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Abstract

A model-based inverse filtering scheme is proposed for an accurate, non-invasive estimation of 

the aerodynamic source of voiced sounds at the glottis. The approach, referred to as subglottal 

impedance-based inverse filtering (IBIF), takes as input the signal from a lightweight 

accelerometer placed on the skin over the extrathoracic trachea and yields estimates of glottal 

airflow and its time derivative, offering important advantages over traditional methods that deal 

with the supraglottal vocal tract. The proposed scheme is based on mechano-acoustic impedance 

representations from a physiologically-based transmission line model and a lumped skin surface 

representation. A subject-specific calibration protocol is used to account for individual 

adjustments of subglottal impedance parameters and mechanical properties of the skin. 

Preliminary results for sustained vowels with various voice qualities show that the subglottal IBIF 

scheme yields comparable estimates with respect to current aerodynamics-based methods of 

clinical vocal assessment. A mean absolute error of less than 10% was observed for two glottal 

airflow measures –maximum flow declination rate and amplitude of the modulation component– 

that have been associated with the pathophysiology of some common voice disorders caused by 

faulty and/or abusive patterns of vocal behavior (i.e., vocal hyperfunction). The proposed method 

further advances the ambulatory assessment of vocal function based on the neck acceleration 

signal, that previously have been limited to the estimation of phonation duration, loudness, and 
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pitch. Subglottal IBIF is also suitable for other ambulatory applications in speech communication, 

in which further evaluation is underway.

Index Terms

Inverse filtering; glottal airflow; ambulatory monitoring; voice production; vocal folds; 
accelerometer; neck vibration; glottal source

I. Introduction

Inverse filtering (IF) of voiced speech sounds is used to estimate the source of excitation at 

the glottis by removing the effects of the acoustic loads from an output signal. This 

technique is primarily performed for the vocal tract using recordings of sustained vowels 

obtained from either mouth-radiated acoustic pressure or airflow. A wide range of 

applications make use of IF, including clinical assessment of vocal function [1]–[4], speech 

synthesis and coding [5], [6], assessment of voice quality [7], [8], estimation of vocal tract 

area functions [9], speech enhancement [10], and speaker identification [11].

Most IF algorithms are aimed at removing vocal tract resonances and have included a 

variety of approaches such as filter banks [1], parametric estimation [12], nonlinear 

feedback [13], multi-channel assistance [14], iterative schemes [15], [16], model 

optimization [17], [18], closed-phase covariance [11], [19], spectral methods [8], weighted 

linear prediction [20], and hidden Markov models [6]. The primary difficulties in current 

speech IF are due to the effects of nonlinear source-filter interaction, inaccurate performance 

over a full range of fundamental frequencies, and lack of robustness for continuous speech 

analysis [8], [21], [22].

A substantially different IF approach consists of removing subglottal resonances and skin 

effects from measurements made with a surface bioacoustic sensor placed near the 

suprasternal notch. Subglottal (e.g., tracheal and bronchial) resonances are relatively stable 

and do not exhibit the same complex temporal patterns as those from the vocal tract [23]–

[25]. In addition, neck surface recordings provide relatively strong signals that are less 

sensitive to background acoustic noise and yield unintelligible speech patterns that preserve 

confidentiality needed in some applications [26], [27]. These factors make a subglottal IF 

method attractive for the task of estimating the source of excitation at the glottis, especially 

in continuous speech.

Subglottal IF requires a different mathematical approach than that used for the vocal tract, as 

strong zeros in the neck-to-glottis transfer function are present, thus making previous vocal 

tract–based methods inapplicable. Subglottal IF was first attempted for sustained vowels 

using a parametric pole-zero representation [23] to match experimental observations of the 

subglottal impedance [28]. When used in the context of a vocal system model, this approach 

yielded better estimates of sound pressure level than the glottal parameters of interest [23], 

[29]. This result was attributed to the prevailing notions about the underlying physical 

phenomena affecting the glottal estimates. For instance, the effects of source-filter 

interaction were thought to distort the estimates of glottal airflow, particularly during 
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segments exhibiting incomplete glottal closure [23]. However, recent work illustrates that 

the “true” glottal airflow (i.e., glottal airflow with all the effects of source-filter interactions) 

could be accurately estimated without the need for modeling glottal coupling, even under an 

incomplete glottal closure scenario [30], [31]. This means that the acoustic coupling 

between tracts through the glottis is embedded in the resulting dipole source and should not 

be compensated for.

