et al., 2013), a cysteine amidase that catalyzes the hydrolysis
of PEA and OEA in macrophages and, possibly, other cells (Ueda
et al., 2013) (Fig. 2). For example, topical applications of the
potent and selective, but metabolically unstable, NAAA inhibitor
ARN077 restore baseline OEA and PEA levels in inflamed skin
tissue and attenuate nociceptive responses elicited in mice and
rats by carrageenan injection, sciatic nerve ligation, or ultraviolet
B-radiation (Sasso et al., 2013). These effects are absent in PPAR-

�-null mice and are prevented, in rats, by the PPAR-� antagonist
GW6471 (Sasso et al., 2013). A possible interpretation of the
findings outlined above, and those discussed in the next section,
is that PEA and OEA contribute to the maintenance of host-
defense homeostasis by preventing the launch of inappropriate
nociceptive and inflammatory responses. A full test of this hy-
pothesis will require, however, the development of new experi-
mental tools, including systemically active NAAA inhibitors.

The role of lipid amides in tumor-evoked hyperalgesia
The tumor microenvironment contains a variety of lipid sub-
stances (among other factors) that heighten the sensitivity of pri-
mary sensory neurons (Mantyh et al., 2002), thereby promoting
hyperalgesia and spontaneous pain. Lipid mediators that activate
PPAR-� (e.g., OEA and PEA) or CB1 receptors (e.g., anand-
amide) reduce the release of these substances by suppressing the
immune system (O’Sullivan and Kendall, 2010) as well as the
proliferation of tumor cells (Guindon and Hohmann, 2011;
Pisanti et al., 2013). In addition to these indirect mechanisms,
lipid amides also stimulate PPAR-� or CB1 in somatosensory
neurons to reduce nociception directly. Estimates that �75% of
cancer patients experience moderate to severe pain that is poorly
managed by opioid treatment (Mercadante, 1999) generates in-
terest in the analgesic properties of these lipid mediators.

The roles of endogenous PPAR-� and cannabinoid ligands in
tumor-evoked hyperalgesia have been studied both in vitro and in
vivo. In an early animal model, osteolytic sarcoma cells were
injected into the intramedullary space of the femur in a syngeneic
mouse (Schwei et al., 1999). However, this protocol did not read-
ily lend itself to electrophysiological recordings and was modified
by injecting tumor cells into the calcaneous bone (Cain et al.,
2001; Wacnik et al., 2001). In this latter model, osteolytic damage
occurs within 6 d and is accompanied by mechanical hyperalge-
sia, spontaneous nocifensive behavior, and spontaneous C-fiber
activity (Cain et al., 2001; Wacnik et al., 2001; Khasabova et al.,
2013). An intimate relationship between sensory neurons and
tumor cells develops: innervation of tumors with fibers immuno-
reactive for calcitonin gene-related peptide (a proalgesic and pro-
inflammatory peptide) parallels the development of mechanical
hyperalgesia (Wacnik et al., 2005).

An in vitro coculture model was developed to study the effects
of chemical mediators released from cancer cells on DRG neurons:
in this model, sarcoma cells plated on a cover glass condition the
medium bathing a second cover glass on which mouse DRG neurons
are plated (Khasabova et al., 2007). Parallel changes in lipid-amide
signaling in small-diameter DRG neurons from tumor-bearing mice
or naive mice maintained in medium conditioned by sarcoma cells
(Khasabova et al., 2008, 2012, 2013) validate the reliability of this in
vitro system to study tumor-evoked changes in neurons that are
most likely to give rise to nociceptors (Hiura and Sakamoto, 1987;
Pearce and Duchen, 1994). Moreover, the data generated in this
model support the conclusion that factors released by cancer cells
produce long-term alterations in sensory neurons, which contribute
to tumor-evoked pain.

