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Abstract.

Mass administration of azithromycin for trachoma has been shown to reduce malarial parasitemia. However,

the optimal seasonal timing of such distributions for antimalarial benefit has not been established. We performed numerical
analyses on a seasonally forced epidemic model (of Ross-Macdonald type) with periodic impulsive annual mass treatment
to address this question. We conclude that when azithromycin-based trachoma elimination programs occur in regions of
seasonal malaria transmission, such as Niger, the optimal seasonal timing of mass drug administration (MDA) may not

occur during the season of maximum transmission.

INTRODUCTION

Malaria is a leading cause of morbidity and mortality
among young children in sub-Saharan Africa.! Current World
Health Organization (WHO) recommendations for malaria
control include insecticide-treated nets, indoor residual spray-
ing, and seasonal malaria chemoprevention (administering
antimalarial treatment during the period of greatest risk
to prevent illness).” Current recommendations indicate the
intermittent use of a full course of amodiaquine and
sulfadoxine-pyrimethamine initiated at the beginning of the
peak transmission season.”

However, other drugs may also have a role in eliminating
malaria. Mass distribution of azithromycin, a second choice
for antimalarial therapy in multidrug-resistant or chloroquine-
resistant areas,>* is a cornerstone of the WHO trachoma
elimination program, dramatically reducing the prevalence of
the ocular strains of Chlamydia that cause trachoma.>® Such
efforts may reduce malaria transmission as well, because of
the antimalarial effects of azithromycin.>*

Previous models have addressed the question of seasonally
timed intermittent preventive therapy (IPT), finding that IPT
in children (IPTc) has a significant potential to reduce malaria
transmission, particularly in low to moderate transmission
areas.” The IPT is typically implemented at the beginning of
or during the time of highest transmission. However, mass
administration of azithromycin is not designed to prevent infec-
tion, but to eliminate established infection. We do not expect
the optimal seasonal timing to be the same as for IPT.

Should mass administration of azithromycin for trachoma
be timed during the peak season of malaria transmission if
we wish to obtain maximum antimalarial benefit as well?
Treatment during a time of lower transmission may be more
promising, yielding durable cures because of the low risk of
reinfection at such time, and furthermore, lowering the num-
ber of infectious individuals at the beginning of the next peak
season. To determine the optimal seasonal timing of mass
treatment with azithromycin, we used a simple mathematical
model similar to the classical model of Ross and Macdonald®®
to incorporate a seasonally varying mosquito abundance'*'2
in a small community setting.
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MATERIALS AND METHODS

Mathematical model. We examined the transmission
dynamics of malaria using a simple mathematical model of
Ross-Macdonald type.®? For simplicity, we divided the
human population into two age classes, children < 12 years of
age, and everyone else. We assume a fixed human population
size. In malaria-endemic areas, parasitemia levels in adult
humans are typically much lower than in children, and the
gametocytes in individuals with acquired partial immunity
have low infectivity to mosquitoes,”’14 and so the contribu-
tion of adult humans to malaria transmission is omitted.

Any child < 12 years of age may be susceptible or infected.
Each mosquito bites humans at a given rate per unit time, and
if the mosquito is infectious, transmits infection to susceptible
children with some specified probability. Infected children are
assumed to recover at a given rate, becoming susceptible once
again. Similarly, mosquitoes are assumed to be either suscep-
tible or infectious. An uninfected (susceptible) mosquito
becomes infected when it feeds from infected children and
ingests gametocytes from the blood of that person. Adult
mosquitoes are assumed to have a mean lifetime of a few days
to several weeks. The contribution of adults'> and the
exposed period in mosquitoes'®'® are considered in the
Supplemental Material.

As we know, seasonal changes in mosquito abundance
could lead to periodic outbreaks of malaria.'” The mosquito
population as a whole is assumed to follow a specified season-
ally varying function with large changes in mosquito abun-
dance over the course of 1 year. In Niger, the peak mosquito
abundance typically occurs from early August to late October,
lasting 6 weeks to 3 months.?® Mathematically, we represent
this variation by assuming that the vector abundance varies
between a small value during the low abundance season and a
large value during the high abundance season, using a simple
periodic function described in the Appendix. For conve-
nience, we divide the year into four regions: the time during
which mosquito abundance is (arbitrarily) greater than the
cutoff value 5% of the peak value (the peak mosquito season
or high abundance season), 1 month before this peak season,
1 month after this peak season, and finally, the rest of the year
(the season of low mosquito abundance).

