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Abstract

Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt
synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative
receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss
in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of
Alzheimer’s disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of
Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic
effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor
membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of
exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by
treatment with Abeta oligomers, and is dysregulated in Alzheimer’s disease patients’ brain compared to age-matched,
normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions
on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human
AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and
reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse
models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on
neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve
cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta
oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.
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Introduction

Age-dependent accumulation of amyloid beta 1–42 (Abeta)

protein leads to self-association and soluble oligomer formation

[1–8]. Abeta oligomers bind specifically and saturably to neurons,

triggering a variety of changes that result in inhibition of synaptic

plasticity [9–20] and concomitant failure of memory formation

mechanisms in Alzheimer’s patients [21–26]. Several candidate

receptors for oligomers have been proposed in the literature

[9,11,13,27–29]. In a separate publication we have shown that

screening a small molecule library in a phenotypic assay for

membrane trafficking in mature (21 days in vitro) cultures of
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neurons resulted in the discovery of distinct classes of novel

compounds that exhibit key therapeutic properties: these com-

pounds both prevent and reverse the effects of Abeta oligomers on

membrane trafficking, block and displace the binding of Abeta

oligomers to neuronal cultures, restore the loss of synapses caused

by Abeta oligomers, and restore cognition in mouse models of

Alzheimer’s Disease [30]. In this study our approach was to use

these small molecule drug candidates to identify and characterize

the receptors that modulate the binding and neuronal actions of

Abeta oligomers [30].

These oligomer blocking molecules bind selectively with high

affinity to the sigma-2 receptor. The sigma-2 receptor has been a

pharmacological target for treatment of several CNS disorders

including anxiety, depression and stroke [31], and was recently

identified as the protein PGRMC1 [32]. PGRMC1 is a highly

conserved heme-binding protein in the membrane associated

progesterone receptor (MAPR) family that has been shown to

stabilize surface receptor expression of proteins and directly

associates with proteins that regulate membrane trafficking

[33,34]. PGRMC1 is widely expressed in brain at low levels,

where it is enriched in the post-synaptic density fraction [35]. It is

also expressed outside the CNS, and translocates from the

endoplasmic reticulum to the plasma membrane in several cell

types [31,33,34]. More recently, sigma-2/PGRMC1 has been

described as a possible drug target in cancer where it is

overexpressed in tumor cells [36], but it has not been previously

associated with AD.

We validated this receptor’s role in mediating Abeta oligomer-

induced signaling by measuring oligomer binding and signaling

following siRNA-induced knock-down of PGRMC1 protein, or in

the presence of selective antibodies directed against various regions

on the PGRMC1 protein. We also examined whether specific

PGRMC1 antibodies and sigma-2 selective small molecules were

able to displace endogenous human Abeta oligomers from unfixed

frozen Alzheimer’s patient brain sections. We have identified the

sigma-2/PGRMC1 protein as a critical receptor mediating greater

than 90% of Abeta oligomer binding to neurons and their

downstream synaptotoxic effects. Small molecules that prevent

and competitively displace Abeta oligomers from neurons in vitro
and Alzheimer’s patient brain tissue are effective at improving

cognitive deficits in animal models of AD following acute and

chronic systemic administration [30].

Materials and Methods

Animal Welfare
These studies were carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health, 8th Ed.

The protocol was approved by the Institutional Animal Use and

Care Committees at Cognition Therapeutics Inc. and the

University of Kentucky.

Neuronal Cultures
All procedures were approved by the Institutional Animal Care

and Use and Committee at Cognition Therapeutics and were in

compliance with the Office of Laboratory Animal Welfare and the

Guide for the Care and Use of Laboratory Animals, Eighth

Edition.

Sprague-Dawley rats, 18 days pregnant, were euthanized by

CO2 asphyxiation followed by cervical dislocation, and embryos

were removed. Hippocampus and cortical tissue from the embryo

brains were digested in 2.5% Trypsin (Life Technologies) to

dissociate cells. Isolated cells were plated at a density of 4.66104

cells per cm2 in 384-well poly-D Lysine coated plates (Greiner) in

Neurobasal Media (Life Technologies) supplemented with B27

(Life Technologies), Glutamax (Life Technologies) and antibiotics

(penicillin, 50 units/ml and streptomycin 50 mg/ml, Life Tech-

nologies). Cultures were maintained at 37uC in 5% CO2 with

weekly media change for 3 weeks prior to experimentation. These

mixed cultures of hippocampal plus cortical neurons and glia were

used for all of the in vitro experiments described.

