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Abstract

During the process of blood feeding insect vectors are exposed to an array of vertebrate-derived 

blood factors ranging from byproducts of blood meal digestion to naturally occurring products in 

the blood including growth hormones, cytokines and factors derived from blood-borne pathogens 

themselves. In this review, we examine the ability of these ingested vertebrate blood factors to 

alter the innate pathogen defenses of insect vectors. The ability of these factors to modify the 

immune responses of insect vectors offers new intriguing targets for blocking or reducing 

transmission of human disease-causing pathogens.
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Introduction

Insect vectors of human disease-causing pathogens are exposed to a unique range of 

vertebrate blood factors that can persist through the process of blood digestion and directly 

impact their immune system. This review provides a summary of the various effects of 

vertebrate-derived blood factors on insect immune responses. Blood feeding behavior has 

evolved independently several times during insect evolution and, as a result, the feeding 

stage and rate and frequency of feeding vary greatly among hematophagous insect vector 

species. This review will focus on the best-studied of these insects: mosquitoes, sand flies, 

and kissing bugs. Only female adult mosquito and sand fly species feed on blood while non-

holometabolous kissing bugs require blood at every life stage. For most hematophagous 
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insects a blood meal is necessary for the successful completion of a reproductive or 

gonotrophic cycle; however, there are species that are capable of autogenous reproduction.

Hemoglobin

A hematophagous insect can ingest up to 10 times its body weight in vertebrate blood, 

which is primarily composed of hemoglobin (Hb) [1••]. The degradation of Hb during the 

digestive process releases heme and can yield antimicrobial peptides that are bioactive in 

both humans and insects [2]. These Hb-derived peptides are an important part of both 

vertebrate and insect innate immune responses and adversely affect the growth of parasites, 

fungi, and bacteria. The presence of these antimicrobial peptides in the midguts of 

hematophagous insects can inhibit the growth of invading organisms. For example, Hb 

peptides with activity against Trypanosoma cruzi (the causative agent of Chagas disease) 

have been isolated from the midguts of the kissing bugs Triatoma infestans [3] and 

Rhodnius prolixus [4]. The fact that these antimicrobial Hb peptides exists in both humans 

and insects [5], implies that this physiology is both ancient and highly conserved. The 

release of heme during Hb digestion can also catalyze the synthesis of reactive oxygen 

species (ROS), which can directly lyse blood stages of Trypanosoma and Plasmodium (the 

causative agent of malaria) parasites [6, 7]. In mosquitoes, blood digestion generates 

elevated levels of ROS that are further enhanced in the presence of malaria parasites [8•]. In 

response to these damaging levels of ROS, hematophagous insects have evolved an array of 

heme-inactivating mechanisms [1••]. However, these responses are not immediately 

saturating and ROS are likely to be present throughout the process of blood digestion.

In addition, low concentrations of ROS can regulate the innate immune responses of a 

variety of organisms. For example, in mosquitoes the control of dengue virus in Wolbachia-

infected Aedes aegypti is mediated by ROS-dependent activation of the Toll pathway [9]. In 

contrast, ROS induced by the insulin/insulin-like growth factor signaling (IIS) pathway in 

Anopheles stephensi favors malaria parasite development [10]. Given the conserved nature 

of ROS physiology, other insect vectors are likely have these signaling responses as well.

Pathogen-derived factors

Pathogen-derived factors present in the vertebrate blood meal also have the potential to alter 

mammalian and insect biology. Examples of such pathogen-derived factors are the 

glycosylphosphatidylinositols (GPIs) and GPI-anchored proteins. Plasmodium, Leishmania 

(the causative agent of leishmaniasis), and Trypansoma GPIs anchor proteins to parasite cell 

surfaces and are also secreted [11••]. The GPIs of all three parasite genera can modulate the 

production of pro-inflammatory cytokines in infected mammals [11••]. In addition, parasite-

derived GPIs can modulate the innate immune responses of insect vectors. For example, 

Plasmodium falciparum GPIs can induce anti-microbial peptide secretion [12•] and NOS 

expression [13] in Anopheles mosquitoes. The GPI-anchored cell surface 

lipophosphoglycans (LPGs) of Leishmania [14•] and Trypansoma [15] parasites are critical 

for their survival and infectivity in their respective insect vectors.
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Complement