Reductions in the levels of PEA and anandamide in DRG that
innervate the tumor as well as in DRG from naive mice cultured
with sarcoma cells have been observed. One factor that contrib-
utes to lowering lipid amide levels is increased enzyme-mediated
hydrolysis. The activities of both FAAH (Khasabova et al., 2008)
and NAAA (Khasabova et al., 2012) are higher in DRG from
tumor-bearing mice and DRG cocultured with sarcoma cells
than in control DRG. The increase in enzyme activity is accom-
panied by accrued FAAH transcription (Khasabova et al., 2008).
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Diminished levels of bioactive lipid amides are also likely to con-
tribute to tumor-related nociception because local injections of
URB597 or ARN077, two selective inhibitors of FAAH and
NAAA activities, respectively (Fig. 2) (Kathuria et al., 2003; Sasso
et al., 2013), each reduce hyperalgesia in tumor-bearing paws
(Khasabova et al., 2008, 2012). A CB1 antagonist prevented the
effects of URB597. In addition, local administration of PPAR-�
or CB1 antagonists in naive mice evokes hyperalgesia (Khasabova
et al., 2008, 2012), underscoring the importance of basal activa-
tion of these receptors by endogenous ligands in setting the
threshold for nociception in naive subjects.

When DRG cells are cocultured with sarcoma cells, the phys-
iological changes in small-diameter DRG neurons parallel those
seen in vivo. Small DRG neurons from tumor-bearing or naive
mice maintained in coculture with tumor cells exhibit larger
Ca 2� transients following depolarization with potassium chlo-
ride, compared with control neurons (Khasabova et al., 2007,
2012). In the coculture condition, CB1 agonists reduce the am-
plitude of the depolarization-evoked Ca 2� transient, an effect
mimicked by FAAH inhibition. CB1 blockade prevents the ac-
tions of both CB1 agonists and FAAH inhibitors.

The effects of the NAAA inhibitor ARN077 on DRG neurons
parallel those of URB597 but are mechanistically different in that
they require PPAR-� rather than CB1 receptors (Khasabova et al.,
2012). This is confirmed by the ability of the endogenous
PPAR-� agonist, PEA, to mimic the actions of ARN077 (Khas-
abova et al., 2012). Interestingly, PPAR-� activation has no effect
on neurons maintained in vitro in the absence of sarcoma cells,
but PPAR-� blockage increases the amplitude of depolarization-
evoked Ca 2� transient (Khasabova et al., 2012). This result sup-
ports the possibility, mentioned above, that PPAR-� may be
saturated by endogenous ligands under basal conditions (Pio-
melli and Sasso, 2014).

Epoxy fatty acids in inflammatory and neuropathic pain
Epoxides of arachidonic acid and other PUFAs (collectively
called epoxy fatty acids [EpFAs]) (Fig. 1) are powerful modula-
tors of nociception (Wagner et al., 2011; Inceoglu et al., 2012).
They are generated by the cytochrome P450 pathway (A–C, E)
(Morisseau and Hammock, 2013), which is divided into two
branches: one leads to products of � and �-1 hydroxylation,
which are generally proalgesic and proinflammatory, and another
generates the EpFAs. The latter class includes epoxyeicosatrienoic
acids (EETs) produced from the �-6 PUFA, arachidonic acid, which
are predominantly analgesic and anti-inflammatory and are rap-
idly converted to corresponding dihydroxyeicosatrienoic acids
(Wagner et al., 2011). The EpFAs also include derivatives of �-3
PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid
(Morisseau et al., 2010). Evidence suggests that �-3 EpFAs are
important contributors to the positive biological outcomes of
diets high in fish-derived �-3 PUFAs (Wagner et al., 2011; Moris-
seau and Hammock, 2013; Zhang et al., 2014). Even though ep-
oxides are strained and sometimes reactive, three-membered
cyclic ethers, most EpFAs are quite stable chemically. They are
rapidly degraded, however, by a �/�-hydrolase fold enzyme
termed soluble epoxide hydrolase (sEH or EH2) (Morisseau and
Hammock, 2013) (Fig. 2). Because of the low Km and high kcat of
sEH for most EpFAs (Morisseau et al., 2010), these mediators are
controlled as much by their degradation as by their biosynthesis.
The fact that EpFA activity is regulated by biochemical mecha-
nisms similar to those discussed above for other analgesic lipid
mediators emphasizes the general roles played by such mecha-
nisms in the control of analgesic lipid signaling.