Oligomer Preparation
Abeta oligomers were prepared at high (100 mM) concentration

according to published methods [37,38]. An Abeta monomer film

was prepared by evaporating 0.253 mg Abeta 1–42 dissolved in

1,1,1,3,3,3,hexafluoro-2-propanol at room temperature for 20 min

using N2 gas. The film was then dissolved in anhydrous DMSO

and diluted to 100 mM with cold Basal Medium Eagle media

(BME, Life Technologies catalog 21010), followed by incubation

at 4uC for 24 hour to form oligomers. The resulting oligomer

preparations were centrifuged at 16,0006g to pellet any insoluble

fibrils and the supernatant was diluted in Neurobasal media prior

to addition to cultures at the final concentrations listed in each

figure legend. Monomeric Abeta peptides were purchased from

California Peptide Inc (catalog number 641-15), American Peptide

Company (catalog number 62-0-80), and the University of

Pittsburgh Peptide Core facility (primary sequence DAEFRHDS-

GYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). All

studies using synthetic oligomers were performed with this

preparation unless otherwise specified.

Trafficking Assay
Neurons were treated with compounds and/or Abeta oligomer

preparations (0.086% DMSO in culture media) and incubated for

1 to 24 hour at 37uC in 5% CO2. Tetrazolium salts (3-(4,5-

dimethylthiazol-2yl)-2,5diphenyl tetrazolium bromide, Roche

Molecular Biochemicals) were added at a final concentration of

0.75 mM and incubated at 37uC for 60–90 min. Vesicular

formazan remaining in cells was quantified by absorbance

spectrometry (590 nm with 690 nm subtracted) following extrac-

tion with 1.6% Tween-20. All compounds were tested in

quadruplicate wells for each concentration in at least 8 replicate

experiments with data from all experiments pooled for analysis

with means 6 S.E.M.

Sigma-2 radioligand binding
Radioligand competition assays were performed in membranes

from Jurkat cells using 5 nM [3H]1,3-di(2-tolyl) guanidine in the

presence of 1 mM (+)-pentazocine with 10 mM haloperidol to

define non-specific binding [39].

Ex vivo autoradiography studies
Quantitative autoradiography studies on frozen unfixed serial

tissue sections from normal (N = 4) or Alzheimer’s disease (N = 4)

postmortem patients’ neocortex were conducted and quantified

according to previously published procedures [40]. [3H](+) pentaz-

ocine was used as the radioligand for sigma-1 receptors and

[125I]RHM-1 (American Radiolabelled Chemicals, Inc.) or

[3H]DTG (1,3-Di-(2-tolyl)guanidine (Perkin Elmer) in the presence

of 1 mM (+) pentazocine for sigma-2 receptors [32]. Human brain

samples for these studies were obtained with written consent as

previously published [40].

Sigma-2/PGRMC1 Is Disease-Modifying Alzheimer’s Target
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Abeta binding Assay
To assess the ability of test compounds to prevent the binding of

Abeta oligomers, cultures were treated with compounds for 30

minutes, followed by synthetic Abeta 1–42 oligomer preparation

treatment for 60 min (total Abeta concentration 0.5 mM, equiv-

alent to Kd concentration). Alternatively, displacement of pre-

bound oligomers was evaluated by adding oligomers 60 min prior

to the addition of compounds, followed by additional 30 minutes

incubation. Cells were fixed with 3.75% formaldehyde for 15 min,

blocked with 5% normal goat serum and 0.5% Triton X-100 and

incubated with primary antibodies for Abeta (1 mg/ml 6E10 or

4G8, Covance catalog numbers SIG-39320 and SIG-39330,

respectively), MAP-2 (0.2 mg/ml Chemicon), Synaptophysin-1

(1 mg/ml, Anaspec), glial fibrillary acidic protein (GFAP, 1 mg/

ml, Thermo-Fisher) and fluorescently labeled secondary antibodies

(2 mg/ml, Invitrogen). Images were acquired on a Cellomics VTi

automated microscope with a 20X, 0.75 NA objective and

analyzed using ThermoFisher/Cellomics Neuronal Profiling

bioapplication set to measure punctate labeling of Abeta and

synaptophysin-1 along MAP-2 labeled neurites. For each replicate

experiment, at least 100 neurons were sampled from 4 replicate

wells for each experimental condition (400 to 500 neurons per

experimental condition). The number of replicate experiments is

reported for each experiment. All data presented for Abeta

binding to neurons represents total intensity of Abeta label in

neurite spots per neuron, in relative fluorescent units (RFU), unless

otherwise indicated.