The concept of obtaining estimates of glottal parameters via neck surface recordings has 

been initially motivated by the desire to perform ambulatory assessment of vocal function 

for clinical and research purposes and has thus been applied to the design of portable 

monitoring equipment, e.g., [32]–[35]. The ultimate goal of ambulatory assessment is to 

obtain measures of vocal function that are essentially equivalent to what can be acquired in 

the clinical laboratory setting, including an important combination of acoustic and 

aerodynamic parameters (for details on traditional assessment, see [36]), but to do so as 

individuals engage in their typical daily activities. The overriding assumption is that 

ambulatory assessment will more accurately characterize vocal behaviors associated with 

voice use–related disorders (e.g., vocal hyperfunction). However, current ambulatory 

methods only extract estimates of fundamental frequency and sound pressure level, along 

with voice-use parameters (e.g., vocal dose measures) that are derived from these basic 

acoustic measures [32], [37]. Although still considered to have clinical value, the diagnostic 

capabilities of this basic battery of measures is considered to be inherently limited because it 

does not include aerodynamic parameters that have been shown in laboratory studies to 

provide important insights into the underlying pathophysiology of some of the most 

common types of voice disorders that are caused by faulty and/or abusive patterns of vocal 

behavior (i.e., vocal hyperfunction) [2], [27]. A recently developed ambulatory voice 

monitoring system provides recordings of the raw neck surface acceleration signal that can 

be used for subglottal IF purposes [33].

In this study, a biologically-inspired acoustic model builds upon initial efforts [23], [29] for 

an enhanced estimation of glottal airflow from neck surface acceleration. The subglottal IF 

scheme is evaluated under controlled scenarios that represent different quantifiable glottal 

configurations during sustained phonation. The objective is to address the primary 

challenges to typical IF, namely source-filter interaction, performance over a full range of 

pitch frequencies, and robustness of automatic IF for continuous speech. Although the 

application that is investigated in this study is associated with the ambulatory assessment of 

vocal function, other potential applications include biofeedback to help facilitate behavioral 

voice therapy for common hyperfunctional voice disorders, robust speech enhancement, 

speaker normalization, automatic speech recognition, and speaker identification.

The outline of this paper is as follows. Section II introduces the proposed subglottal 

impedance-based IF (IBIF) scheme, Section III explains the experimental setup used to test 

the proposed scheme, Section IV presents key results contrasting traditional IF with the 

subglottal IBIF method, and Section V discusses the implications of these results and future 

directions. Finally, Section VI provides a summary of the study.
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II. Subglottal impedance-based inverse filtering

A model-based inverse filtering scheme based on mechano-acoustic analogies, transmission 

line principles, and physiological descriptions is proposed. The method follows a lumped 

impedance parameter representation in the frequency domain that has been proven useful to 

model sound propagation in the subglottal tract [38]–[41] and vocal tract [42]–[45] and to 

explore source-filter interactions [46]–[49]. Time-domain techniques such as the wave 

reflection analog [50]–[52] and loop-equations [53]–[55] can accomplish similar goals in 

numerical simulations, but are typically less attractive for the development of an on-board 

signal processing scheme. Although the proposed method can incorporate multiple levels of 

system interactions, the present study is focused on the subglottal tract.

A. General principles

The proposed scheme is based on a series of concatenated T-equivalent segments of lumped 

acoustic elements that relate acoustic pressure P (ω) to airflow volume velocity U(ω) [38], 

[41]–[44], where ω represents frequency. A representation of the basic T section is depicted 

in Fig. 1. Yielding wall parameters include cartilage (Lwc, Rwc, Cwc) and soft tissue (Lws, 

Rws, Cws) components. The remaining lumped acoustic elements in Fig. 1 describe the 

relatively standard acoustical representations for air viscosity and heat conduction losses 

(Ra, Ga), elasticity (Ca), and inertia (La).

