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Kufor–Rakeb syndrome (KRS) is caused by loss-of-function mutations in ATP13A2 (PARK9) and characterized by juvenile-onset par-
kinsonism, pyramidal signs, and cognitive decline. Previous studies suggested that PARK9 deficiency causes lysosomal dysfunction and
�-synuclein (�-syn) accumulation, whereas PARK9 overexpression suppresses toxicity of �-syn. However, the precise mechanism of
PARK9 effect on lysosomes and �-syn has been unknown. Here, we found that overexpressed PARK9 localized to multivesicular bodies
(MVBs) in the human H4 cell line. The results from patient fibroblasts showed that loss of PARK9 function leads to decreased number of
the intraluminal vesicles in MVBs and diminished release of exosomes into culture media. By contrast, overexpression of PARK9 results
in increased release of exosomes in H4 cells and mouse primary cortical neurons. Moreover, loss of PARK9 function resulted in decreased
secretion of �-syn into extracellular space, whereas overexpressed PARK9 promotes secretion of �-syn, at least in part via exosomes.
Finally, we found that PARK9 regulates exosome biogenesis through functional interaction with the endosomal sorting complex required
for transport machinery. Together, these data suggest the involvement of PARK9 in the biogenesis of exosomes and �-syn secretion and
raise a possibility that disruption of these pathways in patients with KRS contributes to the disease pathogenesis.
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Introduction
Loss-of-function mutations in ATP13A2/PARK9 cause Kufor–
Rakeb syndrome (KRS), a rare autosomal recessive disorder
characterized by early onset parkinsonism and other neurological
symptoms, such as dementia and pyramidal signs (Najim al-Din
et al., 1994; Ramirez et al., 2006). PARK9 belongs to P-type ATPase
super family to which no specific substrates have been assigned
(Axelsen and Palmgren, 1998). PARK9 is expressed predominantly
in CNS, especially in dopaminergic neurons of substantia nigra
(Ramirez et al., 2006). Initial studies revealed that overexpression of
PARK9 reduced the toxicity of �-synuclein (�-syn) in yeast cells
and rat primary dopaminergic neurons (Gitler et al., 2009). In
addition, PARK9 expression levels were increased in postmortem
brains from sporadic PD patients (Ramirez et al., 2006; Park et al.,
2011; Ramonet et al., 2012). Studies in cultured neurons also
demonstrated that transiently expressed wild-type PARK9 local-
ized to acidic vesicles (Ramirez et al., 2006; Tan et al., 2011; Ra-
monet et al., 2012). We and others have shown that depletion of
PARK9 causes lysosomal dysfunction, accumulation of �-syn

(Dehay et al., 2012; Usenovic et al., 2012a), and increased sensi-
tivity to zinc (Park et al., 2014; Tsunemi and Krainc, 2014).
PARK9-deficiency also leads to mitochondrial dysfunction with
decreased ATP synthesis and increased oxidative stress, suggest-
ing that impaired lysosome-autophagy pathway may affect clear-
ance of mitochondria (Grünewald et al., 2012; Gusdon et al.,
2012). Furthermore, studies of PARK9-interacting partners im-
plicated its role in vesicular trafficking (Usenovic et al., 2012b).

Together, these studies uncovered the molecular mechanisms
of PARK9 function in the context of disease pathogenesis,
whereas its physiological function remains largely unknown.

Here, we found that PARK9 localizes to multivesicular bodies
(MVBs) and plays a role in secretion of exosomes into extracel-
lular space. Expression levels of PARK9 correlate with the num-
ber of exosomes that release �-syn into the medium, suggesting
that PARK9 can also alter levels of �-syn expression via exosome-
mediated secretion.

Materials and Methods
Plasmids. Lentiviral plasmids expressing short hairpin plasmid RNA
(shRNA) targeting human ATP13A2/PARK9, mouse Atp13A2/PARK9,
mouse Tsg101, scrambled control shRNA, and a lentiviral plasmid ex-
pressing human ATP13A2 (PARK9) were used for viral packaging
(Tsunemi and Krainc, 2014).

