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ABSTRACT Fluorescence in situ hybridization data on
distances between defined genomic sequences are used to
construct a quantitative model for the overall geometric
structure of a human chromosome. We suggest that the
large-scale geometry during the Go/G1 part of the cell cycle
may consist of flexible chromatin loops, averaging -3 million
bp, with a random-walk backbone. A fully explicit, three-
parametric polymer model of this random-walk/giant-loop
structure can account well for the data. More general models
consistent with the data are briefly discussed.

A human chromosome is a very large molecule. Its DNA
strand has in the order of 100 million base pairs (Mbp) arrayed
along its contour and has a Mr of -1011 Da. Quantitative
information on mammalian chromosome geometry during the
interphase part of the cell cycle is very extensive for scales
<0.01 Mbp (1, 2) but not for larger scales. At the level of
-0.001-0.01 Mbp the DNA is associated with proteins to form
a chromatin fiber "30 nm in diameter (1, 2); at scales of -0.1
Mbp the chromatin may form loops (2). Very little is known
numerically about the larger-scale geometry, comprising >3
orders of magnitude (0.1-300 Mbp), where the difficulty of
following the chromatin fiber as it winds and twists its way
within the interphase cell nucleus has crippled quantitative
analyses. Yet, large-scale geometric structure of chromosomes
influences essential cellular processes such as DNA replication
and transcription (2), as well as many specialized functions
such as repair or misrepair of ionizing-radiation-produced
DNA damage (3, 4).

Recently, van den Engh et at (5) used fluorescence in situ
hybridization data to quantify some intermediate-scale prop-
erties of interphase chromosomes. These investigators mea-
sured physical distances between pairs of fluorescently marked
specific DNA sequences on human chromosome 4 in fibroblast
cells fixed on microscope slides. The observations were made
for cells in the Go/G1 phase of the cell cycle, the period
between mitosis and the onset ofDNA replication. Probe pairs
having genomic separations from -0.1 Mbp to "4 Mbp were
analyzed. A major conclusion was that, on scales from 0.1 Mbp
to 1.5 Mbp, chromatin geometry corresponds to a simple
random walk. Observed deviations from random-walk behav-
ior at larger genomic separations could be explained by a
polymer model in which the DNA of any one chromosome is
confined to a spherical subvolume of the interphase nucleus
(6). An alternative suggestion was that the deviations were due
to "giant" loops, several Mbp in length (7)-i.e., far bigger
than the more familiar -0.1-Mbp loops whose properties are
summarized, e.g., by Tsanev et at (2).
H.Y. et al. (unpublished data; H.Y., G.v.d.E., and B.T.) have

now extended such fluorescent probe-pair data to much larger
scales, up to the full length of a chromosome. Physical dis-
tances were obtained for >100 probe pairs, having genomic

separations from 0.15 Mbp to 190 Mbp and located on human
chromosomes 4, 5, or 19. These new data can be used to test
the models of large-scale chromatin geometry. Our analysis
will presuppose that the distributions observed in the fixed
samples of Yokota et at (8) reflect the distribution of marker
pairs in the living cell. On this assumption the data show there
are two, and probably only two, levels of chromatin structure
over the range 0.15-200 Mbp, with the chromatin at genomic
separations greater than a few Mbp not spreading out as fast
as one would expect from its behavior in the 0.15- to 1.5-Mbp
range. We shall argue that the simplest interpretation of the
data is to assume that there are flexible chromatin loops
averaging -3 Mbp, with their base points along a random walk.
The heart of the argument is given by Eqs. 10-12 in the Results
section.

DATA
Figs. 1 and 2 compare results of H.Y. et at (unpublished data)
with a model to be introduced later. Relationships between
mean-square physical distance and genomic separation fall
into two markedly different regimes, with a sharp transition at
several Mbp (Fig. 1). For values of genomic separation <1.5
Mbp, the points lie approximately on a straight line (Fig. 1A),
corresponding to random-walk behavior for chromatin, in
agreement with earlier data (5). Genomic sites separated by
10-190 Mbp also show an approximately linear relation but
with a much smaller slope (Fig. 1 B). Moreover, for these large
genomic separations, the statistical distribution of distances
for a given probe pair also corresponds to random-walk
behavior (Fig. 2). We now present a mathematical model, used
to interpret Figs. 1 and 2 as well as other results of H.Y. et al.
(unpublished data).

