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Abstract

Background: Understanding of kinematics force applied at the elbow is important
in many fields, including biomechanics, biomedical engineering and rehabilitation.
This paper provides a comparison of a mathematical model of elbow joint using
three different types of prosthetics for transhumeral user, and characterizes the forces
required to overcome the passive mechanical of the prosthetics at the residual limb.

Methods: The study modeled the elbow as a universal joint with intersecting axes of
x-axis and y-axis in a plain of upper arm and lower arm. The equations of force applied,
torque, weight and length of different type of prosthetics and the anthropometry of
prosthetics hand are discussed in this study. The study also compares the force, torque
and pressure while using all three types of prosthetics with the normal hand.

Results: The result was measured from the elbow kinematics of seven amputees, using
three different types of prosthetics. The F-Scan sensor used in the study is to determine
the pressure applied at the residual limb while wearing different type of prostheses.

Conclusion: These technological advances in assessment the biomechanics of an
elbow joint for three different type of prosthetics with the normal hand bring the new
information for the amputees and prosthetist to choose the most suitable device to be
worn daily.
Background
The biomechanics of an elbow joint is an essential parameter in a kinematics model

for estimating force and length from the movement and rotation of a joint which the

muscle crosses [1,2]. The mechanical attributes of the elbow complex are mirrored by

complementary clinical problems: the large ranges of motion are subject to significant

losses following trauma or arthritic degeneration; the stability of the joint, which de-

pends on both osseous and soft tissue structures, may be compromised by trauma or

sporting activities, and the strength of the patient in activities of daily life are all mech-

anical factors that affect the performance of the joint [1-4].

Some studies were focused on the bone structure [5], tissue and muscle [6-11], and

kinematics joint of elbow [12-14] for upper limb part. There are also a lot of studies fo-

cusing on the flexion and extension of elbow from normal human hand biomechanics
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principle [15]. The force applied by three main muscles along the elbow should be

greater than the force applied to the lower part of elbow [1-4,6-12]. The tendency of

elbow muscle holding humerus with ulna and radius bone will be different if compared

to the elbow joint when using the prostheses [16-19].

Different transhumeral prostheses provide different kinematics of motion [2-4,6,9-11,16].

Most of the upper elbow prostheses come with the elbow joint which is the origin of axis in

this study. The biomechanics principle of three different types of prosthetics which are body-

powered, myoelectric and air splint prostheses is the interest of this study.

The muscle action is usually shown diagrammatically as only supplied by the biceps,

and its tension (N) times the distance (m) of its line of action from the elbow axis gives

the flexing moment (Nm), which opposes the extending moment of the weight in the

hand [20-25]. Thus, taking typical approximate values, with the weight 350 mm from

the elbow axis and a biceps tendon of 50 mm, rotational equilibrium of the moments

acting about the flexion axis demands that the biceps tension must be equal seven

times the external load (Figure 1). Further, with the load acting downwards and the bi-

ceps pulling upwards, parallel to the humerus, there is a net resultant force of six times

the external load acting upwards onto the distal end of the humerus [1,2,4,5,21,25,26].

While this is a gross simplification, it does, nevertheless, show how the lever arm effect

causes the internal forces to be multiples of the external loads.

It is widely known and accepted between amputees and prosthetists with a poor

socket fit will entail the stump loses volume daily [2]. The amputee’s socket interface

plays a major role in defining the comfort level of the user. Using the method which

the socket is attached to the residual limb is extremely important [27-29]. Upper-

extremity prostheses should be suspended throughout to the entire range of motion as

well as being able to tolerate loading during normal use [28]. Furthermore, the ampu-

tees may need to change the socket in response to changes in body weight or alter-

ations to the structure of the residual limb [16,19,30].

The body-powered prosthetic usually consists of a tension bowden cable, screw and

joint, and socket [16]. The material used for the socket is the similar material that used

to design the prototype of each individual case. These types of prosthetics usually
Figure 1 Force exist as elbow become the origin.
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follow the desired length of needed by referring to the other side of the hand that is

not amputed. Prosthesist usually measured the side that had not amputed and design

the socket accordingly without considering the desired length and weight [16].

