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Abstract

Objectives: A gene-based genome-wide association study (GWAS) provides a powerful 

alternative to the traditional single SNP association analysis due to its substantial reduction in the 

multiple testing burden and possible gain in power due to modeling multiple SNPs within a gene. 

A gene-based association analysis on multivariate traits is often of interest, but imposes substantial 

analytical as well as computational challenges to implement it at a genome-wide level.

Methods: We have proposed a rapid implementation of multivariate multiple linear regression 

approach (RMMLR) in unrelated individuals as well as in families. Our approach allows for 

covariates. Moreover the asymptotic distribution of the test statistic is not heavily influenced by 

the linkage disequilibrium (LD) among the SNPs and hence can be used efficiently to perform a 

gene-based GWAS. We have developed corresponding R package to implement such multivariate 

gene-based GWAS with this RMMLR approach.

Results: We compare through extensive simulation several approaches for both single and 

multivariate traits. Our RMMLR maintains correct type-I error level even for set of SNPs in strong 

LD. It also has substantial gain in power to detect a gene when it is associated with a subset of the 

traits. We have also studied their performance on Minnesota Center for Twin Family Research 

dataset.

Conclusions: In our overall comparison, our RMMLR approach provides an efficient and 

powerful tool to perform a gene-based GWAS with single or multivariate traits and maintains the 

type I error appropriately.
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1 Introduction

The rapid progress in genotyping technology has greatly facilitated our understanding of the 

genetic aspect of various diseases. Several genome-wide association studies (GWAS) have 
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been published on various complex diseases, where genotype data on a large number of 

single nucleotide polymorphisms (SNPs) are collected to study the association between 

these SNPs and a disease (Visscher et al., 2012). Currently, most existing statistical methods 

of detecting genetic association focus on analyzing SNPs one-by-one (Roeder et al., 2005).

Although, new SNPs are found to be associated with these diseases, little of the genetic risk 

or heritability for these diseases is explained by the additive effects of these SNPs. Studying 

one SNP at a time may not be sufficient to understand complex diseases. Analyses focusing 

on individual SNPs may have several limitations: (a) A large number of comparisons 

increases the probability of false positives and a stringent correction could lead to loss of 

power. (b) each SNP alone may have very little effect on risk of disease (Lesnick et al., 

2007), but multiple causal variants together may increase the risk substantially. A single-

SNP analysis may not be optimal here; especially in presence of multi-SNP effects.

Hence, gene-based association analysis is often of interest in genome-wide association 

studies. These approaches substantially reduce the multiple testing burden at a GWAS scale. 

Moreover by pooling information on multiple SNPs within a gene, one could gain 

substantial power in detecting association. Current gene-based association approaches are 

mostly limited to combining single SNP association p-values to propose a gene-based test 

statistic (Neale and Sham, 2004; Ballard et al., 2010; Wang et al., 2007). One limitation of 

these gene-based statistics is that combining single SNP p-values ignores the potential joint 

effect of multiple SNPs within a gene. Joint modeling of the SNPs within a gene could have 

substantial gain in power over these existing gene-based tests. Moreover, the current 

approaches typically require permutation or simulation testing to account for the correlation 

between the SNPs as well as the gene size. VEGAS (Liu et al., 2010) and PLINK set-based 

test (Purcell et al., 2007) are two such available approaches for performing gene-based tests. 

They can be computationally very intensive to perform a gene-based GWAS, since they 

require a large number of permutations to correct for multiple testing. Hence their usefulness 

to conduct a gene-based GWAS is somewhat limited. Moreover, these approaches have been 

implemented for univariate phenotypes.

In the study of a complex disease, several correlated traits are often measured as risk factors 

for the disease. For example, in the study of thrombosis, the intermediate correlated 

phenotypes such as Factor VII, VIII, IX, XI, XII, and von Willebrand factor jointly predict 

the risk of developing thrombosis (Souto et al., 2000; Germain et al., 2011). There may be 

genetic variants affecting several of these traits. Analyzing multiple disease-related 

phenotypes could potentially increase power to detect association of SNPs/genes with a 

disease. Moreover this joint analysis could reveal some pleiotropic genes involved in the 

biological development of the disease. It has been shown that modeling multivariate 

phenotypes may increase the power over analyzing individual phenotypes separately in 

genetic association studies (Klei et al., 2008; Lange et al., 2004).