Cell culture. Human neuroglioma cell line (H4)-expressing wild-type
�-syn under the control of a tetracycline inducible promoter was used as
described previously (Mazzulli et al., 2011).

Primary dermal fibroblasts taken from male KRS patients carrying a
homozygous mutation (1550C�T; MUT1) and compound heterozy-
gous mutations (3176 T�G, 3253 delC; MUT2) in PARK9 were used
(Tsunemi and Krainc, 2014). Mouse embryonic cortical neurons or
neuro2A cells were cultured and gene silencing was conducted as de-
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scribed previously (Tsunemi et al., 2012; Tsun-
emi and Krainc, 2014). Sphingomyelinase
(S8633; Sigma-Aldrich) was used for enhanc-
ing sphingomyelinase activity.

Confocal imaging. The cells were fixed and
stained as described previously (Tsunemi et al.,
2012) with the antibodies; anti-LAMP1 (Santa
Cruz Biotechnology), anti-CD63 (Develop-
mental Studies Hybridoma Bank), or anti-
lysobisphosphatidic acid (LBPA; Echelon). H4
cells were incubated with Cascade Blue-
conjugated dextran (Invitrogen) for 48 h be-
fore fixation. Confocal imaging was conducted
on the Leica TCS SPE confocal system with
Leica DMI 4000B CSQ inverted microscope
equipped with an ACS APO 63� (1.3 numeri-
cal aperture) oil-immersion objective. For
quantification analysis, 10,000 cells/well were
plated in triplication and fluorescence intensity
was measured using SpectraMax i3 multimode
microplate reader (Molecular Devices). DAPI
was used to normalize intensities for CD63 or
LBPA.

Electron microscopy. The cells were fixed with
2.5% glutaraldehyde in PBS, pH7.4, for 1 h.
After postfixed with 1% osmium tetroxide in
PBS, the cells were dehydrated through a series
of graded ethanols from 50 to 70%, and stained
with 1% uranyl acetate in 70% ethanol. The
cells were further dehydrated to 100% ethanol,
and embedded in LX112 resin (Ladd), which
was polymerized. The resin blocks were thin
sectioned with Ultracut UCT microtome
(Leica) at 70 nm. Transmission electron mi-
croscopic analysis was conducted with an
FEI Tecnai Spirit G2 transmission electron
microscope.

Cryo-immunogold electron microscopy. After
fixed with 4.0% paraformaldehyde plus 0.2%
glutaraldehyde in 0.1 M sodium cacodylate buf-
fer, pH 7.4 (Electron Microscopy Sciences) for
1 h, the cells were pelleted. The pellet was
mixed with warm 2.0% agarose and cut into
small pieces, which were then cryoprotected in
2.3 M sucrose in PBS. Ultrathin sections were
cut on a Leica EM FCS at �80°C. Double-
immunogold staining was performed by incu-
bating with mouse-anti-CD63 for 1 h at RT,
followed by 1 h on drops of goat-anti-mouse 10
nm IgG gold (Ted Pella). The grids were incu-
bated on drops of the second primary, rabbit-
anti-V5, rinsed, and then incubated on drops
of goat-anti-rabbit 15 nm IgG gold.

Exosome isolation. Exosomes were purified
from 20 ml of cell-conditioned media. A basic
differential centrifugation method (200 � g for 5 min, 1200 � g for 10
min, and 16,500 � g for 30 min), followed by ultracentrifugation at
110,000 � g for 60 min (Optima-MAX ultracentrifuge, with TLA110
rotor and Optiseal tubes, Beckman Coulter) was conducted. After
washed in PBS, the exosomes were collected by a centrifugation at
110,000 � g for 60 min.

