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Abstract

Importance of the field—The incidence of malignant melanoma is increasing throughout the 

world and is currently rising faster than any other cancer in men and second only to lung cancer in 

women. Current strategies focused on systemic therapy for treatment of have shown no effect on 

survival. Therefore there is a pressing need for developing novel targeted therapeutics.

Areas covered in this review—Our goal is to provide an overview regarding targeting 

CXCR1/2 in malignant melanoma, the rationale behind these approaches and the future 

perspective.

What the reader will gain—This review illustrates our current understanding of CXCR1/2 

receptor in melanoma progression and metastasis. We describe approaches that are being 

developed to block CXCR1/2 activation, including low-molecular-weight antagonists, modified 

chemokines and antibodies directed against ligands and receptors.

Take home message—The chemokine receptors CXCR1 and CXCR2 and their ligands play 

an important role in the pathogenesis of malignant melanoma. Recent reports demonstrated that 

CXCR1 is constitutively expressed in all melanoma cases irrespective of stage and grade, 

however, CXCR2 expression was restricted to aggressive melanoma tumors,. Furthermore, 

modulation of CXCR1/2 expression and/or activity has been shown to regulate malignant 

melanoma growth, angiogenesis and metastasis, suggesting CXCR1/2 targeting as a novel 

therapeutic approach for malignant melanoma.
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1. Introduction

Chemokines are a family of small proteins (8 – 11 kDa) that are divided into four groups 

according to the number and spacing of the first two cysteine residue in their amino-terminal 

end (C, CC, CXC, CX3C) [1,2]. They represent a large family of polypeptide signaling 

molecules, originally characterized by their ability to promote the directed chemotaxis of 

leukocytes, and are known to play important roles in inflammation and cancer [3]. Out of 

these chemokines, CXC chemokines can be further sub divided into two groups on the basis 

of presence or absence of an ELR motif (glutamic acid, leucine and arginine) which 

precedes the first cysteine residues in the protein. These CXC chemokines have been 

implicated in the initiation and amplification of inflammatory diseases [4–7]. CXC 

chemokines are known to bind to G-protein-coupled receptors (GPCR) mainly CXCR1 and 

CXCR2 which plays an important role in cancer progression and metastasis [8–10]. There 

are 15 human CXC chemokines (CXCL1 – 16), but their function extends beyond leukocyte 

chemotaxis as the cognate receptors CXCR1 and CXCR2 are expressed on many different 

cell types. Over the last decade, the understanding of the function of these receptors has 

increased exponentially [3,8,11], leading to the discovery of potent and selective antagonists 

[11,12], neutralizing monoclonal antibodies to these receptors and their ligands [4,5,13], the 

availability of CXCR2 knockout mice [6,14–16] and the identification of polymorphisms 

and genetic mutations [17–20]. Recent reports provide compelling evidence that CXCR1/2 

play an important role in tumor progression and metastasis and several pharmaceutical 

companies have identified potent CXCR1/2 antagonists, and neutralizing antibodies that are 

now being tested in clinical trials for inflammatory disease. In this review, we will provide 

an overview and future implications regarding targeting CXCR1/2 in malignant melanoma.

2. CXCR1/2 and its ligands in malignant melanoma

Although chemokines were first known as chemoattractants for leucocytes, it has been 

recognized that many cell types express chemokines and chemokine receptors. Interactions 

between chemokines and their receptors play an important part in regulating various steps of 

tumor development, including tumor growth, progression, and metastasis (Figure 1). In the 

case of melanoma, several reports strongly support the proposition that tumor cells take 

advantage of this chemokine– chemokine receptor interaction either to stimulate the immune 

response, or to induce tumor angiogenesis and tumor growth, which alters the tumor 

microenvironment and facilitates metastasis to secondary site [8,10,21].