Few approaches have been developed to perform association analysis with multivariate traits 

at a GWAS level. O’Reilly et al. (2012) proposed MultiPhen to detect association between 

multivariate traits and a SNP with unrelated individuals. It uses ordinal regression to regress 

a SNP on a collection of phenotypes and tests whether all regression parameters 
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corresponding to the phenotypes in the model are significantly different from zero. van der 

Sluis et al. (2013) proposed a method TATES for testing association between multiple traits 

and multiple SNPs using extended Simes procedure on the univariate p-values derived from 

univariate trait and single SNP association analysis. Recently, Maity et al. (2012) proposed a 

kernel machine method for joint analysis of multiple genetic variants, which treats the SNP 

effects as a random effect in the model. Their test for association between multiple SNPs 

and the phenotypes is equivalent to testing the variance components corresponding to the 

random effect in a multivariate linear mixed model. Implementation of this approach 

requires parametric bootstrapping to estimate the distribution of the test statistic and could 

be computationally intensive at a GWAS level. Also this method has been proposed for 

unrelated individuals.

Recently, the advantage of using canonical correlation analysis to perform gene-based tests 

on multivariate phenotypes has been elaborately discussed in Tang and Ferreira (2012). 

Previously, Ferreira and Purcell (2009) proposed a multivariate test of association based on 

canonical correlation analysis (CCA) to simultaneously test the association between a single 

SNP and multiple phenotypes. Their CCA approach is equivalent to multivariate analysis of 

variance (MANOVA) or more generally the Wilk’s lambda test in multivariate multiple 

linear regression (MMLR) approach (Muller et al., 1984). According to O’Reilly et al. 

(2012), MultiPhen and CCA performed very similarly in terms of power to detect causal 

variants except in case of low frequency SNPs and non-normal phenotypes. Both O’Reilly et 

al. (2012) and van der Sluis et al. (2013) found significantly high power of CCA in case of a 

subset of traits were associated with the causal variant or gene. One major advantage of 

CCA is that it can easily be extended to incorporate multiple phenotypes as well as multiple 

SNPs ( such as a gene). CCA provides the opportunity to study such multivariate phenotype-

genotype association analysis. But CCA cannot accommodate covariates and one needs to 

perform the computationally intensive permutation testing to implement CCA in family data 

(Ferreira and Purcell, 2009).

In this paper, we have used the equivalence between the canonical correlation analysis and 

multivariate multiple linear regression (MMLR) approach to analyze multiple traits as well 

as multiple SNPs in families. In fact, our approach can be applied to samples involving both 

families as well as unrelated individuals.The advantage of MMLR approach is that one can 

easily incorporate the covariates in the model. Another advantage of MMLR approach is 

that it could provide a gene-based test of association without the need for permutation 

testing (Tang and Ferreira, 2012). We have proposed here a rapid MMLR (RMMLR) in 

families. We have developed related R package to perform a multivariate gene-based 

GWAS with this RMMLR approach. We have compared the performance of this RMMLR 

approach with several existing gene-based association analysis approaches, all of which 

require permutation or resampling techniques to estimate the null distribution of the test 

statistic in presence of correlated SNPs or correlated phenotypes.
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2 Methods

2.1 Models

For a set of pedigrees each including one or more related individuals, let ylij denote the 

measured phenotype l on individual j in pedigree i (i = 1, … , m, j = 1 , … , ni, ∑i = n, and l 

= 1, … , L). Let Xijk denote the additive genotype score of k-th SNP (k = 1, 2, … , K) with 

alleles ‘A’ and ‘a’ of individual j in pedigree i, and Xijk can take values of 0, 1, or 2 

depending on the number of minor allele ‘A’ for individual j in i th pedigree. Let vector Yli = 

{yli1, … , ylini} denote the vector of l-th phenotype on individuals in i-th pedigree, and Xik 

= {Xi1k, … , Xinik} denote the vector of genotypes of k-th SNP from pedigree i. Let Ci be a ni 

× p matrix that contains the p covariates of pedigree i. We are interested in methods to 

conduct gene-based association analysis in pedigrees with one (unrelated individuals) or 

more related members with univariate or multivariate quantitative phenotypes.

For a quantitative phenotype l, we can do a single SNP association test for the k-th SNP 

using the following linear mixed effect model,

(1)

(2)

where αl is the population mean, βlk is the additive fixed effect of the k-th SNP on l-th trait, 

βlc is a size p vector of the covariate effects, and εli is the random residual term for l-th trait 

which is modeled as

(3)

assuming independent pedigrees. The ni × ni matrix Vli is the variance-covariance matrix for 

l-th trait. To simplify the notation as shown on the right hand side of equation (1), the 

observed data on the (p + 1) fixed predictors (1 SNP, p covariates) and the intercept 

corresponding to pedigree i are contained in the ni × (p + 2) design matrix Xi, and the (p + 2) 

parameters are contained in the vector βl for l-th trait.

A maximum likelihood estimator of Vli is calculated by  by assuming multivariate 

normal distribution of the phenotype and certain parametric structure of Vli and considering 

the above model in Equation 2 but without the SNP term Xikβlk. As shown in Li et al. 

