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Abstract

Colorectal cancer is one of the major causes of cancer-related mortality in both men and women 

worldwide. Genetic susceptibility and diet are primary determinants of cancer risk and tumor 

behavior. Experimental, epidemiological, and clinical data substantiate the beneficial role of n–3 

polyunsaturated fatty acids (PUFA) in preventing chronic inflammation and colon cancer. From a 

mechanistic perspective, n–3 PUFA are pleiotropic and multifaceted with respect to their 
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molecular mechanisms of action. For example, this class of dietary lipid uniquely alters membrane 

structure/ cytoskeletal function, impacting membrane receptor function and downstream signaling 

cascades, including gene expression profiles and cell phenotype. In addition, n–3 PUFA can 

synergize with other potential anti-tumor agents, such as fermentable fiber and curcumin. With the 

rising prevalence of diet-induced obesity, there is also an urgent need to elucidate the link between 

chronic inflammation in adipose tissue and colon cancer risk in obesity. In this review, we will 

summarize recent developments linking n–3 PUFA intake, membrane alterations, epigenetic 

modulation, and effects on obesity-associated colon cancer risk.
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Introduction

Colon cancer is a major public health concern due to the high prevalence of the disease both 

globally and in the USA [1]. Colon cancer is third in cancer incidence in both men and 

women and the second leading overall cause of cancer mortality [2]. Epidemiological and 

migrant population studies have indicated that environmental factors can influence cancer 

risk [3]. With respect to the focus of this review, diet is considered a key environmental 

factor impacting colon cancer risk [4, 5]. This is highly relevant because clinical 

practitioners are currently searching for toxicologically innocuous cancer chemoprevention 

approaches that are free of safety problems intrinsic to drugs administered over long periods 

of time. Since a large body of evidence supports the safety and efficacy of dietary or 

supplemental n–3 polyunsaturated fatty acids (PUFA), e.g., docosahexaenoic acid (DHA, 

22:6Δ4,7,10,13,16,19) and eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17), we propose that n–3 

PUFA are ideally suited to reduce colon cancer risk. Dietary lipids can alter the cell 

membrane and tissue fatty acid levels, regulating multiple signaling events, thereby 

modulating the development of colorectal cancer. It has been shown that tissue fatty acid 

distribution is related to the incidence of colorectal cancer prognosis [6], with risk increasing 

by 1–3-fold with respect to n–6 PUFA content. In contrast, risk is reduced by 37–87 % with 

increasing n–3 PUFA content in colorectal cancerous tissue.

DHA and EPA are enriched in marine fish oil. DHA is a primary structural component of 

the human brain, cerebral cortex, skin, sperm, testicles, and retina [7]. The parent substrate, 

α-linolenic acid (18:3n–3; ALA), is found in plant oils, but conversion to EPA and DHA in 

humans from ALA is low and humans have no other means of synthesizing n–3 PUFAs. 

Therefore, EPA and DHA can be classified as “essential” nutrients.

Dietary administration of n–3 PUFA in rodent models of colon carcinogenesis has been 

demonstrated to reduce colon tumor size and multiplicity, compatible with its 

chemopreventative activity [8–10]. n–3 PUFAs have multiple targets implicated in various 

stages of cancer development, including cell proliferation, cell survival, angiogenesis, 

inflammation, metastasis, and epigenetic abnormalities that are crucial to the onset and 

progression of cancer [11]. In this review, we will focus on three unique aspects of cell 
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signaling modulation by n–3 PUFA: membrane alterations, epigenetic modulation, and 

impact on obesity-related colon cancer.