Nanoparticle tracking analysis. Analyses of vesicles present in the me-
dium were conducted by nanoparticle tracking system, using the Nano-
Sight LM10 system (NanoSight), configured with a 405 nm laser and a
high-sensitivity digital camera system (OrcaFlash2.8, Hamamatsu
C11440, NanoSight). Videos were recorded and analyzed using the
NTA-software (v2.3). Samples were administered and recorded under
controlled flow, using the NanoSight syringe pump and script control
system.

Western blotting. Western blotting was conducted as previously de-
scribed (Tsunemi et al., 2012; Schultheis et al., 2013). We used anti-�-syn
antibody (C-20; Santa Cruz Biotechnology), anti-neural specific enolase
(NSE) antibody (no. 16625; Polysciences), anti-Alix antibody (1A12;
Santa Cruz Biotechnology), anti-Tsg101 antibody (4A10; GeneTex), and
anti-Flotillin1 antibody (610821; BD Transduction Laboratories).

�Synuclein ELISA. The 96-well half-area high binding ELISA plates
(Costar) were coated with anti-syn42 mouse monoclonal antibody (BD
Transduction Laboratories) at 4°C overnight shaking, and then blocked
with 2% BSA/PBS (blocking buffer). The media were concentrated with
centrifugal filters (Amicon Ultra 3K device), and the exosomes perme-
abilized by adding SDS to reach the final concentration of 0.02%. The
samples that were ran in triplicates were incubated overnight at 4°C with
primary anti �-syn rabbit polyclonal antibody (S9500 – 01E; USBiologi-

Figure 1. PARK9 localizes to MVBs. A, Left, Representative images of LAMP1 immunostaining of PARK9 –V5-expressing neu-
roglioma H4 cells. A, Right, Representative images of CD63 immunostaining of PARK9 –V5-expressing H4 cells. Cascade Blue-
conjugated dextran was used for the late endosome-lysosome marker. Scale bar, 10 �m. B, Representative immuno-EM image of
multivesicular body from PARK9 –V5-expressing H4 cells. Double-staining was conducted using anti-CD63 antibody (10 nm gold
particles, indicated by arrowheads) and anti-V5 antibody (15 nm gold particles, indicated by arrows). Scale bar, 50 nm. At least 30
cells from six sections were examined in three independent experiments. C, Representative images of CD63 immunostaining of two
wild-type (WT) and two PARK9-mutant (MUT) fibroblast lines. Scale bar, 20 �m. D, Quantification of CD63 immunostaining
intensity is shown after normalization to DAPI immunointensity (n � 3, *p � 0.03). E, Quantification of LBPA immunostaining
intensity is shown after normalization to DAPI (n � 3, *p � 0.03). The values represent mean � SEM from three independent
experiments. F, Representative EM images of MVBs from WT (left) and MUT (right) fibroblasts from the examination of 20
cells/section in four sections. Scale bar, 100 nm. G, Quantification analysis of the number of ILVs in MBV from each fibroblasts (n �
30 –50/cells, *p � 0.05). Data analysis was performed by one-way ANOVA and post hoc Tukey test.

15282 • J. Neurosci., November 12, 2014 • 34(46):15281–15287 Tsunemi et al. • PARK9 Secretes Exosomes and �-Syn



cal), followed by incubation with the secondary anti-rabbit antibody
(Jackson ImmunoResearch). The reaction was initiated by adding TMB
One Component HRP Microwell Substrate (SurModics) and stopped by
450 nm Liquid Stop Solution (SurModics). Plates were read at 450 nm
with SpectraMax i3 multimode microplate reader (Molecular Devices).
All the data were in linear range from 10 to 500 pg/ml.

Statistical analysis. All data were prepared for analysis with standard
spreadsheet software (Microsoft Excel). Statistical analysis was per-
formed by one-way ANOVA post hoc Tukey test or Student t test. All
error bars represent SEM in figures.