Annual treatment is modeled by moving a fraction of infec-
tives to the susceptible class after a single distribution of
oral azithromycin. The recommended antibiotic coverage for
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trachoma control by WHO is at least 80% and the daily
azithromycin intakes show high protective efficacy against
Plasmodium vivax malaria of 98.9%; however, modest effi-
cacy against Plasmodium falciparum malaria of 71.6%.>*2!
The major Plasmodium species in Niger is P. falciparum.

Finally, we assumed a large fraction of the human popula-
tion was < 12 years of age. Model parameters are shown in
Table 1, together with an uncertainty distribution for each.

Numerical simulations. We determined the effect of timing
of mass administration of azithromycin on malaria incidence
and prevalence by numerical simulations. For some parameter
sets, repeated impulsive mass treatment at a time or any time
is sufficient to eliminate malaria entirely. For other parameter
sets, annual mass treatment leads to a stable periodic solution;
malaria levels change over the course of each year, but repeat
the same values annually. This implies that the same level of
malaria prevalence is achieved at the beginning of each season.
Given all other model parameters (e.g., peak mosquito abun-
dance, biting rate), we determined a long-run equilibrium
value for the prevalence in humans and mosquitoes during
the beginning of the year, by simulating many years of trans-
mission and treatment.

We considered two measures of public health benefit for
any parameter set. First, we computed the total person-time
of infection per year, denoted by P, using this long run solu-
tion for the epidemic. Second, we computed the total annual
incidence of infection (number of new infections over a year),
denoted by Q.

When all other parameters are fixed, the choice of treat-
ment time, t, changes, in general, the total person-time and
the total annual incidence. We computed the times 1; and 1,
for which the person-time and the total annual incidence were
minimized, respectively. Unless otherwise stated, the optimal
treatment time throughout this work is the former.

In addition to the time at which the total person-time infected
was minimized, we also found the worst time of year for treat-
ment. We determined the difference in person-time between
the best time and the worst time to treat, providing a measure
of the importance of seasonal timing of mass administration.

For simulation, we let the mosquito abundance attain its
peak in the middle of August, corresponding approximately to
Niger. Each parameter set yields an optimal time of treatment
(or else yields malaria extinction for some treatment times).

For each scenario, we also computed three additional quan-
tities over the season of peak mosquito abundance: 1) the

entomological inoculation rate (EIR), 2) the cumulative haz-
ard of infection (CHI), and 3) the basic reproduction number.

Sensitivity analysis for parameters influencing the optimal
treatment time was conducted by computing the circular-linear
partial rank correlation coefficient (CLPRCC) between the
optimal treatment time and each parameter. Because the
optimal treatment time is a point in a cycle, times near
the end of the year are close to times near the beginning of
the year, necessitating the use of circular statistics. The
CLPRCC is computed by replacing linear variables by their
ranks and angular variables by their circular ranks,*=*° and
computing the circular-linear partial correlation coefficient
(see Appendix for details). For sensitivity analysis of factors
influencing the difference in person-time infected between
the best and worst times to treat, we used the usual partial
rank correlation coefficient.

Data collection. As a guide to what the model results may
mean in practice, we compared model results to data from the
Partnership for the Rapid Elimination of Trachoma (PRET)
study, Niger arm. The PRET trial is a multicenter community
randomized trachoma control trial, with study sites in Tanzania,
the Gambia, and Niger3]’32; for this study, we used malaria
outcome data obtained in the Niger site. In brief, in Niger,
48 communities (grappes) were randomized (using a 2 x
2 factorial design) to one of four treatment assignments based
on enhanced versus standard azithromycin coverage, and
annual mass treatment of the entire community versus twice-
yearly treatment of only children. Communities were selected
from among six health centers in the Matameye district
(Zinder region).

Stratified randomization was conducted by 1) obtaining
baseline measurements of follicular trachoma by field exam-
ination, 2) classifying the communities within each health
district into the upper half or lower half of trachoma preva-
lence, and 3) choosing eight (two each for each of four arms)
from each health center such that one of the assignments
to each arm would always be in the lowest half of baseline
trachoma prevalence.

