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Abstract

It is widely assumed that distraction reduces pain. Similarly, it is assumed that pain distracts from 

concurrent, unrelated cognitive processing, reducing performance on difficult tasks. Taken 

together, these assumptions suggest pain processing and cognitive function engage an overlapping 

set of domain-general, capacity-limited mental resources. However, experimental tests of this 

proposal have yielded mixed results, leading to alternative proposals that challenge the common 

model of a bidirectional relationship between concurrent pain and task performance. We tested 

these contrasting positions using a novel concurrent pain and executive working memory 

paradigm. Both task difficulty and nociceptive stimulus intensity were individually calibrated for 

each participant. Participants reported less pain during the working memory task than a visually 

matched control condition. Conversely, increasing levels of heat incrementally reduced task 

performance. Path analyses showed that variations in pain completely mediated this effect, and 

that even within a given heat level, trial-by-trial fluctuations in pain predicted decrements in 

performance. In sum, these findings argue that overlapping cognitive resources play a role in both 

pain processing and executive working memory. Future studies could use this paradigm to 

understand more precisely which components of executive function or other cognitive resources 

contribute to the experience of pain.
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It is commonly assumed that distraction reduces pain. Also common is the assumption that 

pain captures attention, reducing performance on difficult mental tasks [25]. Taken together, 

these assumptions imply a tradeoff between the experience of pain and goal-directed task 

performance [42]. When tradeoffs are observed between two concurrently performed tasks, 

it may be inferred that the tasks overlap in the mental resources they engage, and that the 

processing capacity of these resources is limited [50]. Applying this logic to the tradeoff 
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between performance and pain suggests the same executive resources that are believed to 

support goal-directed mental functioning may also play a role in the experience of pain.

Extensive research has tested the common wisdom assumption that pain engages domain-

general cognitive resources in non-human animals [21; 31; 32; 10; 9; 4], chronic pain 

patients [28; 52; 18; 68; 30; 74; 19; 51; 60], and healthy volunteers exposed to transient 

noxious stimuli [53; 78; 27; 1; 6; 14; 17; 57; 61; 20; 33–35; 58; 64; 69–71; 77; 55; 73; 2; 40; 

63; 62; 12; 39; 56]. We can distinguish these studies according to the explicit hypothesis 

tested (Fig. 1):

I. pain ratings or other indices of pain experience are reduced by unrelated, 

concurrent, cognitive demand;

II. cognitive performance is reduced by concurrent pain.

Research in which healthy humans are exposed to transient pain balances the experimental 

control afforded by animal studies and the applicability and specificity possible in research 

with chronic pain patients (Table 1).

Looking at these studies in total, the results are surprising. While many found that 

participants reported less pain when task demand was greater [53; 78; 27; 1; 57; 61; 20; 33; 

34; 69; 70; 55; 73; 2; 40; 63; 12; 39; 56], a large number found no effect of increased task 

demand [35; 58; 71; 55; 63; 62].

Furthermore, only a few studies have reported a decline in cognitive performance as a 

function of pain [14; 35; 2], while most have found no effect [53; 17; 35; 64; 77; 16; 55; 73; 

63; 62; 12; 39]. This paucity of supportive findings has given rise to alternative proposals 

that task demand does not reduce concurrent pain [45; 48], that pain does not reduce 

concurrent performance [73], and that pain and goal-directed cognitive performance can 

occur simultaneously without meaningful interaction [62; 63]. All of these proposals 

challenge the common model of a bidirectional relationship between pain and goal-directed 

cognitive performance.

Alternatively, conceptual and methodological factors may account for the lack of support for 

the shared resources model found in the current literature [15; 23]. To discriminate among 

these competing models, we designed a paradigm to examine the relationship between pain 

and performance that accounted for several potentially confounding factors. Previous studies 

of the relationship between pain and cognitive demand have restricted their hypotheses to 

the level of experimental condition. However, the shared processes model would further 

predict a negative relationship between trial-by-trial fluctuations of performance and pain, 

even within a given heat level (pathway III in Fig. 1). A second goal of the current research 

was to test this prediction using a multilevel mediation framework. These analyses allowed 

us to further ask whether pain is a mediator of the heat level-performance relationship, 

which would suggest that conscious access to pain processing is an indicator of resource 

utilization.
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Methods

Design

We designed a novel paradigm combining three levels of transient thermal pain with a 3-

back executive working memory task. We chose the n-back paradigm [38] because of the 

high demand it places on central executive resources [65; 37]. To ensure the 3-back was 

sufficiently challenging for each participant, we calibrated difficulty prior to the main 

experiment by adaptively adjusting the interval between probes. The allocation of executive 

resources in a given task reflects both task difficulty and contextual factors such as 

motivation [42; 44]. To increase motivation, participants were told that they could earn 

bonus money for good 3-back performance.