Results
Loss-of-function of PARK9 leads to decreased density of
intraluminal vesicles in MVBs
Although PARK9 has been shown to localize to acidic vesicles, the
nature of these vesicles has not been elucidated in detail
(Ramirez et al., 2006). To further examine PARK9 localiza-
tion, we expressed PARK9-V5 expression plasmid in human
neuroglioma H4 cells (Mazzulli et al., 2011) and conducted

double-immunostaining using antibodies
against V5 and vesicular markers. Cascade
Blue-conjugated dextran was used for late
endosome and lysosome marker (Short et
al., 2010). As previously reported, PARK9
colocalized with LAMP1-positive vesicles,
suggesting localization to late endosomes
and lysosomes. (Mane et al., 1989; Fig. 1A,
left). Using antibody against CD63, a
more specific marker for multivesicular
regions of the late endosomes (Kobayashi
et al., 2000), we found that PARK9 also
localized to multivesicular endosomes
(MVEs; Fig. 1A, right). To confirm these
findings, immuno-EM with antibodies
against V5-PARK9 and CD63 was per-
formed. A few PARK9-V5-labeled gold
particles were associated with CD63-
positive vesicles (Fig. 1B), suggesting that
PARK9 localizes, at least in part, to MVBs,
possibly to the outer membrane of the
vesicles. Using the CD63 antibody, we
next examined the morphology of MVEs
in mutant PARK9 cells by examining pa-
tient (MUT1 and MUT2) and control fi-
broblasts (WT1 and WT2; Fig. 1C). These
experiments revealed that PARK9 mutant
cells exhibit significantly increased num-
ber and/or size of MVEs (Fig. 1C,D). This
was confirmed with another MVE
marker, LBPA (Kobayashi et al., 1998; Fig.
1E). To further analyze these MVEs, we
performed EM analysis that revealed
densely packed intraluminal vesicles (ILVs)
in WT cells (Fig. 1F, left), whereas ILVs were
very sparse in PARK9 mutant cells (Fig. 1F,
right), suggesting that PARK9 may control
the number of ILVs in MVBs.

PARK9 regulates exosome biogenesis
Previous studies showed that MVBs fuse
with plasma membrane and release ILVs
that are referred to as exosomes in extra-
cellular medium (Simons and Raposo,
2009). Because PARK9 mutant cells con-
tain fewer ILVs, we asked whether the

number of exosomes is affected by PARK9 mutation. After iso-
lating exosomes by conventional centrifugation, we performed
Western blotting using established markers, Alix, flotillin1,
Tsg101, or CD63 to confirm the identity of collected exosomes.
These results suggested that exosomes from PARK9 mutant fi-
broblasts were fewer compared with wild-type fibroblasts (Fig.
2A). Then, we further analyzed exosomes by nanoparticle track-
ing analysis (NTA; Grünewald et al., 2012) to simultaneously
quantify the size and the number of exosomes. As shown in Fig-
ure 2B, PARK9 mutant fibroblasts released small, but signifi-
cantly lower number of exosomes compared with wild-type
fibroblasts. These results were consistent with the finding of
fewer ILVs in MVBs.

Next, we hypothesized that PARK9 may be involved in the
secretion of exosomes. In support of this hypothesis, we found
that overexpression of PARK9 led to increased number of exo-
somes compared with vector transfected control (Fig. 2C). This