MATHEMATICAL METHODS
Polymer Models. As in other recent treatments (5-7) we

consider polymer models for the chromatin at scales .0.1
Mbp. The idea behind polymer models is that by ignoring
small-scale intricacies one can arrive at comparatively very
simple overall statements about average large-scale behavior
in situations where random influences smooth out details (9,
10).
As shown in Fig. 3, the models use a sequence of "beads"

located at equal genomic separations along the chromatin (10).
The beads are primarily a bookkeeping device, and their
postulated genomic separation can be selected to fit the
situation of interest. For our purposes, the separation should
not be much larger than the resolution of the data, -0.1 Mbp,
but should be large compared with the statistical segment of
the worm-like chromatin coil that connects consecutive beads.
Free DNA has a statistical segment of _10-3 Mbp (11), and
the 30-nm fiber appears to have a statistical segment in the
0.01- to 0.1-Mbp range (6, 7). Therefore we assign a separation

Abbreviation: Mbp, million base pairs.
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FIG. 1. Physical distances and genomic separations. Graphs show
mean-square two-dimensional distance (r2) between two DNA probes as
a function of their genomic separation along human chromosome 4. All
data points are from H.Y. et al. (unpublished data), "preparation 384."
Nineteen different DNA sequences were measured in 80 different pairs,
44 for genomic separations of 0.15-3.5 Mbp (A) and 36 for separations of
10-190 Mbp (B). For each data point -150 replicate measurements were
made (unpublished data). SEMs (not shown) are -4%. InA and B the
broken (- *) line shows the initial slope inA, and the dotted line is the best
linear fit to the data points in B; the difference in slope is =20-fold. InA,
the solid, curved lines are upper and lower bounds predicted by the
random-walk/giant-loop model (see text). The solid lines in B are
envelopes of the solid lines shown in A.

of 0.1 Mbp to the genomic separation between consecutive
beads; by rescaling (10) one could use other, similar values
without substantive changes in any of the arguments or results
below. Structure on genomic separations significantly >0.1
Mbp, such as structure responsible for the transition at several
Mbp in Fig. 1, can be modeled by interactions between beads
that are not consecutive (see Results).
We follow the notation of Doi and Edwards (10). Cartesian

coordinates of the beads are denoted by Xg, i = 0, .. ., N (Fig.
3). The Z direction is taken perpendicular to the microscope
slide. The data concern only the (X, Y) plane. Cartesian
components and projections in the (X, Y) plane are written as
follows:

xi = (xi, Yi, Zi) = (x; Zi), i.e., (Xj, Yj) xj. Ill

Equilibrium statistical properties of polymers are often rep-
resented as properties of a mechanical system with negligible
kinetic energy (10). The probability density G(Xo, .. ., XN) for
having a bead configuration Xo, .. ., XN can then be regarded
as a Boltzmann distribution (10):

G(XO, ... ., XN) = C exp(- U/kBTh. [2]

...

PA-V 0
a

Li 0 m-co a oa a 0
0 0 00lbh 0 0000

0 40 80 120 160
Genomic Separation (Mbp)

200

FIG. 2. Statistical ratios. For the data points in Fig. 1B, open
squares show the ratio of sd in distance r to the mean, and the closed
squares show the ratio of median to mean. Solid lines show the ratios
predicted by the flexible-backbone/giant-loop model and do not
depend on any adjustable parameters. Dotted lines, shown for com-
parison, are the ratios for a randomly oriented, rigid rod.

Here C is the normalization constant, U(Xo, ..., XN) is the
potential energy of the system of beads, kB is Boltzmann's
constant, and T is the temperature.

Distance Probability Densities for a Fluorescent Probe Pair.
A given pair of fluorescent probes can be taken to correspond
to a particular pair of beads, numbered i and j, respectively.
The observations concern the two-dimensional projected sca-
lar physical distance r between the probes, i.e.,

r = [(Xi22-=X)2 + (Y - -II= -xjII. [31

To analyze the data, one needs the distance probability density
P(r) for r. P(r) can be obtained by first finding the joint
probability densityP2 (xi - xj) P2 (u, v) for the two Cartesian
intervals u and v defined by u = Xi - Xj and v = Yi - Yj. P2
in turn can be obtained by integrating G in Eq. 2 over all
variables except u and v, i.e.,

P2(xi - xj) = c ds dw dZi dZj dX exp(- U/kBT), [4]

where s = '/2(Xi + Xj), w = '/2(Yi + Yj), and dX denotes
integration over 3 x (N - 1) Cartesian variables. The distance
probability density P(r) is then obtained by the Jacobian
relation appropriate for two dimensions, i.e.,

2)rf~~~~~P(r)dr = r dr dOP2(r coOS, r sinO). [5]

RESULTS

We now model chromosome geometry, first on intermediate
scales of 0.1-1.5 Mbp and then on larger scales.