We compared pain in this demanding executive working memory condition to pain in the 

context of passively viewing a continuous letter mask, a baseline condition requiring 

minimal executive processes. In order to assure sufficiently high nociceptive input, we 

calibrated heat levels for each participant prior to the main task. We excluded participants 

who during this calibration procedure did not give pain ratings that corresponded reliably 

with temperature or for whom we could not safely induce a high level of pain. For those 

individuals who remained in the study heat stimulation was only applied to the three most 

reliable skin sites out of eight initially tested. These procedures helped to substantially 

reduce within-participant variation. Finally, to obtain sensitive pain and performance 

measurements during the main experiment, participants rated each stimulus immediately 

after it occurred on a continuous rating scale, and 3-back responses were considered within a 

signal detection framework [67; 79].

All procedures were approved by the Columbia University Morningside Institutional 

Review Board.

Participants

Thirty participants began the experiment but five completed the calibration procedure with 

results that prohibited their continuation in the experiment: two participants were 

insufficiently sensitive to the maximum permitted temperature (48°C), while 3 participants 

were insufficiently reliable in their ratings across sites (R2 less than .5, as described below). 

One additional participant began the main experimental task but could not complete it on 

account of intolerable pain. Twenty-four right-handed volunteers (mean age: 25.0 years, 

range: 18.2 years to 43.5 years; 15 female) completed the experiment in its entirety and were 

included in analyses. All participants had normal or corrected-to-normal vision and were 

free of neurological and psychiatric illness. Compensation was given at a rate of $12 per 

hour. Participants were told they could earn up to $10 in bonus compensation for fast and 

accurate performance to enhance motivation, but in fact this additional $10 was given to 

everyone, regardless of performance. Most participants completed the entire experimental 

session in 2 hours to 2.5 hours, resulting in total payment of $34 to $40.
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3-back task

At the beginning of each trial, an on-screen message stated whether the current trial would 

require performance of the 3-back task or passive viewing of the serial letter mask. In the 3-

back task, participants indicated whether each letter presented in a pseudorandom sequence 

was the same or different from the letter exactly three positions prior. The letters were 

presented foveally for 840 ms, subtending approximately 0.7° visual angle vertically and 

0.4° visual angle horizontally. Subsequent to the first three letters of a sequence, 

approximately 30% of letters were targets. Immediately after each probe letter a serial letter 

mask began. As described in greater detail below, for each participant a calibration 

procedure was conducted prior to the main experiment to determine a unique mask duration 

(mean: 698 ms, range: 104 ms to 1404 ms). Each letter in the serial letter mask was 

displayed for 26 ms. Participants pressed the “1” and “2” keys of the numeric keypad on a 

standard keyboard to indicate responses of “same” or “not the same”. Responses could be 

made any time during the presentation of the letter or the subsequent mask. The mapping of 

the keys was randomized across participants.

Rating Scale

During both the nociceptive calibration procedure and the main task (described in greater 

detail below), ratings were made on a visual analogue scale anchored with numbers from 0 

to 8 and the following verbal descriptors: 0 was “no sensation”; 1 was “non-painful 

warmth”; 2 was “just painful”; 5 was “moderate pain”; 8 was “the maximum level of pain 

you are willing to experience here today”. Although pain intensity and unpleasantness can 

be dissociated with specific instructions (for example, [29]), they are often highly correlated 

under normative conditions [11]. This scale was designed to integrate the two in a single 

intuitive rating. Although 8 was the largest number depicted on the scale, if the pain induced 

by a stimulation was greater than the maximum a participant was willing to tolerate in the 

experimental session, he or she was asked to rate the pain with a number reflecting how 

much greater the pain was than a level 8, up to a maximum of 10.

Procedure

The experimental session consisted of three distinct parts: nociceptive calibration, task 

difficulty calibration, and the main experimental task.