The myoelectric prosthetic is the most functional devices for an amputee. The pros-

thetic systems require a combination of electronic and mechanical engineering depend-

ing on the extent of functionality required for the device [13]. Instead of using body

power and a lot of force to generate motion, myoelectric prostheses make the patient

feel like he or she is generating the same nerves to move [13].

The air splint socket system basically uses a FSR pressure sensor [30], which is placed

on the surface of the air splint socket, to transfer any pressure detection data to the

microprocessor and microcontroller-based system as the input data. The FSR pressure

sensor is one of the most accurate and reliable measurement tools available to deter-

mine any contact pressure between the residual limb and the socket surface [30]. With

the air splint system, the patient does not need to worry about changing the socket size

and fitting, since the socket will change the size and fit accordingly within the desired

contact of the residual limb.

Although a few studies have been discussed about the biomechanics for elbow, but

no researchers has previously examined a biomechanics of elbow for prosthetics user.

This paper presents the pressure analysis applied using three different type of pros-

theses, the kinematics of elbow motion using three different type of prostheses, and the

force required to make the prosthetics socket attached and well fitted to the residual

limb. The paper will discuss the influences of muscle to the elbow and also the criteria

of different type of prostheses that lead to determine the force applied at both upper

and lower part of elbow, which taken the elbow as the origin of axis.
Methods
Kinematic data

A total of seven transhumeral amputees (7 males) participated in this study. All the

subjects were selected from the University Malaya Medical Centre (UMMC), Kuala

Lumpur. The inclusion criteria consist of a minimum 12 cm residual limb length (from

the shoulder-transhumeral bone to the end of residual limb), no wound and ulcers in

the residual limb, and the ability to flexion/extension of shoulder without the use of as-

sistive devices. The subjects were also considered for participation if they had used

prosthesis in the last two years. All human test protocols were approved by the Univer-

sity of Malaya Medical Centre Ethics committee, and each subject’s written, informed

consent was obtained before data collection.
Experimental setting and procedures

Two F-Socket sensors arrays 9811E were attached to the residual limb. The sensor arrays

were positioned on the anterior, posterior, medial and lateral aspects of the residual limb.

The posterior sensor was positioned approximately 1 cm above the posterior trim line of

the socket. Each sensor was trimmed to fit to the residual limb shapes. This sensor ar-

rangement provided a pressure map that covered 90% of the residual limb. Tekscan soft-

ware version 6.51 was used to record the interface pressure.
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The process of equilibrating the sensor is where the whole sensor point shares the equal

amount of pressure to ensure that all 96 senses have a common output. The F-Socket was

put into a pressure bladder in order to ensure that each area on the F-Socket had the simi-

lar criteria. The sensor was placed in the middle of the bladder and then was subjected to

a pressure of 100 kPa by taking the specifications from the manufacturer.

After the process was completed, the sensor was then attached to the amputee re-

sidual limb so that the position of the sensor was stable. Silicone liners were used for

all sockets, which require no reattachment when changing the socket. The sensor was

attached by using the spray adhesive, a type of strong glue. As mentioned earlier, only

two sensors were required to cover the area of the residual limb. The F-Socket attached

only at the part of the humerus bones that were still left. During the installation of the

F-socket to the amputee’s upper elbow, the main part was to confirm that the humerus

of the upper elbow was well-attached to each sensor. The F-Socket sensor was trimmed

horizontally to reduce the length of the sensor. This step was done to accommodate

the subjects with shorter limb in order to obtain a tidier sensor placement, as well as to

ensure there was no overlapped sensor. After the stockinet was fully fitted into the re-

sidual limb, then the socket was fitted into the stockinet. However, the position and the

liner of the sensor stability must be validated so that the data collection was not

interrupted.