Intermediate Scales. The model used by van den Engh et al
(5) to analyze chromatin behavior at the 0.1- to 1.5-Mbp level
is equivalent to taking U = UO in the probability density of Eq.
2, where

N

Uo = (K/2) IIXj - Xj_112,
j=l

[6]

with K a nominal spring constant that elegantly summarizes all
relevant smaller-scale chromatin structure (10). If U = Uo, the
mean-square physical distance depends linearly on genomic
separation (5, 10). The recent data of H.Y. et aL (unpublished
data) confirm the earlier results that on scales of 0.1-1.5 Mbp
this model is appropriate, in that points in the lower left of Fig.
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FIG. 3. Polymer models, showing the numbering of "beads," (solid

circles), used to track the large-scale geometry of a chromosome.
Beads 0 andN are at the chromosome ends (telomeres). N - 1900 for
human chromosome 4. Chromatin connections between consecutively
numbered beads are shown schematically as straight lines but are
actually tortuous paths with a contour length very much larger than the
bead-to-bead distance. With a genomic separation of 0.1 Mbp between
consecutive beads, their rms distance, determined by Eqs. 11 and 12,
is 1/2 ,um. The intricate DNA-protein structure of the 30-nm
chromatin fiber is too small-scale to appear (and appears in the
mathematics of the text only via a single constant K). Higher-order
chromatin structure is modeled by additional interactions (not
shown)-e.g., interactions between nonconsecutive beads (Fig. 4)
and/or interactions of the beads with an extrachromosomal structure.

1A lie approximately on a straight line (whose slope is -2
A.m2/Mbp). Therefore we later take U = Uo + CT in Eq. 2,
where CJis almost negligible at scales of <1 Mbp but is adjusted
to model higher-order structure.

In the special case U = Uo, the probability density (2) is
multivariate normal (i.e., Gaussian), and Eq. 4 shows that the
two-dimensional probability density P2 also has a Gaussian
form-namely,

P2(xi - Xj) = [F]-1exp[-IJxi - x112/2r] r = kBli J1 [7]

The further integration specified by Eq. 5, applied to the
probability density of Eq. 7, gives for the distance probability
density P(r) the form used by van den Engh et at (5) in
analyzing the data for length scales of 0.1-1.5 Mbp-namely,

P(r) = (r/r)exp[-r2/2r]. [8]

Rayleigh Probability Densities. Any probability density of
the form of Eq. 8, with F independent of r, is referred to as a
Rayleigh probability density (12). A Rayleigh probability
density leads to standard relations for means, mean squares,
medians, etc. For example, denoting averages by (... .), one has
the following results for the mean (r) and for the mean square
(rl-):

00 x0

(r) = 7 rP(r)dr = [nr{/2]1/2; (r2) = f r2P(r)dr = 2F. [9]

For the standard deviation sd this gives sd/(r) = [(4/Xr) - 1]1/2
-0.52. Similarly, one can derive median/(r) -0.94. The solid
lines in Fig. 2 show these values.
For comparison with the Rayleigh probability density, we

consider the probability density for r when one has two probes
fixed on a rigid, randomly oriented rod. Such a model could
approximate a chromosome with a rigid backbone in a spher-
ical nucleus, so the comparison gives some insight into whether
the results in Fig. 2 are informative. The probability that a rigid
rod makes angle 0 with the Z axis is sin 0, and from this
probability the statistical ratios shown as dotted lines in Fig. 2
can be worked out.