Nociceptive Calibration—Nociceptive calibration involved 24 trials in which 

participants rated the pain induced by thermal stimulation (10°C/s ramp up, 7 s at target 

temperature, 10°C/s ramp down) applied using a 16 mm TSA-II Neurosensory Analyzer 

(Medoc Ltd., Chapel Hill, NC). Ratings were given verbally, and participants were told they 

were free to give non-integer ratings. Trials proceeded in a fixed order through 8 different 

candidate skin sites on the participants left forearm. On each trial after the initial three 

stimulations, an adaptive procedure was used to predict temperatures corresponding to pain 

ratings of 2, 5, and 8 (henceforth referred to as low, medium, and high). First, a linear 

regression model was fit with Temperature as the independent variable and Pain as the 

dependent variable. On the basis of this regression, trials were identified for which the 

absolute value of the residual was greater than the median of the absolute values of the 
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residuals of all trials. A second regression was then performed in which Pain values for 

these trials were replaced with predicted values from the first regression. The low, medium, 

and high heat level temperatures predicted by this second model were used to determine the 

temperature applied on the subsequent trial. A fixed, counterbalanced order, chosen to 

minimize predictive power, ensured one application each of a predicted low, medium and 

high temperature at each of the eight locations. Thus, the order of low, medium, and high 

trials was always the same, but the actual temperatures applied varied across trials and 

participants. If the predicted temperature for the heat level to be applied on a given trial was 

greater than the maximum permitted temperature of 48°C, 48°C was used instead. 

Participants were not told how the temperatures were determined or what they were. 

Following completion of the calibration trials, participants were excluded from further 

participation if the ratings they provided did not reliably correspond to the applied 

temperatures (R2 less than .5) or if the maximum permitted temperature of 48°C did not 

induce sufficient pain (estimated pain rating less than 6.5).

For 6 out of the 24 participants included in this analysis, the temperature estimated to 

correspond to a pain rating of 8 was greater than the maximum permitted temperature of 

48°C (max = 50.5°C, mean = 49.1°C, SD = .8°C). For these participants, 48°C was used as 

their final high heat level temperature in place of their estimated level 8. For all participants, 

the final heat level temperatures determined at the end of the calibration procedure were 

used for the duration of the experimental session (low: mean = 41.4, SD = 2.0; medium: 

mean = 44.5, SD = 1.4; high: mean = 47.4, SD = .9).

Task difficulty calibration—The second part of the experimental session was intended to 

familiarize participants with the 3-back task and to calibrate its difficulty. Following written 

and verbal instruction, participants practiced the task in a short block of trials. Accuracy was 

indicated with a positive or negative sound immediately after each response. Participants 

were required to repeat this practice block if low performance suggested a lack of 

understanding, and were allowed to choose to repeat the practice block as many times as 

they wished. The calibration block consisted of 160 letter stimuli. Initial mask duration was 

1000 ms. Prior to letter stimulus number 26, target sensitivity over the previous 15 stimuli 

was assessed with the nonparametric signal detection measure A [79], which provides a 

measure of performance accuracy independent of response bias (the tendency to report “yes” 

or “no” systematically). If sensitivity was higher than the targeted level of A = .75, mask 

duration was reduced by 200 ms * (A-.75) * 4, while sensitivity equal or lower than A = .75 

lead to an increase of 200 ms * (A-.75) * −4/3. Additional adjustments were made every 15 

stimuli until all 160 stimuli were complete, yielding ten adjustments for each participant.

Main task: Pain judgment and 3-back dual task—The third part of the experimental 

session consisted of 36 trials lasting about 50 s each (Fig. 2). Before each trial, the 

experimenter placed the thermode on one of the 3 skin sites identified as reliable during the 

nociceptive calibration. When ready, the participant pressed a key to begin the trial. An on-

screen message indicated whether the current trial would require performance of the 3-back 

task (Working Memory Load trial) or passive viewing of the serial letter mask (No Load 

trial). On Working Memory Load trials, participants were cued to perform the 3-back task 
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for the next 39 s of the trial. On No Load trials, they were cued to maintain fixation on a 

continuous serial letter mask for the 39 s trial. Each participant performed 18 trials of each 

type over the course of the experiment; the assignment of task condition on each trial was 

randomized. On both Working Memory Load and No Load trials, after 13 s a tone indicated 

to the participant that noxious heat would be delivered. Heat onset began after a 26 s delay. 