Figure 2. Exosome production is regulated by PARK9. A, Immunoblot analysis of exosome marker proteins (Alix, flotillin1,
Tsg101, and CD63) in exosomes from wild-type and PARK9 mutant fibroblasts. Similar results were obtained in two other exper-
iments. B, Quantification analysis of exosome release in the media from wild-type and PARK9 mutant fibroblasts (*p � 0.03). Data
were analyzed by one-way ANOVA and post hoc Tukey test. C, Quantification analysis of exosome release in the media from mock
transected and PARK9 overexpressed H4 cells (n � 3, *p � 0.01). D, Immunoblot analysis of exosome marker proteins (Alix,
flotillin1, Tsg101, and CD63) in exosomes from Mock-transfected and PARK9-overexpressed H4 cells. Results were confirmed by
two additional experiments. E, Quantification analysis of exosome release in the media from scrambled- (Scrb) and PARK9 shRNA-
treated primary cortical neurons (n � 3, *p � 0.01). F, Quantification analysis of exosome release in the media from mock-
transected and PARK9-overexpressed primary cortical neurons (n � 3, *p � 0.01). The values represent mean � SEM from three
independent experiments. Data were analyzed by Student t test (D, E).
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result was confirmed by the Western blot analysis using exosome
markers (Fig. 2D). To confirm these findings in primary neurons,
we silenced PARK9 expression with shRNA and examined exo-
some release compared with neurons treated with scrambled
shRNA. These experiments revealed a significantly decreased
exosome release from PARK9-silenced neurons (Fig. 2E). Con-
versely, lentiviral overexpression of PARK9 in primary neurons
exhibited increased exosome release compared with vector-
transfected neurons (Fig. 2F). Together, these findings further
support the notion that PARK9 plays a role in the production of
exosomes.

PARK9 promotes secretion of intracellular �-syn into the
media via exosomes
Recent evidence suggests that �-syn is at least in part secreted
from neurons via exosomes (Emmanouilidou et al., 2010;
Alvarez-Erviti et al., 2011; Danzer et al., 2012). Because our data
suggest that PARK9 regulates exosome release, and the fact that
�-syn accumulates in cell and animal models of KRS (Dehay et
al., 2012; Usenovic et al., 2012b; Schultheis et al., 2013), we ana-
lyzed �-syn secretion with highly sensitive ELISA (Fig. 3A). To
examine whether PARK9 alters �-syn release via exosomes, first,
we confirmed our previous data (Usenovic et al., 2012b; Tsunemi

Figure 3. PARK9 expression affects intracellular and extracellular levels of �-syn. A, The �-syn ELISA standard curve plotted OD450 (on the y-axis) and �-syn protein concentration (on the
x-axis). B, The human PARK9-expression levels in PARK9-silenced and PARK9-overexpressed H4 cells (n � 3, *p � 0.01). C, Top, Immunoblot analysis of �-syn expression in Scrb and PARK9
shRNA-treated H4 cells. Bottom, Quantification of �-syn expression level. After normalization to NSE, the expression of �-syn in PARK9-silenced H4 cells was divided by expression in Scrb
shRNA-transfected cells (n � 4, *p � 0.03). D, Top, Immunoblot analysis of �-syn expression level in mock and PARK9 overexpressed H4 cells (n � 4, *p � 0.03). Bottom, Quantification analysis
of �-syn expression level; (n � 3, *p � 0.03). Data were analyzed by Student t test (C, D). E, Representative images of mock transfected (right) and PARK9 overexpressed H4 cells. PARK9 is shown
in green and �-syn is shown in red. Scale bar, 50 nm. F, G, The expression of �-syn in the media (F ) and exosomes (G) from H4 cells. The total expression levels of �-syn in the media or exosomes
were normalized by total protein amount (n � 3, *p � 0.01). H–K, The expression of �-syn in Triton-soluble fractions (H ), SDS-soluble fractions (I ), media (J ), or exosomes (K ) taken from WT and
MUT fibroblasts; (n�3, *p�0.01). L–N, The expression of �-syn in Triton-soluble fractions (L), SDS-soluble fractions (M ), and media (N ) taken from PCNs where PARK9 expression was modulated
(n � 3, *p � 0.01). Levels were normalized to total protein. The values represent mean � SEM from three independent experiments. Data analysis was performed by one-way ANOVA and post hoc
Tukey test (B, F–N ).
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and Krainc, 2014), that silencing of PARK9 with shRNA signifi-
cantly increased �-syn protein levels (Fig. 3C), whereas overex-
pression of PARK9 reduced the level of �-syn (Fig. 3D). These
results were also confirmed by immunocytochemical analysis
demonstrating decreased �-syn expression (Fig. 3E).