An important component of the vertebrate innate immune response is the complement 

cascade which recognizes and induces the targeted lysis of invading organisms. Elements of 

both the classical and alternative complement cascades of humans can persist and alter 

pathogen development in insect hosts [16–18]. In mosquitoes, human complement can 

reduce malaria parasite development by either binding directly to zygotes and inhibiting 

their development into ookinetes [17] or by killing the parasites through complement-

mediated lysis [18]. To evade complement-mediated killing in the mammalian host, malaria 

gametocytes have evolved the ability to bind complement regulator factor H. Factor H is a 

regulatory protein found in circulation that normally protects vertebrate host cells from 

complement activation and is therefore likely to present in a blood meal as well [19•].

Chitinase

Most blood feeding insects synthesize a peritrophic matrix (PM) composed of proteins and 

chitin around an ingested blood meal to protect their gut [20]. To establish an infection, and 

avoid digestion and expulsion by the insect midgut, pathogens must traverse the physical 

barrier of the PM. Chitinases are highly conserved enzymes that facilitate the breakdown of 

the PM in insects. The human ortholog chitotriosidase (CHIT) can similarly catalyze the 

hydrolysis of chitin [21]. During P. falciparum infection, plasma CHIT activity is elevated 

in humans [22] and mosquitoes fed blood supplemented with human CHIT exhibited a 

reduction in PM thickness [23•]. Leishmaniasis can also increase CHIT levels in human 

blood [24], which could similarly alter the PM of sand flies upon ingestion to impact the 

transmission of Leishmania parasites.

Insulin and insulin-like growth factor-1

The IIS pathway is highly conserved and regulates a variety of physiological functions in 

insects including immunity [25••]. IIS protein orthologs can be found in a broad range of 

insect species including the true bug R. prolixus, tsetse flies, sand flies, mosquitoes, and the 

human body louse Pediculus humanus humanus [26–32]. In addition to conservation of IIS 

architecture, mammalian insulin and invertebrate insulin-like peptides (ILPs) share a 

conserved structure that facilitates the binding of mammalian insulin to insect ILP receptors 

[33]. Indeed, exogenous insulin from vertebrate blood activates IIS in mosquitoes [26, 27] 

and tsetse flies [34]. In anopheline mosquitoes, physiological levels of insulin (170 pM) can 

significantly increase P. falciparum oocyst development [26–28], and control of malaria 

parasite infection requires at least three IIS proteins (ERK [35], Akt/PKB [36••, 37], PTEN 

[38]). In humans, IIS modifies innate immune responses through the regulation of NF-κB 

transcription factors [39]. Insects also possess NF-κB transcription factors (reviewed in 

[40]) and in mosquitoes IIS inhibits NF-κB-dependent immune responses [30•].

Although human insulin and insulin-like growth factor-1 (IGF-1) are structurally similar, 

they vary considerably in their effects in both humans and blood feeding insects [32]. Unlike 

insulin, ingested human IGF-1 increases resistance of A. stephensi to P. falciparum through 

the induction of midgut mitochondrial ROS and nitric oxide (NO) [32, 41•]. In humans, IGF 

binding proteins (IGFBPs) regulate the bioavailability of IGF-1 and can also independently 
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activate the IGF receptor [42]. In the fruit fly Drosophila melanogaster ILP-2 and ILP-5 

signaling is regulated, in part, by interaction with IGFBP-like proteins [43]. IGFBP-like 

proteins have been described in Ae. aegypti [44] and in the moth species Spodoptera 

frugiperda [45], raising the possibility that insect vectors may also possess IGFBP-related 

proteins that could interact with ingested vertebrate growth factors to alter their downstream 

effects.

TGF-β1

Mammalian transforming growth factor (TGF)-β1 is a cytokine that is often present in 

peripheral blood during infection and is critical in regulating host immune responses [46]. In 

addition, TGF-β1 is also induced by infection with Trypanosoma and Leishmania, and these 

parasites may benefit directly from its subsequent downstream signaling effects [46]. Most 

mammalian cells produce TGF-β1 in its latent form and it is only after its activation that 

TGF-β1 exerts is cellular effects.

Mosquitoes ingest human TGF-β1 primarily in a latent form that is rapidly activated by 

factors such as heme and NO that are released during the digestion of a blood meal [47•]. 