The heat lasted for approximately 13 s, (2.1 s ramp up, 8.8 s target temperature, 2.1 s ramp 

down). Ramp rates ranged from 4.2°C/s to 10°C/s, depending on the target temperature. 

Unbeknownst to participants, only the temperatures determined at the end of the nociceptive 

calibration to correspond to the low, medium, and high heat levels were applied during the 

main task. In total, each participant performed 6 Working Memory Load and 6 No Load 

trials at each of the 3 heat levels.

After 39 s, the temperature returned to baseline. On Working Memory Load trials the 3-back 

task ended at this point. For both Working Memory Load and No Load trials, the remaining 

portion of the trial was identical. After an additional 5 s of the serial letter mask, an onscreen 

rating bar appeared, along with the cue “how painful?” Participants were instructed to use 

the mouse to rate the pain they experienced during the heat stimulus by clicking anywhere 

on the rating bar that appeared on the screen, using the same anchors and following the same 

instructions as during the nociceptive calibration. After the rating was made following each 

trial, the experimenter then moved the thermode to the next skin site, after which the 

participant could begin the next trial whenever she was ready. To ensure the ratings given 

during the main experimental session were consistent with those given during the calibration 

procedure, participants were given an opportunity to practice using the onscreen rating bar 

with feedback in a training procedure prior to the main experimental task.

Unique letter and trial sequences were created for every participant and every trial with 

scripts written in MATLAB (version 7.5.0.342). Pseudorandom sequences were determined 

using the Mersenne Twister number generation algorithm (Matsumoto & Nishimura, 1998), 

with constraints to avoid long strings of identical letters and trial types.

Mediation analyses

A mediation framework was used to assess the hypothesis that trial-by-trial fluctuations in 

pain would negatively correlate with task performance. A test for mediation indicates 

whether a covariance between two variables (x and y) can be explained by a third variable 

(m). A significant mediator is one whose inclusion as an intermediate variable in a path 

model of the effects of x on y significantly affects the slope of the x – y relationship; that is, 

the difference (c – c′) is statistically significant. More formally, the mediation test can be 

captured in a system of three equations:

where y, x, and m are n (Participant) by t (Trials) data vectors containing the outcome (either 

y1, Performance, or y2, Pain), the predictor (x1,2, Heat Level), and data from a candidate 
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mediating variable (either m1, Pain, or m2, Performance). e y, e m, and e′y vectors denote 

residual error for the outcome and mediator controlling for x and the outcome controlling for 

x and m, respectively. The a path is the estimated linear change in m per x (the slope of the 

Heat Level-Performance or Heat Level-Pain relationship). The b path is the slope of the 

mediator-outcome relationship controlling for x (Pain-Performance, or Performance-Pain, 

controlling for Heat Level). The c and c′ paths are as described above. Statistical tests on a 

and b path coefficients assess the significance of each relationship. In addition, a statistical 

test of (c – c′) can be performed by testing the significance of the product of the path 

coefficients ab. We tested the significance of ab using the accelerated, bias-corrected 

bootstrap test [26] with 10,000 bootstrap samples to test each of the a, b, and ab path 

coefficients. Since the hypotheses contained explicit predictions of the direction of the 

relationships between variables (all negative except for the relationship between Heat Level 

and Pain), all tests were one-tailed.

Results

To test the hypothesis that task demand would reduce pain, we analyzed the data in a linear 

mixed effects model with Participant as a random-effects predictor, Task Demand (Working 

Memory Load or No Load) as a fixed-effects predictor, Heat Level as a continuous, fixed-

effects predictor (low, medium, high), and Pain as the dependent variable (Fig. 3). A main 

effect of Heat Level indicated that higher levels of heat led to greater Pain, F(1, 768) = 

281.82, MSE = 2934.89, p < .001, while a main effect of Task Demand indicated that greater 

demand led to lower Pain, F (1, 768) = 48.3, MSE = 166.73, p < .001. A main effect of 

Participant indicated that average Pain was different across individuals, F(23, 768) = 3.07, 

MSE = 10.61, p < .005. An interaction of Heat Level and Task Demand indicated that 

greater Task Demand reduced Pain by different amounts depending on the level of heat, F(1, 

768) = 12.64, MSE = 17.45, p < .005. Post-hoc comparisons using Tukey s honestly 

significant difference procedure confirmed that task demand reduced pain ratings at each 

Heat Level (p < .05, corrected). A Participant × Task Demand interaction indicated that the 

magnitude of task-induced reduction in Pain varied across individuals, F(23, 768) = 3.45, 

MSE = 3.45, p < .05, and a Participant × Heat Level interaction indicated additional 

individual variability in the amount of Pain reported across the three levels of heat, F(23, 

768) = 10.41, MSE = 7.54, p < .001.