n–3 PUFA Effects on Membrane Structure/Signaling

Membrane Lipid Rafts

Cellular membranes are composed of a heterogeneous mixture of lipids and proteins, whose 

distinct order maintains efficient signal transduction. Membrane lipids can undergo phase 

separations and interact selectively with membrane proteins and with sub-membrane 

cytoskeletal elements [12]. Lipid rafts are dynamic and small (10–200 nm) membrane 

microdomains enriched in sphingolipids and cholesterol, which function as sorting platforms 

for many membrane-associated proteins [13]. Stabilization of these domains is hypothesized 

to be maintained by lipid and cytoskeletal influences [14•]. Recent evidence suggests that 

lipid rafts may modulate the malignant transformation process. For example, the levels of 

lipid rafts are increased in many types of cancer [15–17]. Additionally, lipid rafts mediate 

cell signaling events that are often constitutively or hyper-activated in cancer [18–20]. There 

is also evidence suggesting that disruption of lipid rafts in cancer can lead to increased 

responsiveness to anti-cancer therapies [21]. Additionally, some anti-cancer drugs have 

beneficial effects through alteration of the protein content of lipid rafts [22]. In colon cancer, 

lipid rafts have been shown to function in cell death-mediated signaling [23, 24], cell entry/

bioavailability of bioactive compounds [25], and localization of key proteins involved in 

immune response [26].

Membrane Properties Are Altered by Diet

It has been shown that n–3 PUFA can alter membrane cholesterol and/or sphingomylin 

content. For example, DHA and EPA reduce cholesterol synthesis in HT29 colon cancer 

cells [27•]. Fish oil (FO)-fed mice exhibited a ~46 % reduced cholesterol content in colonic 

caveolae, specialized rafts enriched in the structure protein caveolin-1, which regulate the 

clustering of signaling proteins such as Ras and eNOS [28]. In addition, a ~40 % reduction 

in CD4+ T cell lipid raft sphingomyelin levels was observed in mice fed a FO-supplemented 

diet [29]. Dietary n–3 PUFA are also capable of displacing acylated proteins from lipid raft 

microdomains in vivo [56] and can alter the size and distribution of cell surface 

microdomains [30, 41]. n–3 PUFA incorporate into membrane phospholipids, primarily 

glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), in the sn-2 position, 

creating a highly disordered molecule that is cholesterol-phobic. However, the affinity of 

DHA-incorporated phospholipids for lipid rafts varies among the different phospholipid 

subclasses. For example, it has been reported that cholesterol is less soluble in GPE-DHA 

than in GPC-DHA relative to GPE-oleic acid (OA) and GPC-OA [31–33]. DHA-GPE 

prefers a non-raft environment, while DHA-GPC prefers a raft environment [34••].

Membrane Lipid Order Modification by n–3 PUFA

Lipid raft stability can be assessed by a variety of polarity-sensitive probes such as Laurdan 

or di-4-ANEPPDHQ. Quantitative imaging of these probes yields general polarization (GP) 

values, where higher values reflect a higher membrane order [35, 36]. With respect to diet, 

membrane order is increased in T cell plasma membranes from FO-fed mice or transgenic 
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mice that produce n–3 PUFA [37, 38••]. Similarly, B cells isolated from mice fed FO show 

an increase in membrane order in cross-linked cells relative to non-cross-linked cells [39]. 

This is in contrast to the decrease in membrane order reported in Jurkat cells treated with 

EPA and DHA [40, 41]. A possible explanation for the differences reported in these studies 

is that malignant transformed Jurkat cell lines may be inherently different from primary T 

cells with respect to specific plasma membrane properties. These findings are noteworthy 

because chronic inflammation increases cancer risk [42, 43]. Specifically, T cell-mediated 

inflammation in the colon has been linked to the onset of inflammatory bowel diseases 

(IBD) and to colitis-associated cancer (CAC) [44].

To corroborate the effects of n–3 PUFA on cell surface microdomain organization, 

immunogold electron microscopy of plasma membrane sheets coupled with spatial point 

analysis of validated microdomain markers has been used [45]. Clustering of probes within 

cholesterol-dependent (H-Ras) or cholesterol-independent (K-Ras) microdomains exhibits 

differential sensitivities to PUFA treatment. DHA increases clustering of the lipid raft 

marker, GFP-tH, and has no effect on the non-raft marker, GFP-tK [30]. This indicates that 

the effect of DHA is mediated through interactions with lipid raft domains.