(2011b), this approximation technique produces minimally biased estimates of Vli under the 

assumption that a single SNP explains a small part of the total phenotypic variance. Let 

be the block-diagonal matrix with ’s on its diagonal blocks, i =1,2, … , m. We used 

bdspackage() in R (Hornik, 2012) to compute the inverse of this block-diagonal matrix, 

denoted by  and a Cholesky decomposition of  as  (Golub and Van 

Loan, 1996; Horn and Johnson, 1985; Trefethen and Bau, 1997). The Cholesky 

decomposition of the positive definite covariance matrix  yields a matrix Sl such that 

, where Sl is lower triangular with positive diagonal elements. The matrix Sl is 
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called the ‘Cholesky factor’ of  and is equivalent to the square-root of  , denoted by 

. Hence  would multivariate normal distribution with mean  and 

covariance matrix . In other words, the transformed data  or SlYl 

would produce observations following multivariate normal distribution with mean SlXβl and 

covariance matrix I.

Then a simple linear regression for these unrelated observations is carried out using the 

Cholesky-factor-transformed data,

(4)

where X is the n × (p + 2) matrix containing predictor values of all the m pedigrees, Yl is the 

size n vector of phenotypes, βl = (αl, βlk, βlc) as defined in equation (2), and the residual term 

 is distributed as N(0, I). We make association calls based on the F-test statistics from the 

simple linear regressions in equation 4. Here we want to test the null hypothesis H0 : βlk = 0, 

for k = 1, 2, … , K and l = 1, 2, … , L.

2.2 Combination Methods

We used two combination methods to perform gene-based association analysis. The 

combination methods combine the single SNP association p-values to generate test statistics 

for the gene-based tests. At the first stage, p-values for all SNPs within a gene are obtained 

through single-SNP association tests based on standard regression models adjusting for other 

covariates. We used a rapid feasible generalized least square (RFGLS) approach (Li et al., 

2011b) to perform the single SNP association analysis in pedigrees. The second stage 

requires the use of a single p-value to represent the significance of each gene. We applied 

two methods, the Fisher’s combination test and minP approach to calculate the significance 

of each gene.

• minP approach: Consider K SNPs within a gene. The minP test statistic is given 

by  for a single phenotype. We can extend it to consider testing 

association between genes and multiple phenotypes. For L phenotypes and K SNPs, 

the test statistic is given by . Under the assumption of 

independence among the SNPs as well as among the phenotypes, this test statistic 

has uniform distribution between [0,1] under null. For positively correlated tests, 

this test tends to be conservative. There are alternative approaches such as Simes 

method, Sidak method (Simes, 1986; Li et al., 2011a; Sidak, 1967) that improve the 

conservativeness of the test. Otherwise permutation procedure or parametric 

bootstrap could be used to get valid p-values.

•
Fisher’s Combination Test: The test statistic is given by  for 

SNPs and a single phenotype, which has a chi-square distribution with 2K degrees 

of freedom under the null hypothesis when the K tests are independent. We can 

extend this test for multiple phenotypes as well. The test statistic for testing no 

association between a gene and multiple phenotypes could be given by 
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 for K SNPs and L phenotypes. Assuming we have 

independent tests here, this test statistic has a chi-square distribution with 2KL 

degrees of freedom under the null hypothesis H0. The major issue with this test is 

that it becomes anti-conservative for positively correlated tests, which could be the 

situation for the SNPs in LD or for positively correlated multiple traits. Hence a 

permutation procedure or parametric bootstrap technique (equivalent to VEGAS-

SUM approach) is needed if a valid p value is to be obtained. The Versatile Gene-

Based Test for Genome-wide Association (VEGAS) (Liu et al., 2010) is a recent 

multivariate method that sums the association signal from all the SNPs within a 

gene and corrects the sum for LD to generate a p-value. One thing to note here is 

that VEGAS can only handle a single trait to perform a gene-based GWAS.

2.3 Direct modeling of multiple SNPs and multiple phenotypes

The combination methods provide a convenient way of proposing gene-based tests by 

utilizing the single SNP association p-values. However by directly modeling multiple 

correlated traits and multiple SNPs, one could detect pleiotropic effects and could gain 

power by jointly modeling the effects of multiple SNPs in a single model.

Multivariate multiple linear regression—Below we describe a multivariate multiple 

regression model (MMLR) with L traits and K SNPs for n unrelated individuals. Consider 

the following model for n individuals with outcome variable  in 

Equation 4 of length L:

where ei = (ei1, …eiL) follows multivariate normal distribution;  contains 

transformed data on L phenotypes; Zi contains the transformed data SlXi on K predictors 

(SNPs) and intercept for the i-th individual. The vector β = (β0, β1, β2, … , βK) represents the 

parameters corresponding to the intercept and K SNPs. In this case the within-sample sum of 

squares (SS) matrix (W) is calculated as the covariance matrix of the residuals of the model, 

and the between-sample SS matrix is calculated as the covariance matrix of the fitted values 

(B). We use the Wilk’s λ test, , where T = W + B to test the null hypothesis β = 0. It 

has been shown that for unrelated individuals, this MMLR approach is equivalent to the 

CCA approach mentioned before (Muller et al., 1984).