The malaria collection and results have been described
elsewhere’; in brief, thick blood smears and blood spots were
obtained from communities in standard assignment, both for
villages assigned to the annual mass treatment and for villages
assigned to twice-yearly treatment of only children. These spec-
imens were collected post treatment, at the 1 year time (Janu-
ary 2011), from a census-based cross-sectional random sample

TABLE 1
Parameters of the malaria model with description, range, baseline, unit, and reference

Description Range Baseline Unit References
a The number of bites per mosquito per month 3-30 3-15 Bites per mosquito 18.22-24
per month
b Transmission probability from infected mosquitoes 0.01-0.8 0.1-0.5 Per bite 182225-27
to susceptible children per bite
c Transmission probability from infected children 0.072-0.64 0.1-0.5 Per bite 23.25-27
to susceptible mosquitoes per bite
1/r Duration of infectiousness 0.7-10 0.7-3 Month .
1/ Lifespan of mosquitoes 0.2-36 0.25-1 Month 2325
c The proportion of people under 12 0-1 0.25-0.5 - =
H Number of humans 50-1000 250-600 - Assume
m Average ratio of mosquitoes to humans 1-10 1-4 Mosquitoes per human 18.22-24
k Measure of the duration of high abundance season 1 0.984-0.997 - 20
p Curative efficacy of single dose of azithromycin 1 0.4-0.8 - Assume
q; Treatment coverage 1 0.6-0.9 N Assume
T Initial mass administration time 1 0-1 Year Assume
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of 50 children (or all children, if fewer than 50 were present in
the village). Thick blood smears were examined under light
microscopy after 3% Giemsa staining by two graders.

Model analysis. The previous mathematical model contains
parameters for mosquito abundance, transmission rate, and
mosquito lifetime, which are not specific to any region,
and may range over values corresponding to hypoendemic,
mesoendemic, and hyperendemic settings. Is it possible that
parameter values corresponding to field settings where malaria
is highly seasonal yield different results than other settings?
We examined data from the annual arm of the PRET study,
comparing the 10% of the scenarios that were closest to the
observed data to the other 90%. For this mathematical
modeling study, we computed, for each village, the mean
prevalence of parasitemia assessed as positive by either of
the two graders, yielding 12 community-specific prevalences
94 (i = 1,...,12) for the annually treated communities. For
each parameter set, the mathematical model was simulated
until it reached its stable cyclic value. For each annually
treated village, we simulated a treatment at the beginning of
the study. At this time, we computed the product of the
coverage for that village and the assumed efficacy of the anti-
biotic in clearing malaria, and assumed that fraction of chil-
dren were cured; the remaining children stayed infected. We
simulated that village until the data collection time. Finally,
we computed the absolute value of the difference between the
modeled value for the prevalence and the actual prevalence
and determined the best treatment time.

RESULTS

The malaria model with treatment shows that mass
azithromycin distribution could reduce malaria transmission,
and may even eliminate the disease in low transmission set-
tings. Of course, this finding depends on the assumption of
moderate to high efficacy of azithromycin.

When we assume that the mosquito population is constant,
it makes no difference when an annual treatment occurs. Sim-
ilarly, if the mosquito population is assumed to undergo only
small fluctuations, timing of mass administration makes little
difference. However, in cases of pronounced seasonality, as
may occur in Niger and other parts of the Sahel, timing of
mass administration has a larger effect, as seen in Figure 1. In
Figure 1A, we present the prevalence of malaria in children
over the course of 1 year (at equilibrium), assuming no treat-
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ment, and then assuming treatment at a suboptimal time and
at the optimal time. In the absence of mass antibiotic admin-
istration, malaria prevalence (black solid line) fluctuates over
the year and attains its maximum 2 months after mosquito
high abundance season (gray curve). Treatment may be
administered at any time but can have quite different effects.
The prevalence in young humans is largely reduced when
azithromycin is distributed in the low abundance season
(dotted line), but only slightly reduced when mass administra-
tion occurs in the season of high mosquito abundance (dashed
line). Treatment during the season of peak mosquito abun-
dance is less effective, because individuals are quickly
reinfected. For the same parameter sets, the relation between
malaria prevalence in children and its antibiotic treatment
time is clearly shown in Figure 1B.