Melanoma arises from melanocytes and manifests mainly on the skin and is the sixth most 

common cancer in the United States. According to the American Cancer Society there will 

be about 68,720 new cases and 8650 deaths due to melanoma during 2009 [22]. The chance 

of developing melanoma increases with age, but it affects all age groups and is one of the 

most common cancers in young adults. Most often, melanomas progress through an initial 

radial growth phase, or in situ melanoma, to a more aggressive vertical growth phase that 

exhibits growth in the mesenchyme and in the epithelium [23]. Melanoma tissues and cell 

lines derived from them have been shown to express a variety of chemokines, including 

CXCL8 and its receptors CXCR1 and CXCR2 [23,24]. CXCL8 alone and with its receptors 

can induce angiogenesis and influence migration and invasion of tumor cells along with 
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metastasis in melanoma [23–29]. In this review, we provide an update on targeting CXCL8 

and its receptors in melanoma progression and metastasis.

3. CXCR1/2 and their ligands in melanoma tumor progression and 

metastasis

Tumor progression is a chain of cellular and molecular events that occur gradually during 

the development of neoplasia. CXCL8 was the first chemokine reported to induce melanoma 

cell chemotactic migration [30] and can act in an autocrine/paracrine fashion to influence the 

process of melanoma progression by activating CXCR1 and CXCR2 (Figure 1) [26,30]. The 

expression of CXCL8 along with its receptors CXCR1 and CXCR2 have been shown to 

correlate positively with melanoma progression [31,32]. The overexpression of CXCR1 and 

CXCR2 in melanoma cells is associated with aggressive phenotypes of melanoma cells 

based on their enhanced proliferation, migration and tumor growth in mice [23,25,26]. 

Knockdown of the receptors or the use of antagonists or neutralizing antibodies against them 

affects melanoma cell proliferation migration and tumor growth, strongly indicating the 

involvement of these receptors in melanoma progression [33]. CXCR2 knockout mice 

exhibited significant inhibition of human melanoma tumor growth [25]. Furthermore, UVB 

which stimulates the production of CXCL8 in turn enhances the migration of metastatic 

melanoma cells in vitro [34,35]. Altogether, these data suggest an important role for CXCL8 

and its receptors in melanoma progression.

CXCL8 and its receptors can affect tumor growth not only directly but also indirectly by 

promoting angiogenesis and the ability of CXCL8 to elicit angiogenic activity depends on 

the expression of its receptors by endothelial cells. Recent studies indicate that CXCR1 is 

highly and CXCR2 is moderately expressed on human microvascular endothelial cells 

(HMEC), whereas HUVEC show low levels of CXCR1 and CXCR2 expression [36]. 

Neutralizing antibodies to CXCR1 and CXCR2 abrogated CXCL8-induced migration of 

endothelial cells, indicating that these two receptors are critical for the CXCL8 angiogenic 

response (Figure 2) [37,38]. Of these two high-affinity receptors for CXCL8, the importance 

of CXCR2 in mediating chemokine-induced angiogenesis was demonstrated to be 

fundamental to CXCL8-induced neovascularization [13,38,39]. CXCL8 stimulates both 

endothelial proliferation and capillary tube formation in vitro in a dose-dependent manner, 

and both of these effects can be blocked by monoclonal antibodies to CXCL8 [40,41]. 

Recent studies have also highlighted the importance of CXCR1 and CXCR2 in angiogenesis 

(Figure 2) [23,25–27]. In addition, it has been reported that there is a direct correlation 

between high levels of CXCL8 and tumor angiogenesis, progression and metastasis in 

xenograft models of human melanoma [42,43].

CXCL8 exerts its angiogenic activity by upregulating MMP-2 and MMP-9 in tumor and 

endothelial cells [37,42,44]. Degradation of the extracellular matrix by MMPs is required for 

endothelial cell migration, organization, and, hence, angiogenesis [45]. It has been 

demonstrated that CXCL8 directly enhances endothelial cell proliferation, survival and 

MMP expression in CXCR1- and CXCR2-expressing endothelial cells, indicating that 

CXCL8 is an important player in the process of angiogenesis [40].
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Cell proliferation, angiogenesis and migration (invasion) are important components of the 

metastatic process and CXCL8 and its receptors have been implicated inmelanoma 

progression through several mechanisms, including the promotion of tumor cell growth and 

migration [30,46]. Our previous study has demonstrated a correlation between CXCL8 

expression and metastatic behavior in human melanoma cells in nude mice. Additionally, in 

a nude mouse model, induction of UV-induced melanoma cell tumorigenesis and metastasis 

correlated with CXCL8 mRNA and protein expression [47]. It has also been shown that the 