A second mixed effects model tested the hypothesis that higher heat levels would reduce 

task performance (Fig. 4). Heat Level was entered as a continuous, fixed-effects predictor 

and Participant was entered as a random-effects predictor. The dependent measure was 

Performance, assessed with the nonparametric measure of target sensitivity A. Only 

Working Memory Load trials were included in this analysis, as no performance data were 

available for the No Load trials. A main effect of Heat Level indicated that higher levels of 

heat led to lower Performance, F(1, 378) = 9.24, MSE = .130, p < .01, while a main effect of 

Participant indicated that Performance varied across individuals, F(23, 378) = 5.51, MSE = .

157, p < .001. Post-hoc comparisons using Tukey s honestly significant difference procedure 

indicated worse Performance at the high versus low level of heat, but no difference between 

the medium level of heat and the other two (p < .05, corrected).

Buhle and Wager Page 7

Pain. Author manuscript; available in PMC 2014 November 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In order to test the relationships among heat level, pain, and task performance, we conducted 

two multilevel mediation analyses. The results of these are summarized in Figure 6. The first 

analysis assessed the hypothesis that trial-by-trial fluctuations in pain mediated the 

relationship between heat level and performance. We found that Pain fully mediated the 

relationship between Heat Level and Performance (ab= −.03, Z = −3.91, p < .001). In 

addition to the significant mediation (ab) effect, there was a significant, positive effect of 

Heat Level on Pain (a = 2.07, Z = 4.22, p < .001), and a negative effect of Pain on 

Performance, controlling for Heat Level (b = −.02, Z = −3.52, p < .001). Although there was 

a strong positive relationship between Heat Level and Performance (c = −.02, Z = −3.35, p 

< .001), after controlling for Pain, this relationship was no longer significant (c′ = .02, ns), 

indicating that Pain was a complete mediator.

A second mediation analysis assessed the complementary hypothesis that trial-by-trial 

fluctuations in performance mediated the relationship between heat level and pain. We 

found that Performance partially mediated the relationship between Heat Level and Pain (ab 

= .01, Z = 1.77, p < .05). In addition to the significant mediation (ab) effect, there was a 

significant, negative effect of Heat Level on Performance (a = −.02, Z = −3.36, p < .001), 

and a negative effect of Performance on Pain, controlling for Heat Level (b = −2.16, Z = 

−3.61 p < .001). After controlling for Performance, a direct relationship remained between 

Heat Level and Pain (c = 2.07, Z = 4.20, p < .001; c′ = 2.04, Z = 4.13, p < .001).

Discussion

Previous research has typically assumed a bidirectional relationship between pain and task 

performance [42], implying both engage an overlapping set of domain-general, capacity-

limited cognitive resources. Yet experimental evidence has been equivocal, leading to 

alternative proposals [45; 48; 73; 63; 62]. We sought to distinguish between these competing 

views using a novel paradigm designed to place continuous demand on executive processes 

and sensitive, trial-level analyses. Participants reported less pain during a difficult 3-back 

working memory task than a visually matched control condition. Conversely, increasing 

levels of heat incrementally reduced task performance, and trial-by-trial pain reports 

predicted performance within a given heat level. Using a mediation framework, we found 

that accounting for these trial-by-trial pain reports fully explained the relationship between 

heat and performance. In a separate mediation analysis, we also found that trial-by-trial 

performance in the task partially explained pain reports. Taken together, these findings 

suggest that the processes that contribute positively to both pain and executive working 

memory performance share capacity-limited resources [42]. Furthermore, resource 

allocation varies from one process to the other over time, so that observed variation in each 

predicts effects on the other. That is, better performance on a given trial predicts lower pain, 

and higher pain predicts worse performance. Though our mediation analyses are consistent 

with the notion that each causally influences the other, follow-up experiments that 

independently manipulate both pain and task performance experimentally are needed to 

solidify causal inferences.