Compared with CCA, MMLR is much easier to expand to family structure and adjust for 

covariates. To apply it to family data, we use the computationally efficient RFGLS approach 

(Li et al., 2011b). We calculate the within-cluster covariance matrix for each trait, and left-

multiply both the traits and the predictors separately by the inverse-square-root of the 

estimated covariance matrix. This transformation gives us the traits individually as 

independently distributed. We then compute the residuals for each trait from a model with 

intercept and modified covariates as well as the SNPs. Let us denote the residuals as 

. We compute the covariance matrix of these residuals. This will be our W. In 
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order to calculate T, we compute the residuals for each trait from a model with only intercept 

and the modified covariates. The covariance matrix of these residuals will give us T. We 

calculate our test statistic as , which will be approximately distributed as F with 

degrees of freedom df1 and df2, where df1 = KL and . 

We refer to this approach as rapid multivariate multiple linear regression (RMMLR).

2.4 Simulations

To compare different methods, we investigated their type I error and power by simulating 

data on nuclear families with two parents and two offspring. For simulating genotype data 

on a gene, we used a simulation set-up very similar to that of Li et al. (2011a). First, we 

generated genotype data on 16 SNPs with different LD structures. We generated 3 

independent blocks of SNPs; the first and the third block with 6 SNPs and the second block 

with 4 SNPs. For low linkage disequilibrium (LD) scenario, pairwise LDs (r2) were 0.5, 0.4, 

0.5 for the 3 blocks respectively; while for high LD scenario, pairwise LDs (r2) were 0.9, 

0.8, 0.9 respectively. The minor allele frequencies (MAFs) for 3 blocks were 0.2, 0.4, 0.25 

respectively. Note that Xijk denote the genotype of the k-th SNP for the j-th member in the i-

th family. For j-th member in i-th family, we draw a vector (16 × 1) of latent variables Uij, 

from multivariate normal with covariance matrix as (1) low LD structure as shown in 

appendix of Li et al. (2011a); (2) high LD structure as shown in appendix of Li et al. 

(2011a). Then by assuming HWE, we dichotomize Uijk such that if , then Xijk=2; if 

Uijk > 1 − (1 − pk)2, then Xijk = 0; otherwise Xijk=1, k = 1, … , 16 and pk is the MAF of kth 

SNP. We repeat this procedure to simulate genotypes of parents for all the nuclear families. 

Then following Mendel’s Law, we generate genotypes of 2 offspring in each family. From 

each LD block of SNPs, the first SNP is selected as the causal SNP. We consider 2 different 

gene-lengths such that the gene (1) contains the first 3 SNPs (2) contains all the 16 SNPs.

We then simulate five correlated traits. The simulation model is

where Yli = (Yli1, Yli2, Yli3, Yli4) is the vector of phenotypes for l-th trait in i-th family. The 

parameter αli is the polygenic random effect for i-th family and l-th trait. Gi is the matrix of 

genotypes of the causal SNPs, which is a 4× r matrix if we have r causal SNPs.

We allow correlation among different traits within each family. Suppose we have 5 traits, 

We then draw αi = (α1i1, α1i2, α1i3, α1i4, …, α5i1, α5i2, α5i3, α5i4) from multivariate normal 

with mean 0 and covariance matrix ∑1 as:
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where Φ is the kinship matrix and ρab is the genetic correlation between traits, which is 

assumed in the simulation to be the same for all traits. In our simulation, for nuclear families 

with two offspring, we use the kinship matrix for offspring 1, offspring 2, parent 1 and 

parent 2 as

and . We also simulate the environmental component ei = (e1i1, 

e1i2, e1i3, e1i4, ….e5i1, e5i2, e5i3, e5i4) from multivariate normal with mean 0 and covariance 

matrix as:

where  represent the environmental variance of trait l, l = 1, … , 5. In majority of the 

simulations, we consider no environmental correlation between the trait values for the same 

individual, i.e W = I. Also we assume . For a 3-snp gene, only 

the first block is used; while for the 16 snp gene, all 3 blocks are used. We simulate 5 traits 

with different genetic correlations between the traits: ρab = 0.33, 0.67, 1, which corresponds 

to a phenotypic correlation between the traits of 0.2,0.4 and 0.6 respectively. The first SNP 

of every block is the causal SNP under the alternative, if the gene has covered that block.

This means that the correlations between different traits are entirely coming from the genetic 

effect rather than the environment effect. Lastly, we add the causal SNP(s) effect to the 

mean. The causal effect is obtained as , for the k-th causal SNP, where 

 is the phenotypic variance explained by the k-th causal SNP. For ρab = 0.33 and ρab = 

0.67, we also perform 5000 simulations to study the effect environmental correlation on 

power. We allow for environmental correlation of r = 0.25 and r = 0.5 between each pair of 

traits, i.e we consider W = rσelσelI, for each pair of traits l and k, l, k = 1, .., 5.