In this representation, a cascade connection is used to account for the acoustic transmission 

matrix associated with each section represented by the two-port T network. This approach 

provides relations for both P (ω) and U(ω), so that the frequency response of the flow-flow 

transfer function H(ω) and driving-point input impedance Z(ω) can be computed. The 

notation for frequency dependence (ω) is omitted in some cases for simplicity. If the 

equivalent impedance of the shunt terms in Fig. 1(a) is denoted as Zb, and that of the series 

term on each side as Za, then the symmetric transmission matrix that relates two neighboring 

T sections has the following ABCD network structure:

(1)

where both flows are considered to enter the T section, so that

(2)

(3)

(4)

(5)
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Thus, the frequency response of the flow transfer function H(ω) = −U2/U1 is given by

(6)

and the driving-point impedance, or input impedance, Z1(ω) from the first section by

(7)

where Z2(ω) acts as the effective load impedance for the two-port network. As either 

cascade or branching configurations are commonly encountered in the subglottal tract, the 

network is solved by carrying through the equivalent driving-point impedance of previous 

tracts, starting with a terminal lung impedance and ending at the glottis. This allows for the 

inclusion of subglottal branching without increasing the complexity of the overall approach 

[41], [55].

B. Subglottal tract module and its transfer function

It is desired to estimate glottal airflow from measurements of neck surface acceleration on 

the skin overlying the extrathoracic trachea at the level of the suprasternal notch. For this 

purpose, the transmission line model is used as a tool to obtain a transfer function between 

neck surface acceleration and glottal airflow. Therefore, a neck skin impedance (Zskin) is 

introduced to account for the combined effects of mechanical skin properties and 

accelerometer loading and to incorporate the neck skin velocity (Uskin) and its time 

derivative (U̇
skin) into the model.

This module takes as input an acceleration signal Uṡkin and as output the airflow Usub just 

below the glottis. The glottal volume velocity (GVV) is thus defined as the negative of the 

subglottal airflow (i.e., −Usub). The frequency response of the transfer function Tskin = 

Uskin/Usub is obtained through the subglottal tract module and then inverted to estimate the 

glottal airflow from neck surface acceleration.

The subglottal tract module and its physiological basis are illustrated in Figs. 2 and 3, 

respectively. The subglottal tract is composed of two subglottal sections, sub1 and sub2, that 

represent the portion of the extrathoracic trachea above and below the accelerometer 

location, respectively. The neck skin impedance Zskin is located in parallel between sections 

sub1 and sub2. In addition, Zsub1 and Zsub2 are the frequency-dependent driving-point 

impedances of the corresponding tract subsections. The volume velocity Uskin flowing 

through Zskin is expressed as

(8)

where Zskin is determined as the mechanical impedance of the skin (Zm) in series with the 

radiation impedance due to the accelerometer loading (Zrad). Thus,
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(9)

(10)

where Rm, Mm, and Km are, respectively, the per-unit-area resistance, inertance, and stiffness 

of the skin. In addition, the radiation impedance due to accelerometer loading is

(11)

where Macc and Aacc are, respectively, the per-unit-area mass and surface of the 

accelerometer and any coating or mounting disk attached to it.

The skin volume velocity Uskin is differentiated to obtain the neck surface acceleration 

signal U̇
skin. The frequency response Tskin of the transfer function between Usub and U̇

skin is 

expressed as:

(12)

where Hsub1 = Usub1/Usub is the frequency response of the transfer function of the subglottal 

section sub1 from the glottis to the accelerometer location, and Hd = jω is the ideal 

derivative filter. It is convenient to estimate directly Usupra, the airflow entering the vocal 

tract, which is derived from the subglottal airflow using Usupra = −Usub. The linear 

magnitude of Tskin for one of the subjects in this study is shown in Fig. 4.

The inverse filtering process was performed digitally in the frequency domain using the fast 

Fourier transform (FFT) and the inverse FFT. Thus, the frequency response Tskin(ω) was 

sampled and became Tskin(k) with k = 0, 1, …, N − 1, where N is the number of FFT points. 

Reconstruction with a real-valued output was achieved by setting N to be at least the number 

of samples in Uṡkin and forcing Tskin(k) to be conjugate symmetric, i.e., 

.

Estimation of the airflow entering the vocal tract requires inverting the subglottal frequency 

response (i.e., Usupra = −U̇
skin/Tskin). Note that the subglottal impedance Zsub2 has a zero on 

the imaginary axis in the s-plane at 0 Hz that yields large amplitudes in the inverse transfer 

function of Tskin at low frequencies, which in turn drifts the neck surface acceleration signal 

significantly. Thus, to avoid this undesirable effect, the magnitude |Tskin(k)| must be 

constrained to be larger than or equal to one in the low-frequency range. This could be 

performed by either directly reassigning the magnitude of the corresponding FFT bins (with 

zero phase, if desired) to a unitary gain, or utilizing a properly designed high-pass filter. In 

this study, a low-frequency correction with a unitary magnitude and zero phase was used for 

this purpose.
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C. Subject-specific calibration