Research on the cytochrome P450 pathway of PUFA metabo-
lism lagged behind other branches for multiple reasons. A major
one is that it was difficult to show biological activities of EpFAs
because of their rapid cleavage by sEH. Once this problem was
overcome by the invention of potent sEH inhibitors (Shen and
Hammock, 2012), other factors, including low titers of bioactive
metabolites, difficulties in analysis, and lack of high-quality stan-
dards, continued to slow down progress. Nevertheless, experi-
ments using sEH inhibitors have clearly demonstrated that
EpFAs are involved in a variety of biological processes (Panigrahy
et al., 2013; Zhang et al., 2013; Ulu et al., 2014). Some of the most
dramatic effects of these agents (and thus, by inference, the Ep-
FAs they protect) have been observed in animal models of inflam-
mation. Rodent sepsis models were used to show that sEH
blockade increases EET levels and concomitantly attenuates the
burst in proalgesic prostaglandins triggered by bacterial endo-
toxin (Schmelzer et al., 2005).

Based on observations made in the sepsis model, sEH inhibi-
tors were used to modulate levels of EET and other EpFAs in a
variety of experimental contexts. The compounds prevent and
reverse cardiac and pulmonary dysfunction (i.e., atrial fibrilla-
tion, fibrosis and cardiac hypertrophy, reduced onset of athero-
sclerosis, pulmonary fibrosis, chronic obstructive pulmonary
disease, pulmonary hypertension) as well as a variety of patho-
logical inflammatory states (e.g., gastrointestinal inflammation,
vascular inflammation, stroke, ischemia-reperfusion injury, re-
nal inflammation, and fibrosis), mitochondrial dysfunction, and
chemical-induced nephrotoxicity (Morisseau and Hammock,
2013). Probably related to reduced sensitivity to reactive oxygen
species and endoplasmic stress responses, sEH inhibitors increase
pancreatic islet size, improve glucose homeostasis, and lower in-
sulin resistance (Xu et al., 2006; Shen and Hammock, 2012;
Morisseau and Hammock, 2013).

Consistent with their anti-inflammatory effects, sEH inhibi-
tors attenuate nociceptive responses produced by a variety of
inflammatory agents in rodents (Schmelzer et al., 2006). Interest-
ingly, the inhibitors reduce pain responses produced by admin-
istration of PGE2, suggesting that they may work downstream of
cyclooxygenase and its proalgesic metabolites (Inceoglu et al.,
2011). Equally intriguing is the ability of sEH blockage to reduce
pain behaviors in models of diabetes and nerve damage (Inceoglu
et al., 2012). Whether monitoring mechanical allodynia or using
a conditioned placement preference test, sEH inhibitors outper-
form gabapentin yet are devoid of the cognitive and motoric side
effects commonly associated with use of this centrally active an-
algesic (Inceoglu et al., 2012). Interestingly, cyclooxygenase in-
hibitors, which have no effect on neuropathic pain responses
when administered alone, synergistically reduce such responses
when they are combined with sEH blockers (Guedes et al., 2013).
The mechanism of action of sEH inhibitors in analgesia is still
unknown, although neurosteroids appear to be involved (Inceo-
glu et al., 2013).

In conclusion, putting the available data together, we can con-
jecture that three distinct classes of bioactive lipid mediators (en-
docannabinoids, endogenous PPAR-� activators, and oxidative
products of PUFA metabolism) regulate the transmission of no-
ciceptive information from peripheral sites of injury and inflam-
mation to the CNS. The data also raise several interesting
questions. The first pertains to the existence of mechanisms, both
local and systemic, which might regulate the correct deployment
of analgesic lipid signals after tissue damage. Particularly impor-
tant in this context may be the role of the autonomic nervous
system, which is known to control endocannabinoid and OEA
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signaling in the gut (DiPatrizio et al., 2011) and the adipose organ
(LoVerme et al., 2006). Another relevant question concerns the
stages of injury or inflammation at which analgesic lipids might
intervene. As mentioned above, there is evidence that the endog-
enous PPAR-� agonists, PEA and OEA, help set the threshold for
nociception in intact tissues and that proinflammatory stimuli
may act, at least in part, by disabling this homeostatic control
system. By contrast, endocannabinoids, such as anandamide,
may be released on demand during injury to offset the effects of
local proalgesic signals, whereas products of oxidative PUFA me-
tabolism, including the EpFAs and others, such as lipoxins and
resolvins (Serhan et al., 2008), may help restore normal nocicep-
tive responses during resolution and tissue healing (Piomelli and
Sasso, 2014). Disruptions in the temporal unfolding of this pro-
gram may contribute to the development of pathological pain
conditions and might be targeted to discover better medicines for
pain.
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