Skip to main content
. 2014 Nov 12;5:437. doi: 10.3389/fphys.2014.00437

Figure 5.

Figure 5

Diffusion hindering by obstacles leads to depletion of the molecules in the patch at equilibrium. (A) The mean square displacement 〈R2〉 in transient subdiffusion due to hinderance by randomly-located immobile obstacles (green curve) first scales as tγ (with γ<1), before converging to a Brownian motion with DM a (macroscopic) diffusion coefficient, i.e., 〈R2〉 = 4DMt (brown curve). Obstacle density ρ = 0.35, patch area fraction ϕ = 1. (B) When the obstacles are restricted to a central patch, the number of molecules inside the patch at equilibrium decreases below 1.0, Nin/(NTϕ) ≤ 1.0 (depletion). The dashed line shows Nin/(NTϕ) = 1 − ρ. (C) When accumulation is computed using the effectively accessible area in the patch (1 − ρ)ϕ, and not the total patch area ϕ, one gets instead a weak accumulation in the patch. In (B,C), bars indicate ± 1 s.d., and the fraction area of the patch ϕ = 0.25.