A calibration scheme was implemented to account for variations among subjects by 

assigning subject-specific parameters to the subglottal tract model. Specifically, the 

parameter space given by the skin model and tracheal geometry was adjusted to minimize 

the error between oral-based and neck-based GVV waveforms. These glottal waveforms 

were aligned, and model properties were obtained via a constrained multivariate 

optimization. Five different model parameters were adjusted in this process: tracheal length 

Ltrachea, accelerometer position Lsub1, skin inertance Mm, skin resistance Rm, and skin 

stiffness Km. A default parameter set was allowed to vary using a vector of scaling factors Q 
= {Qi}i=1, …, 5. These scaling factors defined the subject specific parameters and were 

sought within the multivariate optimization scheme. The scaling factors are defined as

(13)

(14)

(15)

(16)

(17)

(18)

Calibration of the model can be expressed in the form of a standard optimization problem, as 

described in Eq. 19, where the solution Q* yields the subject-specific parameter values. In 

this study, the fitness function f(·) : ℝ5 → ℝ minimized the mean-square error incorporating 

GVV signals and waveform features that are described further in Section III. Thus,

(19)

where D = {Di}i=1, …, 5 is the constricted search domain and each Di defines the subrange 

of the corresponding Qi. This search domain was used to avoid model overfitting and to 

keep parameter values physiologically meaningful [28], [57]–[59]. Each scaling factor was 

restricted to yield parameter values within the following ranges:

(20)
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While the proposed calibration does not require a specific multivariate optimization scheme 

to compute Q* or IF mechanism to obtain the oral-based GVV, recommendations in this 

regard are presented in Section III.

Default mechanical properties for the neck skin were taken from early studies [57], [60]. 

Mechanical properties for the accelerometer loading were based on the accelerometer 

described in Section III, with a mass per unit area of Macc/Aacc = 0.26 g · cm−2. The length 

of the trachea was considered to be the primary anatomical difference between subjects in 

the lower airways [59], and tracheal scaling has been used to correct anatomical differences 

when modeling subglottal impedances [28]. The default tracheal length was 10 cm [58]. The 

default accelerometer location was 5 cm below the glottis. The acoustical transmission line 

model of a symmetric branching subglottal representation from previous studies [40], [41] 

was used. In particular, symmetric anatomical descriptions for an average male were used 

[58], since they yielded a response similar to that reported experimentally [28], [55].

Note that the selected mechanical properties of the skin likely capture other anatomical 

differences (e.g., skin fat) and are assumed to be constant for each subject. Some of these 

skin properties may account for other components in the system, such as tracheal diameter 

and losses in the subglottal system, for which their resulting values need to be carefully 

interpreted. Given the assumption of constant skin properties, this calibration protocol is 

expected to be performed once for each subject. However, changes in head position and 

other factors affecting the skin properties were re-calibrated in order to reduce initial 

uncertainties. The robustness of the skin parameter calibration is a topic of current research.

III. Experimental Methods

An experimental evaluation was used to evaluate the sub-glottal IBIF scheme with a 

protocol that included synchronous measurements of neck skin surface acceleration (ACC), 

oral airflow volume velocity (OVV), electroglottography (EGG), and radiated acoustic 

pressure (MIC). The primary goal was to obtain estimates of GVV from the ACC signal and 

contrast them with those estimated from the OVV signal. The remaining signals were used 

as references to facilitate the process.

The OVV waveform was obtained through a circumferentially-vented mask (model MA-1L, 

Glottal Enterprises). Calibration of the OVV signal used an airflow calibration unit (model 

MCU-4, Glottal Enterprises) after each recording session. The ACC signal was obtained 

using a lightweight accelerometer (model BU-27135, Knowles) attached to the skin 

overlying the suprasternal notch using double sided-tape (No. 2181, 3M), as seen in Fig. 5. 

The accelerometer at this location provides good tissue-borne sensitivity and is minimally 

affected by typical background noise [26]. The accelerometer was calibrated using a laser 

vibrometer as described in [23], where a sensitivity of 90 dB ± 3 dB re 1 cm/s2/volt in the 

70–3000 Hz range was found. As in that study, the nominal value of 88.121 dB re 1 cm/s2/

volt was used for the calibration. A custom signal conditioner supplied power to the ACC, 

removed its DC component, and provided a gain of 1.2 dB ± 0.l dB [23].