Next, we asked whether PARK9 expression levels affect secre-
tion of �-syn. Indeed, we found that PARK9 silencing decreased
�-syn levels in cell culture media, whereas overexpression of
PARK9 increased �-syn secretion (Fig. 3F). These data suggest
that PARK9 has a significant role in �-syn secretion. Then, we
asked whether PARK9-mediate �-syn secretion is exosome-
dependent or not. When we measured �-syn in exosomes, we
observed similar results under these conditions (Fig. 3G), sug-
gesting that PARK9 contributes to �-syn secretion, at least in
part, via the exosomes. Based on these findings, we speculated
that secretion of �-syn might have influence on the level of intra-
cellular �-syn.

Then, we confirmed our findings using fibroblasts from KRS
patients that carry a mutation in PARK9 (Fig. 3H–K). We ana-
lyzed �-syn levels in the Triton-soluble fractions, SDS-soluble
fractions, media, or exosomes from cultured fibroblasts. Al-
though levels of �-syn in Triton-soluble fractions were not
significantly different, we found increased levels of �-syn in SDS-
soluble fractions in mutant compared with wild-type fibroblasts
(Fig. 3I). Compared with wild-type cells, �-syn was also de-
creased in either media or exosomes released from mutant cells
(Fig. 3 J,K). Finally, we analyzed �-syn secretion in primary neu-
rons by modulating expression of PARK9 (Fig. 3L–N). Overex-
pression of human PARK9 significantly lowered Triton-soluble
and SDS-soluble intracellular �-syn (Fig. 3L,M), whereas �-syn
in cell media was increased (Fig. 3N). In contrast, silencing of
mouse Atp13A2 (PARK9) increased expression of intracellular
�-syn (Fig. 3L,M) but decreased �-syn secretion (Fig. 3N). Im-
portantly, this effect was partially rescued by overexpression of

human PARK9 in silenced neurons (Fig.
3L,M). Together, these data suggest that
decreased secretion of �-syn in PARK9-
deficient cells, at least in part, occurs via
exosome-mediated �-syn release and
highlight the importance of PARK9 in
regulation of exosome release. Next, we ex-
amined possible mechanisms of PARK9-
mediated regulation of exosome
biogenesis and release. We have previ-
ously reported that PARK9-deficient cells
exhibit reduced activity of sphingomyeli-
nase, suggesting impaired ceramide syn-
thesis (Tsunemi and Krainc, 2014).
Because ceramide is known to affect exo-
some biogenesis, we first examined this
pathway (Trajkovic et al., 2008). To this
end, cells were treated with neutral sphin-
gomyelinase that elevates levels of cer-
amide and promotes production of
exosomes. Using this approach, we ob-
served a significant increase of exosomes
in wild-type cells as expected. However,
expression of neutral sphingomyelinase
also increased exosome production in
cells expressing mutant PARK9 (Fig. 4A),
suggesting that PARK9 does not interact
with the ceramide pathway in regulation
of exosomes.

Next, we tested whether PARK9 cooperates with endosomal
sorting complex required for transport (ESCRT) that plays a ma-
jor role in exosome generation (Jouvenet, 2012). As expected,
silencing of tumor susceptibility gene 101 (Tsg101), one of
ESCRT-I proteins, resulted in significant decrease in exosomes
release (Fig. 4B). Importantly, whereas PARK9 overexpression
increased production of exosomes in wild-type cells, it had no
effect in Tsg101 silenced cells, suggesting that intact ESCRT ma-
chinery was required for PARK9 effects on exosomes. These re-
sults were further confirmed by Western blot analysis showing
the changes of exosome markers Alix, flotillin1, Tsg101, and
CD63 in response to silencing Tsg101 and/or overexpression of
PARK9 (Fig. 4C). These data collectively suggest that PARK9
regulates exosome biogenesis at least in part via functional inter-
actions with the ESCRT pathway.