Large Scales. We now consider chromosome geometry for
scales of 2-200 Mbp. One striking feature of the experimental
observations for large genomic separations is that various
statistical ratios involving r approximate the Rayleigh values,
independent of genomic separation (H.Y. et al., unpublished
data); some of these data are shown in Fig. 2. However,
assuming Rayleigh probability densities with the additional
property of r being proportional to genomic separations Ii -
jI as in Eq. 7 would imply, via Eq. 9, a linear dependence of (r2)
on genomic separation over the entire range, whereas Fig. 1
shows biphasic behavior. We reasoned that by introducing
additional interactions between distant beads, but continuing
to assume U quadratic in the Cartesian coordinates, one could
obtain Rayleigh probability densities for each probe pair while
allowing more general dependence of (r2) on genomic sepa-
ration.
The sharp transition of the curve in Fig. 1 at several Mbp

suggests that there are at least two levels of chromosome
structure on scales of 0.1 Mbp or more. Significantly, the
apparent absence of additional structure in the curve for the
range 10-200 Mbp also suggests that perhaps there are only
two levels. The change in slope near several Mbp in Fig. 1
corresponds to a change from a loose random walk at smaller
scales to a tighter random walk at the largest scales. This
transition from looser to tighter suggests for a chromosome
some bending, or looping (7), or spiraling (13), or volume
constraint (6), or statistical clumping structure (14), with a
scale of a few Mbp.

Giant-loop models (7) are the simplest way to model such
distance dependence. The loops could be imposed by protein
links between chromosome locations separated by millions of
base pairs. For concreteness we shall first present a very
specific model (Fig. 4), and then outline a few of the (many)
alternatives or generalizations that differ in comparatively
minor ways.
A Random-Walk/Giant-Loop Model. The model to be

presented here has three adjustable parameters, correspond-
ing to the slopes of the two straight lines in Fig. 1A and the y
intercept of the dotted curve.

FIG. 4. A flexible-backbone/giant-loop model. The figure indi-
cates the mathematical conventions used, but not the actual geometry,
which has far more randomness and flexibility. As an idealization, all
loops are taken to have equal genomic length. For J =30, the beads
numbered 0, J, 2J, ..., (m - 1) J, mJ, ..., N - J, N are
loop-attachment points. Connections between consecutive loop-
attachment points are shown schematically as dotted lines. A model
with short (<0.2 Mbp) stretches of "linker chromatin" between loops,
analogous (on a much larger scale) to linker DNA between nucleo-
somes, would give very similar results. The schematic shows five giant
loops out of a total of N/J (-65 for human chromosome 4). Beads
numbered i and j are fluorescently labeled. The model predicts the
statistical distribution of physical distances between such fluorescent
probe pairs. di and dj are the genomic separations of the fluorescent
probes from the nearest loop-attachment points lying between the ith
and jth beads.

2712 Biochemistry: Sachs et aL
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For a formal definition of the model, suppose that U in Eq.
2 contains, in addition to the terms involving consecutive
beads, specified by the potential Uo of Eq. 6, harmonic
interaction terms between bead pairs separated by large
genomic intervals (Fig. 4). Specifically, suppose that for some
integer J, N/IJ is an integer, the total number of giant loops.
Suppose the end bead numbered 0 interacts with the Jth bead,
the Jth bead interacts with the 2Jth bead, and so on up to the
interaction of the N - Jth bead with the bead, numbered N, at
the other end (Fig. 4). Thus the beads numbered 0, J, 2J,
N are loop-attachment points, and a "backbone" is determined
by flexible connections between consecutive loop-attachment
points (Fig. 4). If the interaction is the same for each pair of
consecutive loop-attachment points, U is given by

N/IJ
U = Uo + (k/2) E IIXmrnjX(m-1J1'2, [10]

m=1

where U0 is the nearest-neighbor term of Eq. 6 and K 2 0 is an
effective spring constant for the backbone. Eqs. 2, 6, and 10
define the random-walk/giant-loop model mathematically.

For comparison with the data in Fig. 2, note that if Eq. 10
holds, the probability density G defined in Eq. 2 is a multi-
variate normal function of the 3N + 3 Cartesian coordinates
XO, Yo, ..., YN, ZN. By standard theorems on multivariate
normal distributions (15), P2 (xi - xj) is a (nondegenerate)
multivariate normal function of the two variables u and v
defined above Eq. 4. Eq. 10 also implies isotropy-i.e., no
preferred directions. Isotropy implies that u and v are uncor-
related, have zero means, and have equal variances. Therefore,
for some constant F, the Gaussian form Eq. 7 must hold. Eq.
7 directly implies the Rayleigh form, Eq. 8. Thus the random-
walk/giant-loop model, Eq. 10, is consistent with the data
shown in Fig. 2 and other data (H.Y. et al., unpublished data)
that suggests Rayleigh distance distributions.
To compare with the data of Fig. 1, one only needs to