metastatic variant of melanoma cells expressed higher levels of CXCL8 protein as compared 

with the non-metastatic variant [47,48]. Elevated serum levels of CXCL8 in patients with 

metastatic melanoma and hepatocellular carcinoma have also been reported to correlate with 

tumor burden and poor prognosis [49,50]. Expression of CXCL8 inmetastatic and invasive 

lesions may result in an increase in the serum CXCL8 concentration and may be of 

prognostic use and serve as a determinant of melanoma growth and metastasis [33,49,50]. In 

vivo murine studies showed that CXCR2 plays a major role in melanoma metastasis to the 

lung and a recent study from our laboratory suggested that human melanoma xenografts 

onto CXCR2 knockout nude mice exhibited inhibition of lung metastasis. This was 

accompanied by a reduction in tumor cell proliferation, angiogenesis and reduced 

inflammation [25]. CXCL8 in tumor specimens from different stages of melanoma is 

differentially expressed in radial growth phase (RGP; melanoma-in-situ) and vertical growth 

phase (VGP; invasive) primary malignant melanoma and subcutaneous, muscle and lymph 

node metastases. While the RGP tumors did not show any staining for CXCL8, 50% of the 

VGP tumors were positive and showed a heterogeneous pattern of staining. Interestingly, an 

intense CXCL8 immunoreactivity was observed in the metastatic lesions from skin, muscle 

and lymph node [23]. These data suggest an association between the expression of CXCL8 

and metastasis in human cutaneous melanoma. Additionally, a concomitant upregulation of 

one of two putative CXCL8 receptors has been reported in human melanoma specimens 

[23]. Analysis of CXCR1 in human melanoma specimens from different Clark levels 

demonstrated that it is expressed ubiquitously in all Clark levels. In contrast, CXCR2 is 

expressed predominantly by higher grade melanoma tumors and metastases, suggesting an 

association between expression of CXCL8 and CXCR2 with vessel density in advanced 

lesions and metastases [23]. More specifically, the effect of CXCL8 can be mediated by 

CXCR1 and CXCR2, with CXCR1 being a selective receptor for CXCL8 [24]. Overall, the 

aberrant expression of CXCL8 and its receptors may be a common feature of melanoma. 

From the functional significance of its receptors, we can contemplate that the expression of 

CXCL8 and its receptors (CXCR1/CXCR2) play a key role in deciding the fate of 

developing melanoma tumors and their ability to metastasize to certain preferred organ sites. 

Given their important role, they are potential targets for therapy against human melanoma.

4. Putative signaling pathways involved in CXCR1 and CXCR2-dependent 

modulation of cellular phenotypes

Most of the studies with neutrophils and transfected cell lines have demonstrated that 

CXCR1 and CXCR2 undergo receptor phosphorylation, internalization, calcium 

mobilization, actin polymerization, enzyme release, chemotaxis and a weak respiratory burst 

upon activation by CXCL8 [51–57]. Mechanisms regulating CXCR1 and CXCR2 activation 
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and downstream signaling events following activation with CXCL8 in malignant melanoma 

are not known. Both CXCR1 and CXCR2 show a similar preference for G protein family 

members [58]. However, recent reports suggest that the two receptors not only possess 

distinct ligand binding properties but also could transduce different post-receptor signals 

[56,59]. In spite of the apparent redundancy, CXCR1 and CXCR2markedly differ in their 

capacity to activate signal transduction pathways. CXCR1 stimulates phospholipase D 

activation and the formation of superoxide by NADPH oxidase, whereas CXCR2 does not 

trigger either response [60–62]. Since CXCR1 and CXCR2 have a similar affinity for 

CXCL8 and bind with the same selectivity to G proteins, additional receptor-specific signal 

transducing mechanism(s) are assumed. Despite similar affinities for CXCL8 and similar 

receptor numbers of CXCR1 and CXCR2, neutrophil chemotaxis is primarily mediated by 

CXCR1 [63,64] suggesting diverse roles for CXCR1 and CXCR2. Previous reports using 