3 Results

We first simulated data under the null hypothesis to see the impact on type I error. We 

simulated 100000 datasets on 1000 nuclear families under the null hypothesis of no 

association between a gene and 5 traits. The type I error was estimated by calculating the 

proportion of times the asymptotic p-value of the test statistic for each method was 0≤001, 

0≤0001 and 0≤00001. We considered situations where the SNPs were in low LD and in high 

LD and presented here only the results for the gene with 16 SNPs. The minP statistic in low 

LD situation (Table 1) was not that conservative, but did get conservative in high LD 
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situation (Table 2). On the other hand, Fisher’s test was inflated due to the positive 

correlation among the traits as well as the SNPs. The type I error for Fisher’s test was 

substantially higher for the high LD situation (Table 2) as compared to the low LD (Table 1) 

condition due to the higher positive correlation among the SNPs. Moreover the type I error 

for Fisher’s test was increased as the correlation among the traits increased from 0.2 to 0.6. 

This are known issues with minP approach and Fisher’s test, but we still wanted to 

demonstrate the extent of the impact of correlation among traits as well as SNPs on these 

two popular approaches and the need to use approaches such as Liu et al. (2010), Li et al. 

(2011a) to correct for these issues with type-I error. On the other hand, the RMMLR 

approach maintained correct type-I error under both low LD and high LD situation and for 

different degrees of correlation among the traits.

We next simulated data under the alternative. We considered situations where the gene was 

associated with 1, 2, 3, 4 or all 5 traits. For each scenario, we simulated 5000 datasets on 

500 nuclear families. We also considered 2 different gene-length and different LD patterns 

among the SNPs to see the impact of gene-length and LD on power. We reported the 

empirical power for the minP and Fisher’s test in order to correct for any inflatedness or 

conservativeness in the type I error. The empirical power was calculated by counting the 

proportion of times the trait SNP was called significant (p-value ≤ empirical 0.001-th cut-

off) out of the 5, 000 simulations. Since RMMLR approach maintained correct type I error 

rate, we reported the asymptotic power for the approach.

We first simulated data on 500 nuclear families for a gene of size 3 SNPs with one causal 

SNP explaining .6% of the phenotype variance. Table 3 shows the empirical power of minP, 

Fisher’s test and asymptotic power of RMMLR at a type-I error level of .001. We reported 

here the situations where the causal SNP is associated with all the traits and the situation 

where 3 of the traits are associated with the SNP. In case of complete association, minP and 

Fisher’s test had comparable power (Table 3) for different inter-trait correlations. The power 

for RMMLR approach was relatively lower than the other two approaches. All of them lost 

power as we increased the inter-trait correlation among individuals. On the other hand, the 

RMMLR approach had significantly higher power than other approaches in case a subset of 

traits were associated with the gene ( Table 3). Moreover the power for gene detection 

generally went up for the RMMLR approach when the trait correlation was increased in case 

the gene was associated with a subset of the traits, but the other two approaches lost power 

as the trait correlation went higher. Especially, Fisher’s test performed very poorly when the 

trait correlation was high and a subset of traits were associated with the gene.

We next considered a 16-SNP gene with 3 causal SNPs explaining a total of 0.9% variability 

for each of the associated traits and where the gene was associated with 1,2,3,4 or all 5 traits. 

Figure 1 shows the performance of the different approaches when the correlation among the 

traits was 0.2,0.4 and 0.6. The SNPs were in moderate LD. In general, the RMMLR 

approach had significantly better or equivalent power to the other approaches except for the 

situation when the gene was associated with all the traits. It also appeared to perform better 

when the residual trait correlation was moderate or high (0.4 or 0.6). Especially when the 

trait correlation was 0.6, the power was substantially higher in case the gene was associated 

with a subset of traits (Figure 1). On the other hand, the power for both minP and Fisher’s 
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test decreased as the trait correlation was increased. Fisher’s test gained little power for the 

16-SNP gene compared to the 3-SNP gene situation (Table 3) due to the fact that multiple 

SNPs were associated with the traits. On the other hand, minP lost significant power for a 

16-SNP gene (Figure 1) as compared to the 3-SNP gene study for not accounting for 

multiSNP association. As expected, Fisher’s test had very good power when most or all the 

traits were associated with the gene, but its inflated type I error due to high correlation 

among traits or SNPs significantly limited its usefulness to perform gene-based association 

analysis.