After the amputees were comfortable with the fitting of the socket, the F-socket sen-

sor connects to the portable to collect some data. The value recording has a vulnerable

due to the external noise that may occur. This was due to the sensitivity of the sensor

and the dimensions that were physically thin but to be fitted into a small interface

space. Some unwanted noises usually occurred because of the bending position for the

sensor itself. There were several methods to reduce the noise distraction [30]. The first

method is by setting up the noise reduction threshold in the Tekscan’s F-Scan. The

value was set up to level 3 so that any values or data below or at this level will be fil-

tered automatically. The second method is by removing any data that were collected

without applying the pressure to the sensor. When the F-Scan detected the presence of

any data of unmoving pressure, the data may be diminished and the calibration of the

sensor was set to zero at that level. The third way to handle this problem is by applying

individual measurement to each point of the sensor. Sometimes, one of the sensors

gave a high pressure and surrounded by lower pressure points. To make it stable, all of

the points can detect using the F-Scan and assigned to be in a level position to each

other. Therefore, the data of pressure on the interface socket can be collected precisely

and correctly.
Anthropometry

The uses of anthropometry are to study the physical measurement of the human body

by classifying them into few classifications such as sex, weight, height and age. Most of

these needs are satisfied by basic linear, area and volume measures [30,31]. However,

human body motion usually requires more specific data such as the torque, force, an-

gular velocity and man power.

The mass for the transradial segment which is the amputed side of this research can

be calculated by multiplying the total mass of the human body with 0.00160 according
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to the anthropometry theorem [30,31]. The participants’ demographic information,

weight, required mass (for the transradial part) and theoretical force applied are shown

in Table 1.

Force and torque acting about the elbow joint

The elbow joint remained the origin of axis in this study. The applied force and load to

the below elbow part are the same force applied to the upper part of elbow for the nor-

mal human hand joint [1-4]. The loads were calculated, and their effects on the small

bones and joint surface areas were determined. It is found that the tissues are stressed

(which relates to force per unit area) to equivalent levels as those of the lower limb.

From this, it follows that the load bearing tissues, such as ligaments and tendons, have

similar material properties in the upper and lower limbs [21,25,26].

The annual daily life activities (ADL) involve the length and slenderness of the upper

limb mean that act at a large distance from the axes of rotation of the joints, and so

have a sizeable lever arm [12-14]. Against this are set the upper limb muscles, which

must hold a posture or move the hand against an external load known as Fbiceps in this

study. The muscles themselves were all acting at very small movement arms about the

joint axes’ origin (elbow, in this study) and thus act at a great mechanical disadvantage

[12-14]. Their tensions must be scaled up greatly, in order to attain equilibrium across

the joint, known as Fhumerus. As a result of this the joint forces (Ftotal) will be much lar-

ger than the external loads, Farm and the majority of the forces will be caused by the in-

ternal muscle tensions, and not by the relatively small external load [21,25,26].

Equation below determines how the total force occurs at the elbow joint for normal hu-

man hand (Figure 2A).

Ftotal ¼ Fhumerus þ Fbiceps þ Farm ð1Þ
Ftotal≥ Farm ð2Þ

The torque applied at the elbow joint for normal hand determine by,

X

Telbow ¼ 0

X
Telbow ¼ F : distanceð Þ ð3Þ

The summation of torque at the elbow for normal hand equals to zero by taking the

elbow joint as the origin. The force and torque applied for body-powered prosthesis are
Table 1 Age, weight, transradial mass of each subjects and theoretical force calculated

Subjects Age Weight, W =mg,
(g = 9.81)

Transradial mass,
m (W × 0.0160)

Force (N) F =mg
(Theoretical)

1 42 62 0.992 9.73152

2 45 73 1.168 11.45808

3 30 59 0.944 9.26064

4 33 77 1.232 12.08592

5 30 80 1.28 12.5568

6 40 72 1.152 11.30112

7 37 62 0.992 9.73152



Figure 2 Comparison of free body diagram from three different types of prostheses; B. Body-powered
prosthetic, C. Myoelectric prosthetic, D. Air splint prosthetic and A. normal human hand. (S= shoulder,
E= elbow, A= arm and P= prosthetic). The forces direction react referring to the x-axis and y-axis.
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differed according to the mechanism of the prosthetic that using tension cable and

shoulder power of a human body. The force applied by the shoulder is to maintain and

counter the force required to generate the body–powered prosthetic known as Fshoulder.