The experimental protocol included two sustained vowels (/a/ and /i/) at different vocal 

conditions (modal, modal-loud, breathy, falsetto). Amplitude of vibration, degree of 
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incomplete glottal closure, vibratory mode, and fundamental frequency were expected to 

change among these cases [61], [62]. The goal was to explore various glottal conditions 

(different fundamental frequencies, amplitude levels, and degrees of source-filter 

interaction) and amplitude levels to evaluate the linearity and performance of the subglottal 

IBIF approach. Seven adult subjects (four males and three females) with no history of vocal 

pathologies yielded 33 recordings for this study. Table I lists the characteristics of the 

recordings made from the subjects and indicates which recordings were used for subject-

specific calibration (CAL column). All of the recordings were performed in an acoustically 

insulated and absorptive recording booth at the Center for Laryngeal Surgery & Voice 

Rehabilitation, Massachusetts General Hospital, Boston, MA.

The scheme’s performance was evaluated in two ways. First, the root mean-square error 

(RMSE) metric was used on the time–aligned GVV signal and its time derivative (dGVV). 

The derivative of the airflow signal it is of interest since clinically-significant parameters are 

derived from it, while also preserving the same second-order nature as the acceleration 

signal. Second, measures of glottal behavior were selected to explore the ability of the 

approach to correctly estimate key characteristics of the glottal source, as proposed by [19]. 

The selected source-related measures included the difference between the first two 

harmonics (H1–H2), harmonic richness factor (HRF), peak-to-peak amplitude of the 

unsteady glottal airflow (AC flow), and maximum flow declination rate (MFDR). The 

harmonic measures (H1–H2 and HRF) are associated with the spectral slope of the glottal 

source, AC flow is related to the glottal area, and MFDR is derived from the flow derivative 

and linked to collision forces in the vocal folds. For more details on these measures, refer to 

[2], [19], [63]. Each of these measures was taken from at least 20 successive cycles for each 

recording. Estimation errors are presented with respect to the parameters estimated from the 

oral-based GVV signal in terms of absolute magnitude differences and percentages with 

respect to mean parameter values. The percent error calculation removes the dependence on 

physical units for each parameter and facilitates error interpretation across parameters.

A particle swarm optimization scheme [64] was used for the constrained optimization of the 

model parameters with a fitness function given by the mean-square error of the 

aforementioned measures (with equal weighting) between the oral-based and acceleration-

based GVV signals. A combination of all measures in the fitness function provided a robust 

estimate that minimized model overfitting (when using RMSE measures only) and signal 

distortion (when using glottal measures only). Calibration was performed once on each 

subject, unless changes in head position or other factors affecting the skin model were 

identified to require an additional calibration. For the recordings considered in this study, 10 

out of 33 recordings were used for subject-specific model calibration (CAL column of Table 

I).

The oral-based GVV was obtained using closed-phase inverse filtering (CPIF) [19] from the 

OVV signal, with the aid of the EGG signal to identify instants of glottal closure. CPIF is 

one of the most accepted vocal tract IF schemes to estimate glottal airflow from oral airflow 

or radiated acoustic pressure, particularly for applications related to the assessment of vocal 

function [19], [22], [65]. Although having a smaller bandwidth (0–4 kHz) than a 

microphone signal, the OVV signal provides advantages and unique insight for the clinical 
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assessment of vocal function since it preserves the DC characteristic of the airflow and is 

less affected by the acoustic environment [1].

IV. Results

Estimates of GVV and its time derivative (dGVV) were obtained from the ACC signal and 

compared with those acquired by inverse filtering the OVV signal. Examples of raw 

waveforms are presented in Fig. 6 for three different vocal conditions (normal, loud, and 

breathy). It is noted from Fig. 6 that the ACC-based waveforms were very similar to the 

OVV-based ones, with an error that was lower during the open phase portion of the cycle for 

all cases. This is an initial indication that the scheme is capable of retrieving key 

components of the glottal source.

The measures extracted for all cases and subjects under evaluation are presented in Table I. 

It was observed that for the modal vowel /a/, the measures were within the range for male 

and female subjects expected from previous studies [61], [62]. The vowel /i/ has not been 

consistently studied and thus has no previous reference for comparison.