A shared resources model of pain and cognitive performance is consistent with several 

neuroimaging meta-analyses that found reliable pain-related activity in lateral and anterior 
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prefrontal cortex (PFC) [54; 59]. These regions have been strongly implicated in diverse 

executive processes [76], and activity in them has been shown to increase parametrically 

with demand in an number of executive tasks [5; 13; 36; 66; 22; 75]. However, the few 

previous studies that have directly examined the effects on PFC activity of incremental 

changes in pain have found activation with painful stimulation, but not incremental changes 

of activity that tracked increases in stimulus intensity or reported pain [3; 7]. One possible 

explanation for this difference is that PFC activity may not provide a sensitive index of 

resource limitation across levels of pain. For example, PFC may be activated under both 

weak and strong noxious stimulation, but for different reasons. At low levels of stimulation, 

PFC might be recruited to reappraise pain or allocate attention elsewhere, consistent with 

previous studies that suggest a pain-regulatory role [81; 82; 80; 46; 70]. Conversely, at high 

levels of stimulation, greater PFC activity might reflect increased generation of pain-related 

cognitions or allocation of attention towards pain. This account predicts that the PFC-pain 

relationship may be moderated by the intensity of noxious stimulation: it should be 

negatively correlated with pain at low stimulus intensity and positively correlated with pain 

at high stimulus intensity. Other explanations that need to be tested are also possible, 

including: (a) BOLD activity may show a ceiling effect, because PFC is strongly engaged by 

even weak noxious stimuli; (b) as pain increases, individuals may shift toward alternate 

coping strategies that do not recruit lateral PFC; and (c), PFC may be recruited to resolve 

ambiguity and enhance discrimination under weak stimulation, but to regulate pain during 

intense stimulation. Interestingly, these latter two alternatives imply moderation effects 

opposite to our initial explanation above, yielding divergent empirical predictions.

The affirmative findings of the present research again raise the question of why some studies 

have observed interference between pain and cognitive performance while others did not 

(see Table 1). Comparing these studies suggests several technical and conceptual factors 

may be critical to observing this relationship, including the type and intensity of task 

demand and the degree of temporal overlap between task and pain processing (see also 

discussions in [23; 63]). Specifically, we posit that the task must substantially and 

continuously demand executive resources. While we did not test this hypothesis in the 

current research, several aspects of the experimental design reflect this assumption. First, we 

chose a task that places heavy demands on executive working memory and that has been 

well characterized both theoretically and neurally. N-back performance requires both the 

continuous updating of representations in working memory and response selection [76]. An 

earlier study similarly found that concurrent n-back performance reduced pain [2]. However, 

consistent with the view that executive demand is critical for a task to interfere with pain 

processing, another study that used the Sternberg task, a working memory task that places 

relatively little demand on executive function, found no reduction in pain during task 

performance [35]. Interference tasks and other Stroop-like tasks also engage executive 

processes [49], but current results from interference tasks are mixed: pain reduction was 

reported with a standard Stroop task [70] and with numeric Stroop task variants [1; 63], but 

not when the challenging Multisource Interference Task was used [62]. Several other studies 

found a task-related reduction in pain using paradigms that are less well characterized in the 

literature, including maze performance [53], visual search [73], arithmetic [78; 61; 20; 69], 

word generation [27; 57], video and virtual reality games [33; 34; 56], mental rotation [39], 
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detection and discrimination [6; 14; 58; 71; 55], and rapid serial visual presentation tasks 

[77]. Because it is less clear which component processes these tasks require, at present these 

findings cannot be used assess the hypothesis that executive demand is critical. Furthermore, 

tasks which should place minimal demand on executive resources have yielded mixed 

results: while an emotional distraction counting Stroop task variant [8] had no effect on pain 

[63], a simple 1-back task successfully reduced pain [12]. Future research will need to 

explicitly compare different types of demand within a single experiment in order to provide 

a rigorous test of the role of executive demand in pain reduction.

A second choice was to calibrate task difficulty. Our goal was twofold. First, we sought to 

ensure the task would yield a measure sufficiently sensitive to detect a deleterious influence 

of pain on performance for each participant. If the task is not sufficiently demanding, then 

painful stimulation may only transiently and subtly interrupt task performance. Modest 

decrements in performance will only be detectable if participants are performing near 

capacity and performance measures are sensitive. Second, we sought to ensure that 

successful performance of the task would require a profound commitment of executive 

resources [23]. Even tasks that engage executive function may not interfere with pain if they 

do not place a heavy demand on information processing.