n–3 PUFA Displace Signaling Molecules from Raft/Membrane Domains

Many proteins involved in colon cancer cell signaling, including receptors and G proteins, 

localize to lipid rafts [13]. The epidermal growth factor receptor (EGFR) is a tyrosine kinase 

that plays a critical role in cell proliferation, survival, and resistance to cancer therapy [46, 

47]. EGFR requires lipid raft localization for efficient signaling [48, 49]. n–3 PUFA, in part 

through a reduction in membrane cholesterol, displaces EGFR from rafts, leading to an 

altered phosphorylated state [50, 51, 52••]. This in turn suppresses colonocyte downstream 

signaling events involving EGFR, such as phosphorylation of ERK1/2, STAT3, and Akt and 

activation of Ras [52••]. A possible explanation for this reduction in signaling may involve 

an increase in EGFR ubiquitination and internalization.

Alteration of raft lipid composition displaces the acylated proteins Lck and LAT from lipid 

rafts in Jurkat cells treated with EPA [53]. This is associated with the inhibition of T cell 

signaling by reducing phosphorylation of LAT and phospholipase Cγ1 [54]. A brief 

summary describing how DHA alters membrane order and EGFR signaling is shown in Fig. 

1.

Ras proteins are GTPases, which are targeted to the membrane by farnesylation coupled to 

either palmitoylation, N, H, and K(A), or a polybasic motif, K(B) [55]. Targeting of 

palmitoylated N- and H-Ras to the plasma membrane is reduced by DHA, with no effect 

seen on K(B)-Ras [56]. However, activation of all three isoforms of Ras is attenuated by 

treatment with DHA [52••]. Collectively, the membrane-altering properties of n–3 PUFA are 

significant because EGFR and Ras are major drivers of colon cancer [57]. Currently, 

attempts to directly target Ras have repeatedly failed [58]; therefore, alternate strategies 

must be pursued. DHA, through modulation of membrane order, may provide a novel 

therapeutic strategy that may complement current therapies.
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Epigenetic Effects of n–3 PUFA

Colon cancer develops through a multistep process that results from the progressive 

accumulation of mutations and epigenetic alterations in tumor suppressor genes and 

oncogenes. Epigenetics involves heritable changes in gene expression via posttranslational 

and posttranscriptional modifications. These modifications typically occur by changes in (i) 

DNA methylation, (ii) histone modifications, and/or (iii) microRNA (miRNA) expression 

[59]. These three mechanisms are interconnected to selectively modulate gene expression 

[60, 61].

i. In cancer cells, two patterns of DNA methylation can be observed. On the one 

hand, proto-oncogenes or genes implicated in tumor progression are activated due 

to global hypomethylation or low levels of methylation. On the other hand, genes 

such as tumor suppressor genes, implicated in tumor eradication, are silenced due 

to hypermethylation of their promoter regions [62–64].

ii. Histone modification by posttranslational processing of their tails directly affects 

chromatin structure and function and subsequently influences chromatin-based 

processes, including gene transcription, DNA repair, and DNA replication [65, 66]. 

The level of histone acetylation is based on the activity of two types of enzymes, 

namely histone acetyl transferases (HATs) and histone deacetylases/ lysine 

deacetylases (HDACs/KDACs), that regulate the conformation of the chromatin 

structure to facilitate or hinder the association of DNA repair proteins or 

transcription factors to chromatin. Hyperacetylation of histones thus can lead to 

transcriptionally active chromatin. In contrast, deacetylation of histones by HDACs 

typically leads to a closed (heterochromatin-like) chromatin conformation, thus 

diminishing accessibility for transcription factors [66, 67]. In this way, HATs serve 

as activators of gene expression whereas HDACs are typically associated with gene 

inactivation [68].

iii. Another modulator of epigenetic modification involves noncoding miRNAs. 

miRNAs are key regulators of posttranscriptional control of gene expression. 

miRNAs are aberrantly expressed or mutated in cancer, suggesting that they may 

function as a novel class of oncogenes or tumor suppressor genes [69–71].