To determine when it is best to give a single dose of
azithromycin to everyone in the population, we first chose
plausible input ranges for model parameters, generated 10,000
uniformly distributed random parameter sets, and then com-
puted the optimal treatment times to minimize the equilib-
rium person-time spent and the annual incidence of infection,
respectively, and evaluated the difference in person-years
between the best and worst times to treat, given each set.
When the disease goes extinct under treatment at a time or
any time, we exclude the corresponding parameter set. For
each qualified simulation (where the disease remains persis-
tent after treatment any time) we find that there always exists
a unique optimal treatment time. Figure 2A shows two
smoothed density plots of optimal times in terms of annual
prevalence and incidence, respectively. The mosquito abun-
dance reaches its maximum in the middle of August, which
usually precedes the optimal treatment times.

Among these sets, 30 occurred during the season of highest
mosquito abundance, 5,542 occurred during times of the year
when mosquitoes were not abundant (10, 1 month before the
peak season; 1,365, 1 month after the peak season; 4,167
during the season of low mosquito abundance); and the dis-
ease disappears without treatment or with treatment at a time
or any time in the remaining 4,428 cases. Of our scenarios,
4,194 corresponded to parameter choices for which malaria
cannot remain endemic even without treatment because of
the basic reproduction number R, for the corresponding
model without treatment satisfying R, < 1, and therefore con-
tribute no further to the analysis.'” Averaging over all non-
eradication scenarios, the minimum malaria prevalence

Annual malaria prevalence in children lfﬁ)w

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Simulated malaria prevalence in children and the ratio of mosquitoes to humans versus time. The parameters are as follows: a = 4,

b=0.33,¢c=0.16,r=0.33, n = 1.205, o = 0.325, H = 580, m = 3.15, k = 0.9917, p = 0.5, and g = 0.8. (A) Solid black line-prevalence curve given
no mass azithromycin treatment, dashed line-prevalence curve given a suboptimal treatment time in September, dotted line-prevalence curve
given treatment at optimal time in February, gray solid line-mosquito to human ratio; (B) annual malaria prevalence in children varies with

respect to initial treatment time.
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(A) Smoothed probability density plot of optimal treatment times with respect to annual prevalence (solid line) and incidence

(dashed line), respectively. (B) Smoothed probability density plot of the circular differences between the optimal time with respect to annual
prevalence and the peak point prevalence time (solid line), and the circular differences between the optimal time with respect to annual prevalence
and the peak point incidence time (dashed line). Here, the baseline range of parameter values can be found in Table 1.

attained when the optimal time is chosen is 12.3% lower than
that seen if the mass treatment occurs during the worst time.
The distribution of the circular differences between the opti-
mal treatment time and the peak point prevalence time, and
the circular differences between the optimal treatment time
and the peak point incidence time, are plotted in Figure 2B.
On average, the optimal treatment time is 2 to 3 months after
the peak point prevalence time and peak point incidence
time. Therefore, for seasonal malaria transmission, it is usu-
ally better to conduct mass administration in the mosquito
low abundance season or after the high abundance season.
We computed the CHI and EIR over the season of peak
mosquito abundance in the absence of treatment. For the
parameter sets for which elimination does not occur, the aver-
age CHI and EIR for scenarios yielding an optimal treatment
time in the high abundance season are much smaller than
those in the low abundance season, and the ratios are 1:23.3
and 1:16.5, respectively. The average minimum annual preva-
lence for scenarios yielding an optimal treatment time in the
high abundance season and low abundance seasons are 8.8%

TABLE 2
Sensitivity analysis of model outcomes with respect to model parameters*
PRCC of the CLPRCC for
difference in annual the optimal

treatment time for

person-time of
minimizing annual

infection comparing

Parameter description best and worst person-time
a Mosquito biting rate 0.09 0.33
b Transmission probability 0.17 0.35
from mosquitoes
to humans
c Transmission probability -0.01 0.18
from humans
to mosquitoes
r Recovery rate of children -0.97 0.34
Mortality rate 0.62 0.59
of mosquitoes
c Proportion of children -0.02 0.11
H Total number of humans -0.01 0.03
m Ratio of mosquitoes 0.16 0.29
to humans
k Measure of the 0.08 0.19
duration of high
abundance season
p Curative efficacy of single 0.84 0.04
dose of azithromycin
q;=¢q Treatment coverage 0.66 0.01

*Circular-linear partial rank correlation coefficient (CLPRCC) for optimal treatment time
(for minimizing annual person-time); values of the CLPRCC vary between 0 (little association)
and 1 (strong association). Linear partial rank correlation coefficient (PRCC) for the differ-
ence in person-time of infection between best and worst times of the year to treat.

and 31.5%, respectively. We also computed the basic repro-
duction number R, which would be obtained if the high mos-
quito abundance were sustained, and found that the average
R, for scenarios yielding an optimal treatment time at high
abundance season and low abundance season are 3.1 and 5.9,
respectively. Scenarios in which the optimal treatment time
occurs during the peak mosquito abundance season corre-
spond to less transmission. The same conclusions still apply
when we choose a different cutoff value for mosquito high/low
abundance season ranging from 3% to 15% (see Supplemental
Material for details).

