Table.
Predicted Maximum Principal Strain =
a
+
b*e(age/[age-110])
Mean Values Over Sectors of the Peripapillary and Midperipheral Regions |
||||||||||
a |
b |
|||||||||
European Descent |
African Descent |
European Descent |
African Descent |
|||||||
Sector |
Estimate |
SE |
Estimate |
SE |
Estimate |
SE |
p |
Estimate |
SE |
p |
Peripapillary region | ||||||||||
Temporal | 1.2523 | 0.09 | 0.9242 | 0.2134 | 0.1078 | 0.1892 | 0.57 | 0.6797 | 0.4403 | 0.116 |
Superotemporal | 0.9825 | 0.0759 | 0.8839 | 0.1795 | 0.433 | 0.1628 | 0.004 | 0.8191 | 0.3725 | 0.024 |
Superior | 1.0227 | 0.0885 | 0.9586 | 0.2085 | 0.71 | 0.1886 | 0.002 | 0.5533 | 0.4338 | 0.206 |
Superonasal | 1.0765 | 0.0725 | 0.3877 | 0.1766 | 0.8697 | 0.153 | <0.001 | 1.7796 | 0.3649 | <0.001 |
Nasal | 1.1884 | 0.0751 | 0.7128 | 0.1791 | 0.939 | 0.1574 | <0.001 | 0.8662 | 0.371 | 0.022 |
Inferonasal | 1.1125 | 0.0894 | 0.7121 | 0.2108 | 0.5452 | 0.1919 | <0.001 | 0.947 | 0.447 | 0.046 |
Inferior | 1.2357 | 0.0708 | 0.9883 | 0.1624 | 0.351 | 0.1518 | 0.034 | 0.7324 | 0.3456 | 0.042 |
Inferotemporal | 1.4337 | 0.0682 | 0.7313 | 0.1569 | −0.4357 | 0.1459 | <0.001 | 0.8712 | 0.3256 | 0.01 |
Midperipheral region | ||||||||||
Temporal | 0.9286 | 0.0677 | 0.4662 | 0.1586 | 0.0771 | 0.1427 | 0.602 | 1.2359 | 0.3266 | <0.001 |
Superotemporal | 0.8849 | 0.0489 | 0.3677 | 0.1185 | −0.0007 | 0.1069 | 0.976 | 1.2769 | 0.2492 | <0.001 |
Superior | 0.8472 | 0.0621 | 0.3003 | 0.1328 | 0.0464 | 0.1318 | 0.734 | 1.0927 | 0.2753 | <0.001 |
Superonasal | 0.9582 | 0.0575 | 0.1538 | 0.1267 | 0.0979 | 0.1234 | 0.438 | 1.6106 | 0.2601 | <0.001 |
Nasal | 0.8945 | 0.0601 | 0.294 | 0.1382 | 0.5673 | 0.1287 | <0.001 | 1.3992 | 0.2865 | <0.001 |
Inferonasal | 0.9196 | 0.0703 | 0.2706 | 0.1654 | 0.1601 | 0.1489 | 0.304 | 1.1459 | 0.3473 | <0.001 |
Inferior | 0.9108 | 0.0526 | 0.3199 | 0.1218 | −0.0611 | 0.1132 | 0.578 | 1.1013 | 0.2536 | <0.001 |
Inferotemporal | 0.9559 | 0.05 | 0.4008 | 0.1196 | −0.1476 | 0.1088 | 0.17 | 1.0455 | 0.2465 | <0.001 |
Due to the exponential formulation of the aging function, the coefficient a estimates the strain value in each sector at an age of 110 years old. Sectorial strains within each region by race can be estimated at any age using the function at the top of the table and the listed coefficient estimates. Note that given the noninformative vague priors for the regression coefficients, p is approximately equivalent to the P value for a 2-sided test of the null hypothesis that b = 0 using traditional frequentist statistics. Note that 110 years of age was chosen as the asymptotic value because it maximized the likelihood associated with the statistical model fit.