Discussion
In this study, we found that loss-of-function of PARK9 leads to
decreased density of intraluminal vesicles and diminished release
of exosomes into culture media, whereas its overexpression pro-
motes the release of exosomes. Moreover, PARK9 also regulates
secretion of �-syn into extracellular space, at least in part, via
exosomes, suggesting that disruption of these pathways in pa-
tients with KRS may contribute to the disease pathogenesis.

Several different types of vesicles are released from cells into
extracellular space including exosomes, shedding vesicles, and
nanoparticles (Ludwig and Giebel, 2012). Exosomes that have a
diameter of 40 –100 nm, are derived from MVBs and contain
membrane components, proteins, lipids, and microRNA (Simp-
son et al., 2008). MVBs fuse with the plasma membrane and
release ILVs that are then referred to as exosomes (Simpson et al.,
2008). Recent studies revealed that ESCRT plays a role in exo-
some generation (Jouvenet, 2012). For example, ESCRT-0 con-
tains hepatocyte growth factor regulated tyrosine kinase substrate

Figure 4. PARK9-mediated exosome biogenesis requires ESCRT machinery. A, Cells were treated with neutral sphingomyeli-
nase (100 m�/ml) and exosomes were examined in the media from wild-type and PARK9 mutant fibroblasts (*p � 0.001). Data
were analyzed by Student t test. B, The effect of PARK9 overexpression on exosome release in N2A cells with silenced Tsg101 (*p �
0.01, **p � 0.001). The values represent mean � SEM from three independent experiments. Data analysis was performed by
one-way ANOVA and post hoc Tukey test. C, Immunoblot analysis of exosome marker proteins (Alix, flotillin1, Tsg101, and CD63) in
exosomes in response to silencing Tsg101 and/or overexpression of PARK9.
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(Hrs) that when silenced reduces ILV formation, resulting in
reduced exosome secretion (Bache et al., 2003; Tamai et al.,
2010). Hrs recruits an ESCRT-I protein Tsg101, which also re-
sults in fewer ILVs and exosomes when silenced (Falguières et al.,
2008; Colombo et al., 2013). Importantly, either genetic silencing
of Hrs or Tsg101 causes neurodegeneration in mice (Kim et al.,
2007; Tamai et al., 2008), underscoring the importance of
ESCRT-related exosome generation in neuronal function. Our
data suggest that PARK9 also plays a role in the generation and
release of exosomes. The results from NTA revealed that PARK9
mutant fibroblasts generate less exosomes than wild-type cells
(Fig. 2A,B), whereas in conditions of overexpressed PARK9, exo-
somes were significantly increased (Fig. 2C,D). These data are
consistent with the recent report by Kong et al. (2014), and here
we further examined the mechanism of this effect. We found that
PARK9 at least in part regulates production of exosomes by in-
teracting with the ESCRT pathway (Fig. 4B,C) and further stud-
ies will be required to examine the molecular details of this
interaction.