CXCL8 have shown that CXCR2, compared with CXCR1, internalizes more rapidly and 

recovers more slowly [55,56,59]. These differences in receptor trafficking which is mediated 

by β-arrestins, appear to regulate CXCR1 and CXCR2 activation during neutrophil 

recruitment and activation [55,56,59]. Nevertheless the molecular basis of such receptor-

specific signal transduction has not yet been determined in malignant melanoma. The initial 

events in chemokine- induced signal transduction determine the outcome of the response 

and must take place in proximity of the receptor. The scheme, which is shown in Figure 3 

and discussed in this paragraph, is not meant to be complete, but to present the most evident 

effectors in chemokine receptor signaling. Activation of the receptor by a chemokine ligand 

induces the exchange in the Gα-subunit from the GDP- to the GTP-bound state dissociating 

the α-subunit from the β and γ from G-protein subunits. These subunits activate 

phospholipase (PL) Cβ1 and Cβ2, followed by hydrolysis of PIP2 which leads to formation 

of inositol triphosphate (IP3) and diacylglycerol (DAG) with a subsequent increase in 

intracellular Ca2+ mobilization [61]. Although chemokine receptors lack tyrosine kinase 

activity, they can stimulate the phosphorylation of cytoskeleton proteins, p130 Cas and 

paxillin [65] and induce activation of the related adhesion focal tyrosine kinases (FAK) (also 

known as Pyk2 and CAKβ) [66], MAPK (ERK1/2, p38 and c-jun kinase) [66], PI3K [66] 

and Janus kinase 2 [67,68]. p44/42 kinases, also termed extracellular signal-regulated 

kinases (ERK1 and ERK2) are important mediators of growth and other signals [69,70]. 

Because most of the G protein coupled receptors can activate a variety of effector pathways 

via various G protein subunits, considerable heterogeneity exists in signaling pathways 

leading to ERK1/2 phosphorylation and subsequent activation of transcription factors [61]. 

Recent data suggests that signals dependent on G proteins are mediated through Rho and 

Rac pathways which result in actin polymerization, reconstitution of adhesion molecules and 

other cellular components leading to cell migration [52,71,72]. CXCL8-mediated signal 

transduction is more complex especially if one takes into account the cross-regulatory 

mechanism(s) of the integrated network [61,73]. The analysis of signaling events further 

downstream from receptor activation is more complicated because of the potential 

contributions from various pathways since many signaling pathways are shared by different 

receptor systems.
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5. Modulation of CXCR1/2 expression and/or activity for therapeutic 

intervention in malignant melanoma

Various strategies have been employed to modulate the expression of CXCR1/2 which 

includes low-molecular-weight antagonists, antibodies, siRNA and inhibitory peptides. Here 

we describe some of these approaches and the data obtained using preclinical models and 

discuss future perspectives. It has been shown by various groups that CXCL8 is 

constitutively expressed in malignant melanoma where it functions in an autocrine/paracrine 

fashion and acts as an invasive and angiogenic factor [31,33,74,75]. The multiple functions 

that are attributed to CXCR1/2 and their ligand emphasize the possibility of targeting them 

for cancer therapy.

Antibodies against CXCL8 and other chemokines have shown promising effects against 

melanoma. Humanized antibodies to CXCL8 have also been shown to inhibit tumor growth, 

angiogenesis and metastasis in case of melanoma [76,77]. But the positive response of 

neutralizing antibodies against chemokines other than CXCL8 suggests that melanoma may 

utilize different chemokine ligand to support its growth. It has also been reported that 17 

beta-estradiol, progesterone and dihydrotestosterone suppresses the growth of melanoma by 

inhibiting CXCL8 production in a receptor dependent manner [79]. Earlier studies have 

demonstrated that neutralizing antibodies to CXCR1 and CXCR2 inhibit melanoma cell 

proliferation and its invasive potential. It has also been reported that 17 beta-estradiol, 

progesterone, and dihydrotestosterone suppress the growth of melanoma by inhibiting 

CXCL8 production in a receptor dependent manner [79]. All these above evidence 

emphasizes targeting CXCL8 receptors rather than CXCL8 alone.