A third choice we made was to motivate participants with a monetary reward for good 

performance. Our intention was to ensure the greatest possible dedication of resources to the 

task. Unmotivated participants might perform at a lower level sufficiently below their 

ability, leaving idle resources available for concomitant pain processing [42]. However, 

given the possibility that reward processing may interact with pain [43], future research 

should confirm that motivated performance of a demanding task can reduce pain regardless 

of reward context.

Even if pain and task processing engage overlapping executive resources, if this engagement 

does not overlap in time, participants would be able to switch attention back and forth 

between pain and cognitive demand, allowing both to be fully processed [24; 72; 73]. Thus, 

a fourth choice we made was to combine continuous thermal pain with a speeded n-back 

task that placed relatively continuous demand on executive working memory. In contrast, 

when Seminowicz and Davis [62] combined relatively continuous electrical pain with the 

relatively brief and interspersed processing demands of the Multisource Interference Task, 

no reductions in pain or performance were observed.

Future studies could directly test the hypotheses we offered to explain the inconsistent 

previous findings. For example, the criticality of executive demand could be examined by 

directly comparing the pain reduction incurred by executive working memory tasks such as 

the n-back with working memory tasks which only involve storage, such as the Sternberg 

task (for more on this distinction, see [76]). Future research could also examine whether 

different types of executive function, such as perceptual attention demand and executive 

working memory, influence pain differently [41]. A third important goal for future research 

would be to clarify the role of pain duration. We hypothesize that brief shock or contact heat 

will cause intermittent and minor disruption of task performance on response selection, such 

as a Stroop task, but more profound disruption of tasks that require temporal continuity, 
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such as a difficult n-back. Furthermore, brief noxious stimuli with rapid onsets may capture 

attention even in the context of a challenging cognitive task.

In sum, these findings support the view that subjective pain and executive working memory 

performance engage overlapping, capacity-limited cognitive resources. Furthermore, 

reciprocal variation in pain and performance within a given heat level suggests these limited 

resources are dynamically allocated between the two processes. Future studies could use the 

paradigm and analyses we present here to more precisely identify which cognitive resources 

participate in pain processing and to illuminate the specific roles they play.
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Fig. 1. 
Conceptual model of the relationship between pain and performance. Three general 

hypotheses can be tested to evaluate this model: I. Pain ratings or other indices of pain 

experience are reduced by unrelated, concurrent, cognitive demand; II. cognitive 

performance is reduced by concurrent pain; III. A negative relationship exists between trial-

by-trial fluctuations of performance and pain, even within a given heat level.
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Fig. 2. 
Timeline of single trial.
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Fig. 3. 
The effect of task demand on pain. Error bars reflect within-subject standard error computed 

using pooled variance from the Participant × Performance and Participant × Performance × 

Heat Level interactions [47].
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Fig. 4. 
The effect of heat level on performance. Error bars reflect within-subject standard error of 

the Participant × Heat Level interaction. The mean within-subject standard deviations of A 

were .14, .14, and .16 for low, medium, and high levels of heat, respectively.
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Fig. 5. 
The relationship between pain and performance. For visualization, performance data were 

binned into quintiles based on pain ratings.
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Fig. 6. 
Summary of mediation results for Working Memory Load trials. A first mediation analysis 

assessed whether Pain (M1) mediated the relationship between Heat level (X1) and 

Performance (Y1): a1: the relationship between Heat Level and Pain; b1: the relationship 

between Pain and Performance, controlling for Heat Level; c1: the observed relationship 

between Heat level and Performance; c′1: the relationship between Heat Level and 

Performance, controlling for a1 and b1. A second mediation analysis assessed whether trial-

by-trial fluctuations in Performance (M2) mediated the relationship between Heat Level (X2) 

and Pain (Y2): a2: the relationship between Heat Level and Performance; b2: the relationship 

between Performance and Pain, controlling for Heat Level; c2: the observed relationship 

between Heat Level and Pain; c′2: the relationship between Heat Level and Pain, controlling 

for a2 and b2. * p< .05. **p< .001.
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