The force of the prosthetics itself known as Fprosthetic consider as the force for arm

(Farm) if compared to the normal hand that previously mentioned. Ftension is the

force applied by the tension cable of a body-powered prosthesis. Equation below

determines how the total force occurs at the elbow joint for body-powered pros-

thesis (Figure 2B).

Ftotal ¼ Fshoulder þ Ftension þ Fprosthetic ð4Þ

Fshoulder þ Ftension≥ Fprosthetic ð5Þ

The torque applied at the elbow joint for body-powered prosthetic determine by,

X
Telbow ¼ 0

X
Telbow ¼ ¼ Fshoulder: distanceð Þ þ Ftension: distanceð Þ þ Fprosthetic: distanceð Þ ð6Þ
The force and torque applied for both myoelectric prosthesis and air splint pros-

thesis, however, different according to the mechanism of the prosthetics. Fprosthetic con-

siders as Farm, occur at the elbow joint balanced by the force applied by Fsocket. Fsocket
gives the resultant force that applied to make sure that the socket of the prosthetic is

fully fit and stable to be used by the amputee. It noted that the Fsocket for both myoelec-

tric and air splint prostheses need to be greater or equal to the weight of the prosthetic

itself, otherwise the prosthetic will be loose accordingly. Equation below determines
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how the total force occurs at the elbow joint for both myoelectric and air splint pros-

theses (Figure 2C and D).

Ftotal ¼ Fprosthetic þ FsocketSin θ ð7Þ

FsocketSin θ ≥ Fprosthetic ð8Þ

The torque applied at the elbow joint for myoelectic and air splint prostheses deter-
mine by,
X

Telbow ¼ 0
X

Telbow ¼¼ FsocketSin θ: distanceð Þ þ Fprosthetic: distanceð Þ ð9Þ

Equation of force

The F-Scan sensor for this experiment provides the resultant of pressure applied to the

socket of the prosthetics. The force can be determined from the resultant of pressure

for each three type of prosthetics by dividing the pressure contact with the area of the

socket that attached to the residual limb. Equation below identifies how the resultant of

pressure from the experiment can determine the force applied in order to hold the

prosthetics to the residual limb.

ρ ¼ F=A; or ð10Þ
ρ ¼ dF=dA ð11Þ

For the body-powered and myoelectric prostheses, the area of pressure involves is
fixed since the pressure applied is at a constant place, but the value may change ac-

cordingly when motion or load is applied [16,30]. For air splint prosthesis the area of

pressure involved may be changed accordingly to the required size and fit the socket

since the pressure was compressed and released automatically by the socket systems.

This was explained by the authors in previous studies [16,30]. Equation below deter-

mines how the resultant of pressure from the experiment can determine the force ap-

plied using the air splint prosthesis in order to hold the prosthetics to the residual

limb.

F ¼ dρ:dA ð12Þ
The resultant force determines from the experiment react as the Fshoulder + Ftension for
body-powered prosthesis and Fsocket, for both myoelectric and air splint prostheses

(Refer Figure 2).

Results
The results of pressure applied using three types of the prosthetics system shown in

Table 2. Subject 3 has the minimal criteria of age, and body weight compare to other

subjects and turnout given the least pressure applied to the stump socket with a body-

powered prosthesis = 4.32 kPa, myoelectric prosthesis = 5.72 kPa, and air splint pros-

thesis = 2.91 kPa. The maximum result of the pressure applied to the stump using all

three types of prosthetics came from subject 5 which sharing the same age as subject 3

but have the maximum body weight. The results for this subject are; body-powered



Table 2 Result pressure profile applied for each type of prostheses

Subjects

Body-powered socket
pressure, kPa

Myoelectric socket
pressure, kPa

Air splint socket
pressure, kPa

Area (0.03±0.005 m) Area (0.045±0.005 m) Area (0.045±0.005 m)