Several antagonists for CXCR1/CXCR2 receptors are also under consideration for 

melanoma therapy. Low-molecular-weight inhibitors with affinity for CXCR1 such as 

repertaxin or with affinity for CXCR2 such as SB-225002 or SB-332235 have been used 

against inflammatory diseases [12,80,81]. A recent study, have shown potential of the 

CXCR1/2 specific inhibitors, SCH-479833 and SCH-527123 in inhibiting human melanoma 

growth by decreasing tumor cell proliferation, survival and invasion [27]. Histological and 

histochemical analyses showed significant (p < 0.05) decreases in tumor cell proliferation 

and microvessel density in tumors. A significant increase in melanoma cell apoptosis was 

also in SCH-479833 or SCH-527123-treated animals as compared to controls [27]. 

Similarly, SCH-527123 has also been shown to inhibit neutrophil recruitment and 

inflammatory responses in an animal model [82].

6. CXCR1/2 targeting and chemotherapy

Current strategies focused on systemic therapy for treatment of metastatic melanoma have 

shown no effect on survival. Different therapeutic approaches have been evaluated including 

chemotherapy and biological therapy, either as single agents or in combination. Systemic 

chemotherapy is still considered the mainstay of treatment for stage IV melanoma and is 

used largely with palliative intent [83]. Systemic chemotherapy with dacarbazine (DTIC) is 

the standard clinical treatment for malignant melanoma but response rates are very low (10 – 

20%) [83,84] with only limited effect on survival [83,85]. Recent reports suggest that 
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expression of CXCR2 ligands and activation of CXCR2-dependent pathways might provide 

survival signals for therapy-resistant tumor cells [86–88]. An increase in the expression of 

CXCR1 and CXCR2 and their ligands in response to chemotherapy in various cancers have 

been observed [84,86,87,89,90]. An increase in the level of CXCL8, and CXCL1 after 

chemotherapy suggests that this pathway may be used as an escape mechanism leading to 

drug resistance. Treatment of malignant melanoma cells with Dacarbazine transcriptionally 

upregulates CXCL8 expression, which might render them resistant to the cytotoxic effect of 

drugs [84]. These reports suggest that inhibition of CXCR1/CXCR2 signaling might 

improve the efficacy of systemic chemotherapy against malignant melanoma progression 

and metastasis.

7. Expert opinion

The accumulated evidence from the experimental studies points toward a critical role for 

CXCR1 and CXCR2 and their ligands in melanoma progression and metastasis. The 

expression of these receptors in melanoma indicates the potential use as a biomarker of 

relative tumor aggressiveness. Despite decades of research, therapy for early-stage 

melanoma is surgery with a minor benefit noted with adjuvant therapy; however, there is no 

effective treatment for advanced disease. This clearly indicates the pressing need for novel 

and effective therapeutic measures for restricting melanoma tumor growth and metastasis. 

Blocking CXCR1/CXCR2 signaling using novel therapeutic strategies such as low-

molecular-weight antagonists or neutralizing antibodies can inhibit malignant melanoma 

growth, progression and metastasis. In addition, inhibition of CXCR1/CXCR2 signaling can 

be targeted to improve the efficacy of systemic chemotherapy against malignant melanoma.
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Article highlights

• The expression of CXCR1 and CXCR2 and its ligands in melanoma correlate 

positively with disease progression.

• CXCR1 and CXCR2 receptors and their ligands modulate melanoma growth, 

angiogenesis and metastasis.

• Targeting CXCR1 and CXCR2 using specific low-molecular-weight inhibitors 

decreased human melanoma growth and invasion, which gives us hope for 

utilizing these antagonists for future melanoma therapy.

• The aberrant expression and proven role of CXCR1 and CXCR2 receptors and 

their ligands in melanoma progression and metastasis demonstrates their 

potential as biomarkers of tumor aggressiveness.

This box summarises key points contained in the article.
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Figure 1. 
CXCR1- and CXCR2-dependent regulation of phenotypes associated with malignant 

melanoma progression and metastasis.
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Figure 2. 
Autocrine and paracrine signaling and role of CXCR1 and CXCR2-dependent signaling in 

regulation of angiogenic phenotype.

FGF: Fibroblast growth factor.
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Figure 3. 
CXCR1/2 receptor signaling in regulation of malignant cell phenotypes.

DAG: Diacylglycerol; FAK: Focal adhesion kinase; IP3: Inositol triphosphate; PKB: Protein 

kinase B; PLC: Phospholipase C; Pyk-2: Proline-rich tyrosine kinase 2; srcTPK: Src family 

tyrosine protein kinase.
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