Levels of circulating latent TGF-β1 in healthy, uninfected humans can reach 5 ng/ml, 

therefore mosquitoes ingest a biologically relevant level of TGF-β1 [48]. Orthologous 

proteins from the TGF-β signaling pathway have been identified in a diversity of blood 

feeding insects [49], raising the possibility that ingested human TGF-β1 activates 

endogenous TGF-β1 signaling pathways in other insect vectors as well. One of the most 

potent effects of TGF-β1 is the regulation of NO production, which is used by both 

mammals and mosquitoes to kill Plasmodium parasites [50]. In mosquitoes, low levels of 

human TGF-β1 (≤ 200 pg/ml) ingested in an infectious blood meal induce a moderate 

increase in nitric oxide synthase (NOS) activity that inhibits malaria parasite development. 

In contrast, high concentrations of TGF-β1 (2,000 pg/ml) do not alter malaria parasite 

development, but instead induce negative feedback to regulate NO synthesis [35]. The dose 

dependent effects of TGF-β1 signaling observed in mosquitoes are consistent with findings 

from mammalian biology that highlight the ability of TGF-β1 to regulate NOS activity on 

multiple levels [51].

Other cytokines

Both vertebrates and invertebrates use cytokines and cytokine-like factors to regulate 

immunity and wounding healing. To date, no mammalian cytokines have been identified 

that signal in insect vectors. However, the strong conservation of signaling pathways 

between insects and their vertebrate hosts suggests that mammalian cytokines capable of 

altering the physiology of insect vectors exist. For example, human interferon-γ (IFNγ) 

signals through the Janus kinase/signal transducers and activators of transcription (JAK/

STAT) pathway. Binding of IFNγ by its membrane receptors leads to the activation of JAK, 

which phosphorylates the immune-regulatory transcription factor STAT1. JAK/STAT 

signaling is regulated in part by suppressor of cytokine signaling-1 (SOCS-1) [52]. 

Orthologs of STAT, JAK, and SOCS proteins exist in Anopheles, Aedes and Culex 

mosquitoes [53, 54] and activation of JAK/STAT signaling in A. gambiae can inhibit the 
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development Plasmodium parasites [55]. In addition, a cytokine with homology to 

mammalian interferon has been identified in West Nile virus (WNV)-infected Culex 

quinquefasciatus cell lines [56•]. This secreted peptide, termed Vago, restricts WNV 

infection in mosquito cells through the activation of the JAK/STAT signaling pathway [56•]. 

The use of cytokines by insect vector species to regulate their innate immune responses and 

the presence of a clear signaling architecture suggests that exogenous human cytokines may 

signal in insect vectors as well.

Conclusions

In this review we highlighted a variety of vertebrate blood-derived factors that modify the 

innate immune responses of insect vectors. The conservation of these signaling pathways, 

and the breadth of cross-talk identified, suggest that other connections remain to be 

discovered between mammalian hosts and blood feeding insects. Although in this review we 

discussed blood-derived factors and their impact on insect immunity individually, a single 

blood meal will most likely contain a multitude of these factors concurrently. Therefore, 

considerable work is still required to understand how these signaling pathways network with 

one another to understand their ultimate downstream affects on insect immunity and 

pathogen transmission.
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IFNγ interferon-γ
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NO nitric oxide
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SOCS-1 suppressor of cytokine signaling-1

(TGF)-β1 transforming growth factor

WNV West Nile Virus
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Highlights

• Ingested blood-derived factors can alter the immune response of insect vectors

• Factors released by hemoglobin digestion can limit the growth of pathogens

• Pathogen-derived factors can signal in the insect midgut to alter immunity

• Human chitotriosidase can alter the peritrophic matrix of insects

• Human insulin, IGF-1, and TGF-α1 signal in the insect midgut to alter 

immunity
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Figure 1. 
The effects of ingested blood from an infected vertebrate host (large gray oval, top) on the 

insect midgut epithelium (large white squares, bottom). Dashed line indicates peritrophic 

matrix and black boxes indicate ingested factors/pathogens that are directly active or 

activated after reactions in the midgut lumen. Insect signaling pathways activated by these 

ingested factors and their downstream effects on insect immunity are indicated.
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