1 5.78 6.02 3.22

2 7.47 7.45 5.24

3 4.32 5.72 2.91

4 7.35 7.62 5.61

5 8.21 8.01 5.97

6 6.58 6.48 4.93

7 6.21 6.09 4.23
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prosthesis = 8.21 kPa, myoelectric prosthesis = 8.01 kPa, and air splint prosthesis = 5.97

kPa. Table 2 also includes the area of pressure applied. The area for body-powered

prosthetic is about 0.03 ± 0.005 m while 0.045 ± 0.005 m for both myoelectric and air

splint socket systems. Note that the area for body-powered cover static area and at a

different place which came from the socket and insole design [16,30,32].
Discussion
Different prosthetics applied different kinematics mechanism [28]. As for body-

powered prosthetics the kinematics involved both part of shoulder. Any motion to be

generated is dependable to the shoulder power, including holding the prosthetics to the

residual limb [19]. The socket design and fitting for this type of prosthetics also provide

the force to make sure the socket is well attached to the residual limb. The resultant

force will be balance if the shoulder force and socket force applied is equivalence or

greater than the force given by the body-powered prosthetics (Figure 2B) [19,28]. The

statically design of a body-powered socket, give the statically area for pressure applied

to the residual limb. The pressure occurs to be very high and become higher by the

time the subject provides any motion. The weight of the prosthetics itself is also too

heavy and need a lot of force in order to hold it to the residual limb [31,33]. According

to anthropometry [16,30,32], the force applied for normal hand is about 9 N.m-12 N.m

but the result for body-powered prosthesis is about 12 N.m-22 N.m. (Refer Table 3).
Table 3 Comparison of force applied by each type of prostheses with the normal hand
force

Subjects Theoretical
force Fjoint (N)

Body-powered
Ftension+Fshoulder (N)

Myoelectric Fsocket (N) Myoelectric Fsocket (N)

(static area) (dynamic area)

1 9.73152 17.34 27.09 14.49

2 11.45808 22.41 33.525 23.58

3 9.26064 12.96 25.74 13.095

4 12.08592 22.05 34.29 25.245

5 12.5568 24.63 36.045 26.865

6 11.30112 19.74 29.16 22.185

7 9.73152 18.63 27.405 19.035
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For the myoelectric prosthesis, the resultant force applied is around 25 N.m −36 N.

m. The joint force may be even higher than shown in Table 3, because there is also

electromyography evidence of antagonistic triceps activity during elbow motion, acting

to stabilize the joint [16-19]. The area that applied pressure is dynamically changed in

bigger shape compared to the body-powered prosthetics [19,30]. The pressure applied

to the socket must be greater and dynamically change dependable to the weight of the

prosthetics device [27-29]. Generally known, the myoelectric prosthesis consists of mo-

tors, microcontroller, cable and power supply, which gives heavy load to the design of

the myoelectric prosthesis. The socket design and fitting for the myoelectric prosthesis

must also be equivalence or greater than the weight of the prosthetics itself (Figure 2C).

Abd Razak et al. [30] described on how the pressure applied to the prosthetics socket

play a major part to provide the force to hold and fit the socket to the residual limb.

However, the socket size and fitting for this type of prosthesis remain unchanged which

can cause discomfort among the users. The interface of a socket to the residual limb

brings discomfort to the user. The load applied wearing the myolectric together while

generating the motion also brings discomfort to the user [19,27-29]. Some user refuse

to be worn it for more than 2 hours to doing daily life activities (ADL) [16,30]. Previous

studies have shown that load compliance can influence the time failure during sus-

tained contractions at low target forces, but not when the target force was similar to

the upper limit of motor unit recruitment [20-25].

For the air splint prosthesis, the resultant force applied is around 14 N.m-26 N.m.