Diet, miRNAs, and Colon Cancer

The effects of colon carcinogen and dietary n–3 PUFA on rodent microRNA expression 

during the early stages of colon tumorigenesis have been examined [8, 72, 73]. The data 

indicate that translational alterations are far more extensive relative to transcriptional 

alterations in mediating malignant transformation. In contrast, transcriptional alterations 

were found to be more extensive relative to translational alterations in mediating the effects 

of diet. High-throughput miRNA profiling studies have linked aberrant expression of 

miRNAs to the development of colon cancer [74, 75]. Specifically, miR-21 is a well-

described “oncogenic” miRNA. For example, miR-21 has been positively correlated with 

colorectal cancer metastasis [76]. Elevated expression of miR-21 has also been reported in 

colon cancer [8, 77, 78]. miR-21 has anti-apoptotic properties by directly and indirectly 

targeting several tumor suppressors, PTEN, PDCD4, BCL2, TIMP3, TGFβR2, SPRY3, and 
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RECK [76–86]. The effects of n–3 PUFA on miRNA expression in the gastrointestinal 

cancers are summarized in Table 1.

Combinatorial Properties of n–3 PUFA with Other Bioactive Agents

It has been demonstrated that dietary FO and fermentable fiber work synergistically to 

protect against colon carcinogenesis, primarily by enhancing apoptosis [87, 88, 89]. 

Curcumin, a well-known epigenetic modifier [90–95], with anti-oxidant [96], anti-

inflammatory [97], anti-proliferative [98], and anti-angiogenic [99] properties, has also been 

shown to have synergetic anti-cancer effects when combined with fish oil. For example, we 

have reported that the combination of fish oil and curcumin can antagonize NFκB activation 

in the mouse colon following the induction of chronic inflammation [100]. The synergetic 

effect of DHA and curcumin has also been shown to block insulin-induced colon carcinoma 

proliferation [101] and inhibit DMBA-induced mammary tumorigenesis in mice [102].

It has also been shown that n–3 PUFA can modulate Wnt signaling, which plays a central 

role in the physiology and malignant transformation of intestinal stem cells, by suppressing 

colonocyte nuclear beta-catenin levels [103, 104••, 105, 106, 89]. This is important because 

perturbations in adult stem cell dynamics are generally believed to represent an early step in 

colon tumorigenesis [107, 108].

Link Between Obesity and Colon Cancer

Up to 14 and 20 % of all cancer-related deaths may be attributed to obesity in men and 

women, respectively [109]. Epidemiological data indicate that the risk of colon cancer is 

strongly associated with increasing body mass index (BMI) [110]. Similar to smoking and a 

history of colon polyps, a BMI value >25 also significantly increases the risk of colon 

cancer [111]. In addition to human data, several rodent models have been utilized to 

demonstrate a link between obesity and increased colon cancer. Studies in mice typically 

range from 6 to 20 weeks and normally utilize a 32–60 % high-fat lard-based diet resulting 

in an increased number of colon tumors and aberrant crypt foci as well as increased cell 

proliferation and reduced apoptosis [112, 113•, 114]. Based on these findings in 

combination with the rising prevalence of diet-induced obesity, there is an increased need to 

understand the link between diet, obesity, and colon cancer.

Inflammatory Adipokines

Obesity disrupts the dynamic role of the adipose tissue in energy homeostasis, resulting in 

the alteration of adipokine signaling and the development of chronic inflammation [115]. 

Adipose tissue is primarily comprised of mature adipocytes but also contains endothelial 

cells, adipocyte precursors, fibro-blasts, and immune cells. Excess delivery of nutrients to 

adipose tissue in obesity results in an increase in adipose tissue mass, followed by an 

increase in immune cell infiltration and thereby an altered production of proinflammatory 

adipokines (increased IL-1β and leptin, IL-6 and reduced adiponectin), ultimately 

contributing to the progression of chronic inflammation [116]. M2 macrophages are 

typically found in the adipose tissue of lean individuals, whereas obese individuals display 

an increase in M1 macrophages and a shift to a proinflammatory state [117, 118]. Increased 
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infiltration of M1 macrophages in obese mice is also associated with systemic changes in T 

cell subsets, particularly inflammatory Th1 and Th17 cells [119••]. Studies in both humans 

and mouse models have provided a clear link between inflammation and cancer [120–122]. 