In addition, we report the CLPRCC for sensitivity analysis
(see Table 2). The distribution of optimal times, and the dif-
ference in person-time between the best and worst treatment
times are most sensitive to the mortality rate of mosquitoes
and the recovery rate of children, respectively.

If we restrict our attention to parameter sets yielding the
least discrepancy when compared to the cross-sectional com-
munity prevalence data from the PRET study in Niger, what
is the best time to treat? Restricting ourselves to the best 10%
of parameter sets, the circular mean of the best time corre-
sponds to approximately November 20, with plus or minus
one circular standard deviation corresponding to the period
from November 7 to December 4.

The extrinsic incubation period in mosquitoes has a large
impact on malaria transmission because most infected mos-
quitoes will die before they become infectious.'®® In some
areas adults are responsible for a large proportion of the
infectious reservoir to mosquitoes.'®> To take these into con-
sideration, we developed an age-structured model with an SEI
(susceptible-exposed-infectious) pattern for mosquitoes** and
found that the central tendency of optimal treatment times is
essentially unchanged (see Supplemental Material).

DISCUSSION

A simple Ross-Macdonald malaria model with seasonally
varying mosquito density permitted an assessment of optimal
time of year for mass treatment using oral azithromycin. For
minimizing the total person-time of infection, the optimal
time occurs after peak transmission. When the entomological
inoculation rate is high, mass treatment of humans with
azithromycin may be largely futile, because individuals are
rapidly reinfected. Infected mosquitoes remain infectious
after the mass treatment, and in any case rapid amplification
of infection in the human population during the mosquito
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season attenuates the benefit of mass treatment of humans at
a single time. Treatment during the transmission peak may be
optimal in the low transmission setting.

Our analysis does not inform seasonal malaria chemopre-
vention, which is designed to prevent infection. The WHO has
recommended IPTc for the control of malaria in the Sahel
during the wet, high-transmission season in areas with highly
seasonal malaria transmission such as the Sahel.*>~**

Simple models of Ross-MacDonald form capture important
relationships between mosquito abundance, biting rates, and
transmission, but do not purport to represent detailed vector
ecology and biogeography. Such model may be extended to
include substantial fluctuations in vector abundance, there-
fore the optimal timing could be customized to local condi-
tions. Although the finding that a mass treatment is ideally
timed after peak transmission, under conditions when a low
abundance of the vector occurs, the timing could be moved to
the transmission season. Similarly, the effect of bed nets and
other control measures, when successful, could affect the opti-
mal seasonal timing. Extension of our model to include addi-
tional features of the malaria transmission system, such as
infection-dependent mortality and the duration of antibiotic
efficacy may be useful in further assessing the role that mass
distribution of azithromycin may play in malaria amelioration.
The dynamics of malaria in areas of low transmission may be
driven by imported infections that can have a different sea-
sonal pattern than that of the mosquito population.

Two other investigations have suggested that treatment
during the low transmission season of an infectious disease
may be beneficial,***" and hypothesized that this may be
because circulating malarial parasites eliminated with treat-
ment are not replaced in the low transmission setting.*” Mass
drug administration before the malaria transmission season
may prevent the parasite prevalence levels from recovering
to their pretreatment levels, and may even allow parasite
elimination in these low transmission settings.*' Mathematical
models of mass treatment of trachoma have found that the
optimum treatment time to achieve elimination is during the
season of lowest transmission.*?> Thus, seasonal variations in
transmission can be exploited to maximize the impact of
mass drug administration.*! Depending on the transmission
dynamics, the optimal timing may occur away from the time
of maximum transmission.
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APPENDIX

The malaria transmission model is as follows. Because the
malaria parasite density and the prevalence of gametocytemia
are small in adulthood,'* we only model transmission among
children < 12 years of age. Let V(¢) and H be the total number
of mosquitoes and humans, respectively. A constant fraction ¢
of humans is < 12 years of age. Let v(¢) and A(f) be the popu-
lation size of infected mosquitoes and infected children,
respectively. Consider a simple model of Ross-Macdonald
type with seasonally forced vector abundance and periodic
impulsive annual mass treatment:

d/;(tr) _ ot ;1’1(” v(0) = rh(t) = p 2 qih(57)8(t — ), (1)
d‘;(tl) = ac% (V(t) = v(t) —nv(t),

where h (Ti_):;li"r’? h(t) is the left-hand limit of A(r) at t = t;, 5(¢)
is the Dirac delta function, and {t;};7, satisfies 0 < 1; <1 and
Ti+1 = T; + 1. We omit human vital dynamics and migration.