The absolute differences between the OVV- and ACC-based estimates for each parameter in 

Table I are shown in the third column of Table II. The relative (percent) errors of these 

differences with respect to the values from the oral flow–based GVV signal are shown in the 

fourth column of Table II. For the non-harmonic measures (AC Flow and MFDR), the error 

and its variations are considered sufficiently low (a mean percent error less than 10%) to 

allow for the proposed scheme to be considered for clinical use. Significantly higher than 

normal values for these non-harmonic measures have been associated with vocal 

hyperfunction (e.g., by increments larger than 200% with respect to the normal population) 

[2], [31], [66]. Thus, the subglottal IBIF method produces estimates for these two ACC-

based measures that are considered to be accurate enough for use in assessing the 

pathophysiology of common hyperfunctional voice disorders. The performance of the 

subglottal IBIF scheme for other applications is a topic of current research.

More details on the performance of the subglottal IBIF algorithm can be obtained from the 

scatter plots shown in Fig. 7. As noted before, the AC Flow and MFDR measures are well 

represented with the proposed scheme, as they exhibit a near 1:1 relation with those from the 

inverse-filtered OVV signal. The variance of the estimates across different amplitudes is 

smaller for the AC Flow than the variance of the MFDR estimates, indicating that the former 

has a more robust and linear behavior. On the other hand, the harmonic measures (H1–H2 

and HRF) exhibit a larger spread around the 1:1 line and across different values, indicating 

that these measure estimates were consistently less accurate. The coefficients of 

determination R2 reported in Fig. 7 quantify these trends, meaning that they are higher for 

the non-harmonic measures.

Similar comparisons between MFDR obtained via ACC and OVV as those shown in Fig. 7b 

and Table II were obtained in [23], [29]. The best possible scenario in those studies yielded 

R2 = 0.86 (using a logarithmic scale re 1 L/s2), and a mean error of 1.5 dB ± 3.7 dB (i.e., 

percent error of 19 % ± 53 pp, respectively). In contrast, MFDR estimation by the subglottal 

IBIF scheme exhibits R2 = 0.97 with a mean absolute error of 9.3% ± 7.5 pp, indicating that 
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the proposed scheme provides a significant enhancement in accuracy and robustness for the 

MFDR estimates. Previous studies did not consider estimates of AC Flow or harmonic 

measures, preventing prior comparison.

The large error observed for the RMSE values and harmonic measures (H1–H2 and HRF) 

may be attributable to the more important differences observed during the closed phase 

portion of the cycle, which has an effect on the spectral tilt estimation. This is another 

indication that the scheme captures the temporal structure of the open phase portion of the 

glottal cycle better than it does during the closed-phase. In addition, the fitness function used 

to optimize the model parameters was more sensitive to the RMSE, and thus indirectly 

yielded better non-harmonic estimates. Although this behavior could be altered simply by 

modifying the fitness function weighting, this does not appear to be critical at this point 

since the most clinically relevant parameters are sufficiently well represented.

V. Discussion

The subglottal IBIF scheme provided a simple and accurate method to estimate glottal 

airflow and aerodynamic parameters from a neck skin acceleration signal. The scheme 

yielded comparable estimates with respect to the current criterion standard obtained from 

inverse filtering the oral airflow, although being indirect aerodynamic estimates with no DC 

component. The proposed method was capable of more precisely retrieving the signal 

structure during the open portion of the glottal cycle. Thus, those measures that are extracted 

during the open portion of the glottal waveform (e.g., AC Flow and MFDR) were more 

accurately estimated. The capability of retrieving these particular measures provides 

evidence for the scheme’s potential in clinical applications that seek to assess the 

pathophysiology associated with common hyperfunctional voice disorders [2]. The 

subglottal IBIF estimates are not expected to surpass the capabilities of traditional oral 

airflow–based estimation techniques, but they may complement them especially providing a 

simple and robust manner in which to obtain glottal airflow estimates for ambulatory voice 

monitoring applications.

Comparing the results of this study with previous efforts [23], [29] elucidated the benefits of 

incorporating a transmission line model of the complete subglottal system. This description 

was believed to more accurately account for the effects of accelerometer placement and 

subject-specific characterizations. The addition of a skin compliance and a direct calibration 

with the inverse-filtered oral airflow via waveform matching allowed for an improved 

estimation of glottal parameters. However, this study entailed a relatively favorable scenario 

since subjects remained still during the recordings and any potential change in the skin 

model (e.g., due to head movements) was compensated for. Current research efforts are 

devoted to explore the robustness of the skin parameters under ambulatory conditions for 

long-term recordings.