We also checked the behavior of these approaches for a 16-SNP gene when the LD among 

the SNPs was high and the gene was associated with 3 out of the 5 traits. After correcting for 

type I error for minP and Fisher’s test, all the approaches maintained similar power for both 

the low LD (Table 4) and high LD situations (Figure 1). We also studied the effect of 

increasing environmental correlation for this 16-SNP gene with 3 causal SNPs and when the 

LD among the SNPs was high and the gene was associated with 3 out of the 5 traits. For a 

genetic correlation of ρab =0.33 and 0.67, we considered environmental correlation (r) of 

0.25 and 0.5. The overall residual trait correlation was 0.3 and 0.4 for ρab = 0.33 and r= 0.25 

and 0.5 respectively. The overall residual trait correlation was 0.5 and 0.6 for ρab = 0.67 and 

r= 0.25 and 0.5 respectively. Our findings were very similar to Table 4. The power 

substantially went up for the RMMLR approach with the increase in residual trait 

correlation, but both minP and Fisher’s test lost power with the increase in residual trait 

correlation (results not shown).

In summary, the RMMLR approach performed really well when some but not all the 

correlated traits were associated with the gene. Moreover, the RMMLR approach maintained 

the correct type I error even for highly correlated traits and for markers in high LD. Hence 

this RMMLR approach provides a computationally efficient technique for gene-based GWA 

studies using unrelated individuals or families. Under complete association, Fisher’s test 

performed really well for detection of association, but we had to correct for the inflatedness 

in the type I error by simulating data under the null. The minP approach performed well for 

a 3 SNP gene, but the power of the minP approach was substantially lower than the other 

approaches for the 16-SNP gene.

3.1 Real Data Analysis

A genome-wide gene-association analysis was carried out using our proposed RMMLR 

approach and other existing tests on data from the Minnesota Center for Twin and Family 

Research (MCTFR), which consists of an interrelated series of longitudinal twin, family and 

adoption studies. The MCTFR sample and genotyping methods have been described by 

Miller et al. (2012); the MCTFR phenotypes have been described by Hicks et al. (2011); and 

an initial SNP-based GWAS analysis has been reported by McGue et al. (2013). Briefly, the 

sample used here includes 7188 individuals of European ancestry clustered in 2300 nuclear 

families. Included are 2072 mothers (mean [SD] age at assessment of 42.8 [5.3]), 1780 

fathers (44.9 [5.7]), 1788 daughters (18.0 [0.8]) and 1548 sons (17.9 [0.7]). Families are 

distinguished by the relationship of the two participating offspring, which were either 

monozygotic twins, same-sex dizygotic twins, full biological siblings, adoptive siblings, or 
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mixed adopted/biological siblings. The sample was genotyped using Illumina’s Human 

660W-Quad Array (Illumina, Inc., San Diego, CA) and a description of the quality control 

(QC) procedures is given in Miller et al. (2012). Of the 561,490 SNP markers on the array, 

527,829 (94.0%) passed all QC filters. QC filters on samples resulted in removal of fewer 

than 2% of genotyped participants. European ancestry was based on self-report and was 

confirmed through the principal component analysis of the covariance matrix of marker data 

as implemented in the Eigensoft package (Price et al., 2006).

The four quantitative clinical phenotypes used in this analysis are all indicators of a higher-

order construct known as externalizing or disinhibitory psychopathology (Iacono et al., 

2008). These phenotypes were derived using a higher-order factor analytic approach (Hicks 

et al., 2011) and included: 1) Nicotine factor (NIC_FAC), a measure of symptoms of 

nicotine dependence, 2) Alcohol Consumption factor (ALC_FAC), a measure of quantity 

and frequency indicators of alcohol consumption, 3) Illicit Drug Consumption factor 

(DRG_FAC), a measure of use of and symptoms of abuse and dependence on illicit 

substances, and 4) Behavioral Disinhibition factor (BD_FAC), a measure of indicators of 

non-substance use behavioral disinhibition. In the MCTFR, parents are typically assessed a 

single time, while offspring are assessed longitudinally, spanning adolescence through early 

adulthood. The factor scores here for the offspring are based on the assessment completed 

nearest their 17th birthday so long as that assessment was completed when they were 

between 16.5 and 21 years. The average (range) correlation among these four phenotypes 

was .56 (.46 to .68). We conducted both univariate and multivariate gene-based GWAS 

scans for these 4 phenotypes using our RMMLR approach. Covariates in these analyses 

included sex, age, generation (i.e., parent versus offspring) and the first 10 principal 

components of the genotype covariance matrix derived by the Eigensoft package (Price et 

al., 2006). For comparison, we also report findings from VEGAS-SUM gene-based GWAS 

findings. One important issue to note is that RMMLR is much more computationally 

efficient than the VEGAS-SUM approach. Moreover, RMMLR can perform multivariate 

gene-based GWAS, which could have more power to detect multi-SNP association within a 

gene.