Here, the parameter a is the number of humans a mosquito
bites per year, b is the probability of transmission of infection
to susceptible children by an infected mosquito, c is the prob-
ability an infected child infects a susceptible mosquito, r is the
recovery rate for children, p is the death rate for mosquitoes.
The g; is treatment coverage at time 7, for children, and p is
the efficacy of antibiotic treatment in children (i.e., the prob-
ability of cure after treatment). All time independent param-
eters are positive constants, and V(¢) is a positive, continuous,
and periodic function with period 1.

Some authors have found that the model (1) without treat-
ment, while simple, is mathematically and epidemiologically
reasonable for obtaining insight into malaria dynamics.* In
this work, we chose the following periodic form for mosquito
density function

1
V() = m><H><A(t)/f0 A(s)ds and
At) = (1 + k cos(2n(t — 1/8))) 7,

where m > 0 is the average ratio of mosquitoes to humans,
A(f) describes the seasonal changes,!* and 0 < k < 1 is a coeffi-
cient that controls the duration of high abundance season. For
this function, the mosquito abundance reaches its maximum
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in the middle of August (r=5/8,1+5/8,2+5/8,...). The
larger the value of k, the shorter the length of the high abun-
dance season and the larger the range over which the mos-
quito density varies.

Define the person-time of infection per year, P, annual inci-
dence of infection, Q, the cumulative hazard, CHI, and the
entomological inoculation rate, EIR, for one season at equi-
librium as the definite integral of the proportion of infected
children, number of new infections over 1 year, the force of
infection, and the number of bites by infectious mosquitoes
per person per year from ¢4, the beginning of the high abun-
dance season, to g, the end of the high abundance season,
respectively. In other words, P = X(1), Q = Y(1), CHI = Z(tp),
and EIR = W(tp), where X(r), Y(¢), Z(t), and W(¢) are the
equilibrium solution of the following initial value problems

dX(t) _h(t) dY(r) _ ab oH — h(1)
dt —oH’ dt H

v(1), X(0)=Y(0) =0,

together with Equation (1) for ¢; = 0 and
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together with Equation (1) for g; = 0, respectively. Spe-
cifically, the optimal treatment times in terms of annual
prevalence and incidence are t;=argmin P(t) and
1, = arg min Q(t), respectively.

The basic reproduction number Ry, is defined for the fol-
lowing periodic model***

dh(t)  oH - h(t)
dr =ab

v(t) = rh(1),

20 = et (Vi) - () - ()

over high mosquito abundance season [t4, t5].
The circular-linear correlation r between an angular vari-
able 6 and a linear variable x is computed from

2 2
1’2— iz + 13— 27‘12723?‘13

s

2
1-r,

where ry; is the Pearson correlation between cos 0 and sin 0,
r13 is the Pearson correlation between cos 0 and x, and 73
the Pearson correlation between sin 6 and x. We computed
the circular-linear partial rank correlation of 6 and any vari-
able x with the others held constant by using the previous
formula, replacing linear quantities by their ranks, circular
quantities by their circular ranks, and computing the correla-
tions from the residuals of cos 0, sin 0, and x (any parameter
of interest) after regression on all other parameters of inter-
est (exactly analogous to computation of partial correlation
coefficients that do not involve angular variables). The pre-
vious circular-linear correlation coefficient ranges from 0
(no association) to 1 (perfect association), and measures the
strength of the association between the linear variable x and
any function A cos (0 + ¢) where A is any constant, and ¢ is
any arbitrary phase.

Numerical analysis was conducted using Mathematica 9.0
for finding the optimal time. Differential equations were
numerically solved using NDSolve with option LSODA, and
random numbers were generated by the default method in
Mathematica 9.0 (a cellular automaton-based method*®).