Although the results presented are promising for sustained vowels, further investigations are 

needed to assess the method on running speech. The key challenges are to evaluate the 

effects of possible changes of the skin properties due to neck movements, temporal 

variations in the subglottal resonances due to laryngeal height changes, and effects of co-
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articulation on the glottal source. Topics for investigation include quantifying and 

potentially defining an optimization scheme to account for this variability. Other 

components for future investigation include evaluating the subglottal IBIF module for 

pathological cases and determining whether measures believed to reflect vocal 

hyperfunction are still viable and valid when collected during ambulatory assessment. 

Efforts to implement the sub-glottal IBIF scheme and address these research problems using 

an ambulatory voice monitoring system in a large cohort of normal and voice-disordered 

subjects are currently underway [33]. Implementing the proposed subglottal IBIF algorithm 

in an ambulatory voice monitoring system should not only enhance clinical evaluation of 

vocal function, but it may make possible new types of biofeedback that can also be used in 

ambulatory/wearable systems to facilitate/enhance behavioral treatment of commonly 

occurring voice disorders.

VI. Conclusions

A model-based inverse filtering approach was used to estimate glottal airflow and glottal 

parameters from non-invasive measurements of neck surface acceleration. The scheme uses 

a subglottal approach, wherein resonances are relatively stable and do not exhibit the same 

complex temporal patterns observed for the vocal tract. In an evaluation using sustained 

vowels, the results indicate that accurate estimates of glottal airflow and related parameters 

can be obtained. The scheme surpassed the accuracy of previous efforts and provided 

reliable estimates of salient clinical measures that have shown sensitivity to common 

hyperfunctional voice disorders. The proposed subglottal inverse filtering scheme is 

potentially suitable not only for ambulatory assessment, but also for use in biofeedback 

approaches that seek to facilitate and enhance behavioral voice therapy and other 

ambulatory applications in speech communication where robust estimation of the source of 

excitation is desired.
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Fig. 1. 
Representation of the T network used for the subglottal model. (a) Acoustical representation 

of losses, elasticity, inertia, and yielding walls. (b) Simplified two-port symmetric 

representation used to compute the ABCD transmission line parameters.
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Fig. 2. 
Representation of the subglottal IBIF module. An electrical representation of the neck skin 

and accelerometer loading was included in Zskin. See Fig. 3 for anatomical details.
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Fig. 3. 
Representation of the subglottal system. The accelerometer is placed on the skin surface 

overlying the suprasternal notch at approximately 5 cm below the glottis. The tracts above 

and below this location are labeled sub1 and sub2, respectively. Figure adapted from [56].
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Fig. 4. 
Example of the linear magnitude of the frequency response Tskin(ω) obtained from the 

subglottal module.
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Fig. 5. 
(Color online) The accelerometer sensor mounted subglottally on the neck skin with double-

sided tape.
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Fig. 6. 
(Color online) Examples of estimates of glottal airflow (GVV, top) and flow derivative 

(dGVV, bottom) for three vocal conditions: (a) modal, (b) modal-loud, (c) breathy. The 

estimates obtained from OVV are shown in black and those from ACC are shown in red. 

The selected cases are taken from Table I (denoted with an asterisk).
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Fig. 7. 
(Color online) Scatter plots contrasting measures obtained from ACC (y axis) vs. OVV (x 

axis) for each condition shown in Table I: (a) AC Flow, (b) MFDR, (c) H1–H2, (d) HRF. 

The 1:1 lines are shown in black and the coefficient of determination R2 for each relation is 

reported.
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TABLE II

Estimation error of ACC-based measures of GVV with OVV-based measures as reference. pp = percentage 

points.

Measures Units
Absolute error
Mean ± Stdv

Relative error
Mean ± Stdv

H1–H2 dB 3.2 ± 2.2 31.1% ± 27.3 pp

HRF dB 2.4 ± 2.0 28.4% ± 29.1 pp

AC Flow mL/s 15.8 ± 14.4 6.8% ± 5.8 pp

MFDR L/s2 26.8 ± 20.6 9.3% ± 7.5 pp

RMSE GVV mL/s 25.0 ± 14.1 10.4% ± 4.0 pp

RMSE dGVV L/s2 74.2 ± 49.1 25.7% ± 10.3 pp
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