The chronic low-grade inflammation associated with obesity may play a key role linking 

excess adipose tissue, altered adipokine status, and the development of colon cancer by 

providing a favorable niche for tumor development. Interestingly, diet-induced obese mice 

that have increased numbers of colonic tumors also have elevated circulating levels of 

several cyto-kines and adipokines [113•]. Changes in adipokine status may impact cancer 

cell growth, as the adipose tissue itself has the ability to secrete several tumor-promoting 

molecules such as growth factors, proinflammatory cytokines, and adipokines. The most 

well-characterized adipokines relevant to colon cancer are adiponectin and leptin. These 

adipokines have been demonstrated to play a role in cell growth, proliferation, apoptosis, 

angiogenesis, invasion, and migration.

Adiponectin is one of the most abundant protein secreted by adipocytes [123] and can be 

found in circulation at 2–20 μg/ml [124]. Circulating levels of adiponectin are inversely 

associated with BMI and visceral adiposity as well as many chronic diseases such as 

diabetes, cardiovascular disease, and cancer [124–127]. Epidemiological evidence suggests 

that low adiponectin levels are correlated with the risk of colon cancer [128–130]. 

Supporting evidence for the protective role of adiponectin against colon cancer has also been 

demonstrated in mice and cell culture studies. Reported beneficial actions of adiponectin 

include decreased cell proliferation [131–133], increased apoptosis, reduced number and 

size of colonies, and decreased adhesion and invasion [133, 134•]. Most impressively, 

adiponectin appears to reduce the number of polyps, aberrant crypt foci, and tumor size in 

diet-induced obese mice [132, 134•]. From a mechanistic perspective, adiponectin appears to 

exert its beneficial actions by promoting phosphorylation of AMPK and LKB1, resulting in 

changes in cell cycle and inflammatory (p21, p27 cyclin E, STAT3, VEGF, mTOR) 

pathways [131, 133, 134•].

Leptin is another hormone produced and secreted predominantly by adipocytes, and it is 

involved in regulating body weight by modifying appetite and energy expenditure [135]. A 

positive association has been made between leptin and colorectal adenoma in men [130]. 

Men with the highest leptin concentrations (11–70 ng/ml) had a 3.3-fold increase in risk of 

colorectal adenoma as compared to those with leptin levels between 1 and 5 ng/ml [136]. In 

colonic epithelial cells, leptin induces proliferation in a VEGF-dependent manner [137]. In 

vivo, leptin-deficient mice have reduced colonic tumor size as well as reduced cell 

proliferation and increased apoptosis [138]. The phosphorylation of STAT3 and 

upregulation of other inflammatory mediators (IL-6, IL-1β, and CXCL1) appear to be 

involved in the negative effects of leptin on tumor size [138, 139]. It is also important to 

note that these two adipokines may interact with each other to influence tumor development 

[140, 141], an interaction that may be further promoted by obesity.

Inflammatory Cytokines

As mentioned above, the obese adipose tissue becomes infiltrated by immune cells which 

secrete several inflammatory cytokines, further contributing to the chronic inflammatory 
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environment in obesity. This proinflammatory profile can contribute to the risk of colon 

cancer. For example, IL-1β has been shown to promote sphere formation and increases in 

mRNA expression of genes that promote stemness [142, 143]. Cell proliferation and 

phosphorylation of STAT3 in colon cancer cell lines are induced by IL-6 treatment [131]. 

Mice deficient in IL-17a display reduced tumor size and number, which is associated with 

reduced IL-6, IFN-gamma, TNF-alpha, phosphorylated STAT3, and beta-catenin [144].

n–3 PUFA Reduce Obesity-Related Colon Cancer Risk

Since colon cancer development involves adipose-mediated chronic inflammatory processes 

[145], the adoption of therapeutic strategies to decrease obesity-associated colon 

tumorigenesis merits consideration. One example of an anti-inflammatory therapeutic is n–3 