determine the dependence of r (and thus of (r2)) on the
genomic locations of the ith andjth beads, using the probability
density given by Eqs. 2, 6, and 10. Here i and j need not be
loop-attachment points-i.e., need not be integer multiples of
J (Fig. 4). After evaluating the relevant integrals by a long
calculation, omitted here, it turns out that the results are
identical to results obtained by the following, rather amusing,
trick. One can find an "equivalent spring constant," call it Kij,
for the "equivalent spring" between the ith bead and the jth
bead, using the usual elementary rules for combining springs
in parallel (add the constants) or in series (use the reciprocal
of the sum of reciprocals). It is then found from Eqs. 4, 5, and
9 that (r2) is determined simply by the usual equipartition rule
for two degrees of freedom-i.e., ½2 Kij(r2) = 2 x (1/2 kBT),
implying (r2) = 2kBT/ Kij.

If the ith bead and jth bead are not on the same giant
loop-i.e., if there is at least one integer of the form mJ
between i andj (Fig. 4), integration (or combining springs)
gives

(r) = Sd+S[di(do-di)+dj(do-dj)]. [11]

Here d is the genomic separation between the probes, do is the
genomic length of a giant loop, and di and dj are intraloop
genomic locations. If the ith andjth bead are on the same giant
loop, Eq. 11 still applies, provided we set di = d and dj = 0. In
the equation, S and S are scale factors, having dimensions of
, Specifically, S = kBT/(A + kdo) and S = KS/A, whereA
-doA/J. The three essential parameters of the model are S, 5,
and a giant loop genomic size do; these are adjusted from the
data in the way explained above Eq. 12.

Eq. 11 shows that the mean-square physical distance de-
pends on the intraloop locations di and dj, not just on the

separation d. In practice di and dj are not known, so in Fig. 1A
two solid curves are drawn to show extremes of the theoretical
values. The lower solid curve gives the minimum in Eq. 11 for
a given d, which occurs when di = 0 (or dj = 0). The upper solid
curve in Fig. 1A gives the maximum, which occurs if di = dj '
3do/4. For a given d the other theoretical possibilities lie
between these two extremes. The upper and lower solid
straight lines in Fig. 1B are corresponding envelopes, deter-
mined respectively by the points where di = dj = /2 do or di =
dj = 0. The detailed theoretical bounds for Fig. 1B are actually
curves that continue the solid curves of Fig. 1A, so data points
lying between the solid straight lines in Fig. 1B may be outside
the detailed theoretical bounds. However, the latter are ex-
tremely sensitive to changes in the model's adjustable param-
eters, uncertainties in the empirical values of d, or possible
variability in giant-loop size, so the more robust envelope solid
straight lines in Fig. 1B are perhaps more informative as
bounds.
To estimate the three adjustable parameters empirically we

regard the dotted curve in Fig. 1B as an average over internal
loop locations, taking di and dj independently and uniformly
distributed over the interval [0, do]. Averaging gives (r2) = Sd
+ 1 Sdo i.e., the parameters S^ and 1' Sd2 are the slope and
they intercept, respectively, of the dotted curve in Fig. 1B. A
third numerical relation is obtained by finding the best fit of
Eq. 11 to the initial slope (Fig. 1A, broken line). Evaluating the
parameters in this way gives

S 0.83 ,um2/Mbp2, S = 0.081 gm2/Mbp,
do 3 Mbp. [12]

With the parameter values given in Eq. 12, the model, Eq. 10,
reproduces the main features of the data in Fig. 1, including the
steep initial linear portion, the transition at several Mbp, and
the more gradual linear increase at large separations. The fact
that the data-point cloud for 1.5-3.5 Mbp (Fig. 1A) lies
generally within the predicted range (solid curves) is support
for the model because the giant-loop size, and thus the
curvature of the solid curves, was determined from the average
behavior of the large-scale data (dotted curve) and the initial
slope of the smaller-scale data (broken curve), without use of
data points in the region of 1.5-3.5 Mbp. The fact that the data
points in Fig. 1B are generally within the solid curves also lends
support to the model, as none of the parameter adjustment
used the observed width of the cloud.
Other Models. Most of the alternatives to the random-walk/

giant-loop model are more complicated and/or involve addi-
tional adjustable parameters. We take the view here that
models involving additional adjustable parameters are too
detailed for the present data set. For example, it would be
more realistic to assume that the loops are not all exactly the
same size, but a model taking variations into account would
involve at least one more adjustable parameter-e.g., the
variance in loop size.
A rather general model can be given, which allows for many

other kinds of large-scale chromosome structure and is con-
sistent with the statistical ratio data shown in Fig. 2. Mathe-
matically, the relevant assumption is that, for a suitably chosen
origin of Cartesian coordinates, the potential energy U in Eq.
2 has the specific form