Released exosomes are taken up by neighboring cells via en-
docytosis (Ludwig and Giebel, 2012), indicating that exosomes
mediate cell to cell communications. For example, MHC class
II-containing exosomes released from B lymphocytes induce
antigen-specific MHC class II-restricted T-cell response (Raposo
et al., 1996). Tumor cells also release exosomes that can facilitate
tumor growth, invasion, and metastasis (Thuma and Zöller,
2014). Interestingly, recent studies suggested that exosomes play
a role in propagation of aggregation-prone proteins (Lai and
Breakefield, 2012). For example, exosomes can release amyloid-�
peptides and Tau accumulated in MVBs into extracellular space
(Rajendran et al., 2006; Saman et al., 2012). Initial studies showed
that �-syn could be released via nonconventional exocytosis (Lee
et al., 2005) and recent data defined this release is mediated via
exosomes (Emmanouilidou et al., 2010; Alvarez-Erviti et al.,
2011). We found that PARK9 promotes secretion of �-syn, at
least in part, via exosomes. Although �-syn is a cytosolic protein
with predominant localization in presynaptic terminals (Jakes et
al., 1994), it is also found outside of cells. �-Syn is also detected in
CSF and serum from healthy individuals and from PD patients
(El-Agnaf et al., 2003; Tokuda et al., 2006), suggesting that �-syn
possesses features of secretory proteins. The results from cell cul-
ture models showed that secreted �-syn can be taken up by neigh-
boring cells via endocytosis (Desplats et al., 2009) and this uptake
is mediated via exosomes (Danzer et al., 2012), whereas mouse
studies revealed that injected �-syn fibrils spread between ana-
tomically connected regions (Luk et al., 2012). These results
suggest that �-syn can be transmitted from cell to cell and that
prion-like seeding mechanism may contribute to PD pathology
(Angot et al., 2010; Olanow and Brundin, 2013). Using sensitive
ELISA, we observed an increase in �-ayn release in cells overex-
pressing PARK9 (Fig. 3F,G,N) and a decrease in PARK9 mutant
fibroblasts (Fig. 3 J,K). Interestingly, the amount �-syn in exo-
somes correlated with PARK9 expression, suggesting that PARK9
physiologically controls �-syn secretion through exosomes.
These findings are in agreement with a recent report by Kong et
al. (2014), where PARK9 overexpression decreased intracellular
�-syn but increased �-syn secretion in the media. We also found
that loss-of-function of PARK9 reduced exosomal �-syn suggest-
ing the relevance of this pathway for disease. It will be of interest
to examine the role of PARK9 in propagation of �-syn in vivo.

Previous studies showed that chemical inhibition of lyso-
somes or trafficking from endosome to lysosome increases �-syn
release (Emmanouilidou et al., 2010; Alvarez-Erviti et al., 2011).

PARK9-deficiency is known to cause lysosomal dysfunction and
�-syn accumulation (Dehay et al., 2012; Usenovic et al., 2012a;
Fig. 3D). Therefore, it would be predicted that lysosomal dys-
function caused by PARK9-deficiency results in increased release
of exosomes and �-syn. However, �-syn release is decreased in
these experiments (Fig. 3F,G), suggesting that the compensatory
release of exosomes is inhibited in the presence of PARK9-
deficiency. This conclusion is supported by our data demonstrat-
ing decreased number of ILVs in MVBs in PARK9-deficient cells.
Based on these results, we hypothesize that decreased secretion of
�-syn in PARK9-depleted cells further augments intracellular ac-
cumulation and toxicity of �-syn. However, further studies will
be required to elucidate the precise molecular nature of PARK9
involvement in the function of MVBs in relation to lysosomal
function.

In summary, our study implicates PARK9 function in the bio-
genesis of exosomes and secretion of �-syn. PARK9-mediated
�-syn release via exosomes may, at least in part, explain PARK9
protective effect against �-syn toxicity. Together, these data raise
a possibility that disruption of these pathways in patients with
KRS contributes to the disease pathogenesis.

References
Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ,

Cooper JM (2011) Lysosomal dysfunction increases exosome-mediated
alpha-synuclein release and transmission. Neurobiol Dis 42:360 –367.
CrossRef Medline

Angot E, Steiner JA, Hansen C, Li JY, Brundin P (2010) Are synucleinopa-
thies prion-like disorders? Lancet Neurol 9:1128 –1138. CrossRef Medline

Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the
P-type ATPase superfamily. J Mol Evol 46:84 –101. CrossRef Medline

Bache KG, Brech A, Mehlum A, Stenmark H (2003) Hrs regulates multive-
sicular body formation via ESCRT recruitment to endosomes. J Cell Biol
162:435– 442. CrossRef Medline

Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N,
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