PUFA. Reductions in the local adipose inflammatory environment have been reported in 

both humans and rodents treated with n–3 PUFA [119••, 146••]. In mouse models, FO 

supplementation increased total serum adiponectin levels in diet-induced obese mice and 

was further enhanced by combination treatment with thiazolidinedione. These changes were 

associated with a reduction of macrophage infiltration in epididymal white adipose tissue 

and inflammatory TNF-alpha and MCP1 [147]. Furthermore, fish oil supplemented to a 

high-fat diet prevented diet-induced obesity, dyslipidemia, hyperinsulinemia, as well as 

obesity-induced adipocyte hypertrophy and macrophage accumulation in adipose tissue, 

resulting in increased circulating adiponectin levels [148]. Our laboratory and others have 

demonstrated that n–3 PUFA are protective against colon tumorigenesis [119••, 149–151] 

and suppress inflammatory immune cell populations in the colon and adipose tissue [119••, 

146••]. Interestingly, in humans, the ratio of n–3/n–6 PUFA was significantly reduced in the 

visceral white adipose tissue of obese individuals with colorectal cancer and these 

individuals also exhibited an upregulation of STAT3 and decreased PPAR-gamma and 

adiponectin levels as compared to normal-weight cancer-free individuals [152••]. The 

authors were also able to demonstrate that treatment with DHA resulted in a significant 

reduction in phosphorylated STAT3 and IL-6 in adipocytes from obese colorectal cancer 

patients [152••].

Conclusion

There is a growing body of experimental, epidemiological, and preclinical evidence 

indicating that n–3 PUFA, mainly DHA and EPA, are protective against colon 

tumorigenesis [9, 153–157]. Establishing a causal role of n–3 PUFA in colon cancer 

prevention would have a major translational impact because these dietary nutrients are safe, 

well tolerated [158], and relatively inexpensive and provide additional health benefits, such 

as reduction in mortality [159]. In addition, the ingestion of n–3 PUFA in combination with 

other agents, such as fermentable fiber and curcumin, may improve their efficacy in colon 

cancer prevention/therapy. Herein, we have summarized three major mechanisms where n–3 

PUFA modulate cancer risk, including membrane lipid order and downstream signaling, 

epigenetic modulation, and obesity-induced inflammation. Overall, these mechanisms 

explain some of the actions of an important dietary chemoprotective agent.
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Fig. 1. 
DHA alters membrane order and EGFR signaling. DHA-containing phospholipids 

incorporate into plasma membrane raft and non-raft domains [34••]. Because of DHA’s low 

affinity for cholesterol, DHA incorporated into the raft domain reduces cholesterol levels 

and displaces cholesterol from plasma membrane rafts [28, 31–33]. This reduction of 

cholesterol displaces EGFR from the raft into the non-raft domain, causing an increase in 

phosphorylation, and paradoxically decreasing downstream Ras and ERK1/2 signaling, 

leading to reduced cell proliferation [28, 52••]. DHA also modulates the levels and 

localization of a critical signaling lipid, phosphoinositide 4,5-bis-phosphate (PIP2) [160••]. 

This in turn reduces filamentous actin remodeling as well as activation of cytoskeletal 

regulators, Rac1 and Cdc42, which in turn reduces cell migration [157, 160••]. Cholesterol 

and the cytoskeleton are major contributors to maintaining membrane order. Interestingly, 

both these factors are reduced by n–3 PUFA, yet membrane order is increased in cells 

isolated from FO-fed animals [37, 38••, 39]. This may be attributed to a FO-dependent 

reduction of two highly disordered fatty acids, arachidonic acid (AA) and n-

nervonoylsphingomyelin (C24:1), which could result in a net increase in membrane order 

[29, 161, 162]
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Table 1

miRNAs are differentially regulated by DHA

Cell/tissue Upregulated miRNA in gastrointestinal cancers References

Rat colon miR-132 [163]

miR-146b

miR-192

miR-206

miR-218

let-7d [8]

miR-15b

miR-107

miR-191

miR-324-5p

Human colorectal adenocarcinoma cells miR-1 [164]

miR-30c

miR-141-3p

miR-181a-5p

miR-192

miR-221-3p

miR–1283

Let-7f

Gastric cancer cells miR-15b [165]

miR-16
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