Skip to main content
. 2014 Nov 11;55(11):7189–7198. doi: 10.1167/iovs.14-14894

Table.

Coefficient Estimates, SEs, and Posterior Probabilities (p) for the Age-Related Strain Change Coefficient b of the Nonlinear Regression Function for Maximum Principal (Tensile) Strain, Aggregated Within Sectors in the Peripapillary and Midperipheral Regions, for Both Racial Groups

Predicted Maximum Principal Strain = a + b*e(age/[age-110])
Mean Values Over Sectors of the Peripapillary and Midperipheral Regions
a
b
European Descent
African Descent
European Descent
African Descent
Sector
Estimate
SE
Estimate
SE
Estimate
SE
p
Estimate
SE
p
Peripapillary region
 Temporal 1.2523 0.09 0.9242 0.2134 0.1078 0.1892 0.57 0.6797 0.4403 0.116
 Superotemporal 0.9825 0.0759 0.8839 0.1795 0.433 0.1628 0.004 0.8191 0.3725 0.024
 Superior 1.0227 0.0885 0.9586 0.2085 0.71 0.1886 0.002 0.5533 0.4338 0.206
 Superonasal 1.0765 0.0725 0.3877 0.1766 0.8697 0.153 <0.001 1.7796 0.3649 <0.001
 Nasal 1.1884 0.0751 0.7128 0.1791 0.939 0.1574 <0.001 0.8662 0.371 0.022
 Inferonasal 1.1125 0.0894 0.7121 0.2108 0.5452 0.1919 <0.001 0.947 0.447 0.046
 Inferior 1.2357 0.0708 0.9883 0.1624 0.351 0.1518 0.034 0.7324 0.3456 0.042
 Inferotemporal 1.4337 0.0682 0.7313 0.1569 −0.4357 0.1459 <0.001 0.8712 0.3256 0.01
Midperipheral region
 Temporal 0.9286 0.0677 0.4662 0.1586 0.0771 0.1427 0.602 1.2359 0.3266 <0.001
 Superotemporal 0.8849 0.0489 0.3677 0.1185 −0.0007 0.1069 0.976 1.2769 0.2492 <0.001
 Superior 0.8472 0.0621 0.3003 0.1328 0.0464 0.1318 0.734 1.0927 0.2753 <0.001
 Superonasal 0.9582 0.0575 0.1538 0.1267 0.0979 0.1234 0.438 1.6106 0.2601 <0.001
 Nasal 0.8945 0.0601 0.294 0.1382 0.5673 0.1287 <0.001 1.3992 0.2865 <0.001
 Inferonasal 0.9196 0.0703 0.2706 0.1654 0.1601 0.1489 0.304 1.1459 0.3473 <0.001
 Inferior 0.9108 0.0526 0.3199 0.1218 −0.0611 0.1132 0.578 1.1013 0.2536 <0.001
 Inferotemporal 0.9559 0.05 0.4008 0.1196 −0.1476 0.1088 0.17 1.0455 0.2465 <0.001

Due to the exponential formulation of the aging function, the coefficient a estimates the strain value in each sector at an age of 110 years old. Sectorial strains within each region by race can be estimated at any age using the function at the top of the table and the listed coefficient estimates. Note that given the noninformative vague priors for the regression coefficients, p is approximately equivalent to the P value for a 2-sided test of the null hypothesis that b = 0 using traditional frequentist statistics. Note that 110 years of age was chosen as the asymptotic value because it maximized the likelihood associated with the statistical model fit.