Even though the systems using the almost the similar part as the myoelectric pros-

thesis, but the dynamically change of the socket make the pressure applied more reli-

able to use it (Refer Figure 2D). The socket for air splint prostheses is changeable to

the load applied [16,30]. The pressure applied by the air splint socket will change ac-

cordingly to the need in order to hold it to the residual limb. By using this mechanism,

the pressure will increase if a greater load applied by the prosthetics. Even the force ap-

plied may be greater than the desire force for normal human hand, but the applied

value is still relevance and change accordingly. The clinical importance of these bio-

mechanical aspects relates not only to the size of the loads on the elbow but also the

directions and points of application of the loads [1,2,5]. This principle reacts as the

same principle for our upper limb muscle, which reacts if a greater load applied to gen-

erate any motion [6-11]. While load sharing clearly suggests the mechanical logic for

this approach, there is no prosthesis currently available that appears to achieve reliable

long-term outcomes.

Muscle activities always changeable whenever a load is applied [11]. For this study,

elbow is the origin of the axis. Meaning that whenever load applied to the below elbow

part, the muscle tension formed all muscle of upper elbow (brachiallis, biceps brachii

and brachioradialis) will react [1-4]. This is a difficult situation to analyze mechanically

because of the large number of muscles acting simultaneously, and so a scheme for ap-

portioning the muscle actions is needed [6-11]. For prosthetics user, the transhumeral

amputee loses their elbow and replaced by prosthetics elbow as the axis in this study.

The muscle may be active, and some may be inactive due to the amputed [27-29]. For

the body-powered prosthesis, both conditions can be considered as there will be no re-

quirement to generate a motion from active muscle [29]. The case is different for both

myoelectric prosthesis and air splint prosthesis where the active muscle is needed to
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generate the motion. That is why by using a different type of prostheses, the rehabilita-

tion is still needed from time to time in order to train and straighten the muscle [28].

The condition of the prosthetics itself also contributed to a major part of generating

the biomechanics movement for elbow. Considering the different material of socket

manufacturing, the socket may be loose easily from time to time according to the load

applied [16,30]. The material used may easily make the user sweat and cause pain,

which may loosen the prosthetics that attaching to the residual limb. The loosen pros-

thetics socket may interrupt the motion, and force applied at the elbow. The conditions

of both body-powered and myoelectric are same, where the socket is static and provide

a different pressure considering the body weight is changing daily [28]. For the air

splint prosthesis, the socket size is changeable with the required size for the residual

limb. With this system, the pressure and force applied is changing accordingly to the

need and would not interrupt the motion of elbow [16,30].

Table 3 shows the comparison of force applied from all seven subjects using three dif-

ferent type prostheses. The table shows that the higher force applied when the subjects

using the myoelectric prosthesis. The force applied to both body-powered and air splint

prostheses are quite similar, but the force and pressure come at different aspect and

criteria. The air split prosthesis design considering the biomechanics principle that ap-

plied when involving any motion at the elbow. Besides arm, flexion and extension of

elbow play a major contribution to load a thing [12-14]. Different prosthetics applied

different biomechanics in order to maintain the socket to be attached to the residual

limb [19]. The air splint counters the static socket problem by providing the auto sizing

socket that leads to the required pressure applied to the socket, to make sure the socket

is well fitted, suitable and comfortable to the user. For the statically socket, the

principle is using the socket to give pressure to the residual limb. The result shows

how both applied too much pressure that needs to strengthen the socket holding to the

residual limb. Besides, this brings the reshaping of the residual limb based on statistic

pressure position of the prosthetics socket. The weight of prosthetics, daily change of

body weight and generating a motion contributed to the rejection of using those types

of prosthetics [27-29]. For the air splint prosthesis, the socket sizes give the pressure

accordingly to the need of holding it to the residual limb. The constant pressure pro-

vided constantly surrounding the socket make the user feel more comfortable.
Conclusion
The elbow is a complex and interesting structural mechanism. The comparison of bio-

mechanics of an elbow joint for three different type of prosthetics with the normal

hand bring the new information for the amputees and prosthetist to choose the most

suitable device to be worn daily. The force and torque applied at the elbow joint by

wearing the prosthetics can help improve the design and rehabilitation procedure. The

pressure applied to the socket can determine the future shape and figure of the residual

limb. The socket may need to be changed from time to time because of the imbalance

of force and pressure that applied to the prosthetics at the elbow and socket systems.
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