N N

U = I AijXi -jA112 + EAiWXiI2,
i=O,j*i i=O

[13]

with the Aij and the Ai nonnegative constants and the matrix
Aij irreducible in the Perron-Frobenius sense (16). The ran-
dom-walk/giant-loop model, Eq. 10, is a special case of Eq. 13.
By a routine extension of the arguments given below Eq. 10,
Eq. 13 is seen to imply Rayleigh distributions for each probe

Biochemistry: Sachs et at
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pair, as suggested by the data in Fig. 2. By selecting suitable
coefficients Aij, Eq. 13 can be used to model chromosomes
having linker chromatin stretches between successive giant
loops, analogous (on a much larger scale) to linker chromatin
between nucleosoms, or to model chromosomes having mul-
tiple intrastrand connections. Moreover, ifAi 0 for some i,
Eq. 13 describes a chromosome whose higher-order structure
is modified by flexible tethers to an extrachromosomal orga-
nizing center small compared with the chromosome. However,
significant tethering to a rigid extrachromosomal scaffold of
micrometer dimensions is not compatible with Eq. 13 and for
large genomic separations gives pairwise distance probability
distributions similar to those for a randomly oriented rigid rod,
in contrast to the data (Fig. 2).

In deriving Rayleigh distributions, we have implicitly as-
sumed that the probability density (Eq. 2) is the same in all
cells and at all sampled times during Go/Gl, corresponding to
stable, DNA-sequence-specific higher-order structure. For
example, if large-scale structural features were different from
cell to cell and Eq. 13 held for the interactions in each cell
separately, there would be extra variance, giving a larger ratio
of sd/mean than shown by the solid curve in Fig. 2.

DISCUSSION
This paper considered data on distances between defined pairs
of points on a chromosome during cell-cycle interphase. The
data are relevant to the geometric structure of mammalian
chromatin on a scale larger than has hitherto been analyzed
quantitatively, corresponding to genomic separations from
0.15 to 190 million bp. A three-parametric polymer model for
flexible loops on a flexible backbone fits the data well. The
loops are "giant," -3 Mbp, where the numerical value is
comparatively sensitive to details of the fitting procedure.
Alternatives and generalizations, for example models with
multiple backbones or with flexible tethers to one small
extrachromosomal "organizing center," were briefly dis-
cussed. The data speak against systematic attachments to a

large stiff scaffold.
A stringent test of the presence of giant loops with DNA-

sequence-specific attachments is to search for regions of
"doubling back." For example, suppose one probe happens to
be located near a loop-attachment point. Then for a series of
probes that are slightly less than one giant loop away from the
fixed probe increasing genomic separation corresponds to
decreasing mean-square physical distance (Fig. 1A). H.Y. et at
(unpublished data) present direct evidence for doubling back
in one case.
On the random-walk/giant-loop model, the loops and the

backbone are essentially random walks extending over mi-
crometer dimensions. The mean-square end-to-end distance
for chromosome 4 is given by Fig. 1 B as -20 ,tLm2. The

mean-square "diameter" of a giant loop-i.e., the value ob-
tained by setting di = d = 1/2 do, di = 0 in Eq. 11-is 1/2 3do +
1 Sd2 0.92 1Im2. Chromosome size, as judged for example
by the radius of gyration, is very significantly smaller than the
cell nucleus size (H.Y. et at, unpublished data). This picture is
consistent with chromosomes having "territories" within the
cell nucleus, as suggested by whole-chromosome painting (17)
or indirectly by radiobiological evidence (3, 4, 8).

In summary, our results show that the methods of polymer
theory, based on looking for simple average properties of an
immensely complicated configuration, are an appropriate way
to quantify large-scale chromosome geometry during inter-
phase. The data suggest there are two and only two levels of
chromosome structure at scales from 0.15 to 190 Mbp. The
simplest model consistent with the data has, for the higher-
order chromatin structure, flexible loops of several Mbp
whose base points lie on a random walk.
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