We first used our RFGLS approach (Li et al., 2011b) to perform single SNP association 

tests. The stepparents in the sample were treated as unrelated individuals and the rest of the 

sample was classified into different family types. We assumed a 12 parameter structure for 

the residual covariance matrix to account for the difference in variances and correlation 

among the pedigree members in different family types. We then assumed normal 

distribution of the traits to estimate the covariance matrix through maximum likelihood 

estimation. The VEGAS-SUM approach was then used to perform a gene-based GWAS 

using the single SNP association test statistics. Next we used the same gene definition as 

used by VEGAS to implement the RMMLR approach. We estimated the pair-wise 

correlations among the SNPs within a gene and removed all except one of the SNPs in 

perfect LD with each other for our gene-based analysis.

The VEGAS-SUM approach is similar to the Fisher’s test we used in our Simulation study. 

The positive correlation in SNPs within a gene can cause inflatedness in the VEGAS test 

statistic. The bootstrapping in the VEGAS-SUM approach adjusts for such inflatedness. We 
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performed a maximum of 107 such bootstrap iterations to estimate the null distribution of 

the VEGAS test statistic. Note that it took us 6.02 hours of CPU time to do the 17,600 genes 

using 520,478 SNPs and it used up to 20 GB of RAM to conduct this gene-based GWAS.

On the other hand, RMMLR was computationally very efficient and took us significantly 

less time (2.35 hours of CPU time) and memory (approximately 1.95 GB of RAM) to 

complete the analysis. Moreover, we were able to perform both univariate and multivariate 

gene-based GWAS with this approach (Figure 2 and Figure 3). The multi-trait multi-SNP 

association analysis did produce several more significant findings as compared to individual 

univariate multi-SNP association analysis, supporting our hypothesis of possible association 

between a subset of phenotypes and genes (Figure 3). Through our multivariate analysis, we 

found the gene RPL7 on Chromosome 8q21.11 to be genome-wide significant (p value 

6.135530 × 10−7) even after applying Bonferroni correction for multiple testing (.05/17600 

= 2.84 × 10−6). The corresponding univariate p values produced by the RMMLR approach 

were 0.007322907 for BD_FAC, 2.023403 ×10−5 for ALC_FAC, 0.001710981 for 

DRG_FAC and 0.004259516 for NIC_FAC. None of them were significant at the genome-

wide level. Other than RPL7, we found gene MYL1 on Chromosome 2q33-q34 and RDH10 

on 8q21.11 to have p-values <.00001 in the multivariate gene-based association analysis.

4 Discussion

Very few methods are available to model association between multiple traits and multiple 

SNPs. In the study of a complex disease, several correlated traits are often measured as risk 

factors for the disease. Analyzing multiple disease-related phenotypes could potentially 

increase power to detect association of SNPs/genes with a disease. Moreover this joint 

analysis could reveal some pleiotropic genes involved in the biological development of the 

disease. Our flexible RMMLR approach could provide gene-based association analysis with 

univariate as well as multivariate traits. Our approach could be applied to secondary 

continuous traits collected as part of a case-control study using the retrospective likelihood 

method developed for mapping secondary phenotypes using regression models (SPREG) in 

case control studies (Lin and Zeng, 2009). One could also use this approach for interaction 

detection by adding higher order interaction terms in the regression model if there is any 

prior evidence or interest in modeling interaction between certain SNPs in a gene. The 

RMMLR approach is computationally efficient and simulation studies showed substantial 

power gain when the gene is associated with a subset of traits, especially in presence of 

moderate or high residual trait correlation. The method remains valid even when there is 

high LD among the SNPs and hence the asymptotic Wilk’s test can be used to assess the 

association. We have developed an R package to perform gene-based GWAS analyses with 

this RMMLR approach.

The CCA or MMLR approach has already been successfully implemented for unrelated 

individuals. Tang and Ferreira (2012) demonstrated the advantage of this CCA approach in 

multi-trait and multiSNP association analysis. Many genome-wide association studies 

involve family samples.
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Ferreira and Purcell (2009) suggested technique for family data is computationally intensive 

and can only be implemented for single SNP association analysis. Here we propose a 

technique that can be implemented in families as well as in unrelated individuals. It is 

computationally efficient and captures the desirable features of the CCA algorithm. It has 

much higher power compared to the existing approaches, when a gene is associated with 

only a subset of traits.

It could get computationally intensive to compute the variance-covariance matrix in the 

MMLR approach (Equation 4) for every gene in the gene-based GWAS analysis. Our 

RMMLR approach is an approximation technique that avoids such intensive computation. 

The method works based on the principle that most of the genes in the GWAS study have 

very little or no effect on the traits. Hence estimating the variance matrix without including 

the gene effect does not cause much loss in power. On the other hand, if a gene is associated 

with the traits, our approximation technique can detect it. In our simulation studies, the 

RMMLR approach had more than 80% power to detect a gene explaining .6% of the 

phenotypic variance and in case the gene is associated with a subset of the traits with a 

sample size of 500 families with a familial correlation of 0.6.

Our univariate gene-based association testing with VEGAS was computationally intensive 

and it took us 6.02 hours of CPU time to test 17,600 genes using 520,478 SNPs and it used 

up to 20 GB of RAM to conduct this gene-based GWAS. On the other hand, RMMLR 

approach was easy to implement and we were able to use the the asymptotic p-values of the 

gene-based test statistic to assess the significance of the genes.

One disadvantage of this RMMLR approach over the combination methods is that it requires 

availability of genotype and phenotype data on individuals in order to perform the 

multivariate analysis. On the other hand, these combination methods require only the p-

values from single SNP association analysis of univariate traits and hence might be more 

preferable to the user in some situations. We also need to remove SNPs in complete LD 

from the regression model to control for perfect multicollinearity for our RMMLR approach. 

Another issue is that the RMMLR approach assumes multivariate normality of the trait. 

Ferreira and Purcell (2009) found that the CCA approach remains valid even for non-normal 

trait. O’Reilly et al. (2012) found that in unrelated samples, CCA approach was sensitive to 

non-normality for low frequency SNPs. We expect similar behavior of the RMMLR 

approach in presence of non-normality, but intend to investigate it extensively through 

simulation studies in future.

In conclusion, our proposed RMMLR approach provides a useful framework for detection of 

gene-based association with single or multivariate traits, which could outperform the 

commonly-used permutation-based approaches, especially in case the gene is associated 

with a subset of traits. Our gene-based association analysis with multiple traits from the 

MCTFR dataset had some improved p-values as compared to the Univariate RMMLR tests, 

indicating evidence of association between the gene and a subset of these multiple correlated 

traits.
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Figure 1. 
Figure shows the performance of the multivariate test of association. The powers for minP, 

Fisher’s test and RMMLR approach are shown for different number of traits being 

associated with a gene with 16 SNPs. The three figures (left to right) corresponds to the 

residual trait correlation of 0.2, 0.4 and 0.6 respectively.
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Figure 2. 
Figure shows -log10(P-values) comparing the VEGAS-SUM and RMMLR approach for 

each of the 4 phenotypes NIC_FAC, DRG_FAC, ALC_FAC and BD_FAC respectively (top 

left, top right,bottom left, bottom right). There were 17600 genes. The filled squares show 

the qqplot of -log10(p-value)s for VEGAS-SUM approach. The filled circles show the 

qqplot of -log10(p-value)s from the RMMLR approach.
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Figure 3. 
Figure shows -log10(P-values) using RMMLR approach for each of the 4 phenotypes as 

well as for the 4 phenotypes analyzed together. The filled circles show the qqplot for -

log10(p-value)s of RMMLR while analyzing the 4 phenotypes together.
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Table 1

Type I error for testing association between 5 traits and a gene of length of 16 SNPs. There is moderate LD 

among the set of SNPs.

α = 0.001 α = 0.0001 α = 0.00001

Trait cor minP Fisher RMMLR minP Fisher RMMLR minP Fisher RMMLR

0.2 0.0012 0.0071 0.00095 9.8e−5 0.0018 9.75e−5 9.4e−6 4.5e−4 9.9e−6

0.4 0.0011 0.026 0.00095 9.5e−5 0.0012 9.5e−5 9.7e−6 5.8e−3 9.9e−6

0.6 0.0011 0.035 0.00096 9.8e−5 0.0017 9.5e−5 9.6e−6 8.7e−3 9.7e−6
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Table 2

Type I error for testing association between 5 traits and a gene of length of 16 SNPs. There is high LD among 

the set of SNPs

α = 0.001 α = 0.0001 α = 0.00001

Trait cor minP Fisher RMMLR minP Fisher RMMLR minP Fisher RMMLR

0.2 0.0007 0.026 0.0011 8.03e−5 0.0016 9.97e−5 0.000 5.5e−3 1.004e−5

0.4 0.0008 0.048 0.00095 5.1e−5 0.026 1.02e−4 0.000 0.0015 1e−5

0.6 0.0008 0.076 0.001 0.000 0.048 9.5e−5 0.000 0.031 9.9e−6
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Table 3

Power of different methods for 3-SNP gene (1 causal SNP): moderate LD

Trait cor All 5 traits associated 3 traits associated

minP Fisher’s test RMMLR minP Fisher’s test RMMLR

0.2 0.687 0.815 0.653 0.574 0.425 0.596

0.4 0.596 0.535 0.463 0.536 0.247 0.639

0.6 0.476 0.475 0.285 0.406 0.149 0.801
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Table 4

Power of different methods for 16-SNP gene (3 causal SNPs): LD is high and 3 of these 5 traits are associated 

with the causal snps.

Trait cor minP Fisher’s test RMMLR

0.2 0.171 0.450 0.419

0.4 0.170 0.250 0.523

0.6 0.152 0.144 0.675
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