For correlation analyses, total intensity of PGRMC1 in cell

bodies and in neuronal puncta was calculated for each neuron.

Neurons were sorted into bins according to their PGRMC1

expression in each compartment, relative to the expression level in

the population of cells, such that bins for 22 SD, 21 SD, 20.5

SD, +0.5 SD, +1 SD, +2 SD and .+2 SD were created. For each

binned population, the Mean 6 S.E.M. for total PGRMC1

expression in the cell body was graphed vs. the total Abeta labeling

intensity in neurite puncta and correlation statistics were

calculated.

siRNA
Neuronal cultures were treated with either a mixture of 4

siRNAs targeted against PGRMC1 (GUCUAGGUCUUG-

GAUAAUA, GGUUUUACCUCAAAUCAGA, UUAGAAUG-

CAUGAUGUGUU, CUUCUAUCUGUAGUUAAAA, catalog

number A-095365-00-0050) or a non-targeting sequence (UG-

GUUUACAUGUUUUCCUA, catalog number D-001910-03-50,

Accell, ThermoFisher). siRNA were resuspended to 100 mM in

RNase free water, shaken for 1.5 hours at 37uC, diluted in media

and applied to cells at 1 or 2 uM for 48 hours prior to addition of

Abeta oligomers for 30 minutes. Cultures were then fixed and co-

immunolabeled with 6E10 antibody to detect Abeta and antibody

to detect PGRMC1 as described above and analyzed via

automated image processing as described above. For PGRMC1

measurements, total intensity in cell bodies was measured.

Human tissue ex-vivo Abeta competition
Brains from human subjects with a diagnosis of AD (CERAD

score ‘‘definite’’ by postmortem neuropathological exam) were

obtained through the Massachusetts Alzheimer’s Disease Research

Center and Massachusetts General Hospital (MGH) Neuropa-

thology Department, and experiments were approved by the

Massachusetts General Hospital and Harvard Medical School

Institutional Review Board. Serial 10 micron sections of frozen

parahippocampal gyrus on glass slides were incubated with

identical volumes of PBS containing 5 or 15 mM CT01344, or

1 ng/ml C-terminal antibody to sigma-2/PGRMC1 (Everest

Biotechnology EB07207) or vehicle for 60 min at room temper-

ature and then fixed and labeled with an antibody specific to

Abeta (AW-7, gift from Dominic Walsh [41]) and Cy3-conjugated

secondary antibody. Amyloid plaques were labeled with 0.05%

Thioflavin-S (Sigma) in 50% ethanol for 8 min before treatment

with 80% ethanol for 30 s. Sections from 6 separate donor brains

were used for each treatment group. Fluorescent images of the

sections were analyzed in ImageJ [42] analysis software using a

custom macro which first identifies dense core plaques labeled by

Thio-S and then measures the average Abeta labeling intensity in

a 2 micron wide ring surrounding each plaque. A total of 346 to

464 plaques from six donor specimens were analyzed for each

treatment group. The median intensities of Abeta labeling in the

two micron area surrounding each plaques were calculated for

each section (6 sections per treatment group) and subjected to

multivariate correlation analysis (Spearman’s test) to compare

treatment effects across all donor brain samples.

Statistical Analysis
For all experiments involving quantification of Abeta immuno-

fluorescent intensity, at least four replicate, multiwell plates were

analyzed, with a minimum of 4 replicate wells per condition on

each plate and 16 fields imaged per well. Averages of total puncta

intensity per neuron (approx. 90 neurons per well) were calculated

for each well analyzed. These well averages were tested for

normality using a KS distance test before being analyzed for

treatment differences using ANOVA and Bonferroni’s multiple

comparison post-test or pairwise Student’s t-test as indicated.

Results

CogRx compounds are ligands for the sigma-2/PGRMC1
receptor

Cognition Therapeutics (CogRx) molecules CT0093, CT0109,

CT01344 and CT01346 have been demonstrated to reverse Abeta

oligomer-mediated trafficking deficits and restore synapses to

normal and restore cognitive function in mouse models of

Alzheimer’s disease [30]. Active CogRx molecules were coun-

terscreened for activity at 100 central nervous system receptors and

enzymes (including those involved in neurotransmission and

synaptic plasticity) in industry-standard assays measuring radioli-

gand binding displacement and signaling activity (assays performed

at Cerep/Eurofins, Inc., Table S1). Active molecules were 10–100-

fold selective for the sigma-2/PGRMC1 receptor and competitively

displaced selective radioligands from homogenates of a human B

cell line (Fig. 1A, Ki values (nM): CT0093 = 54611, CT0109

= 967, CT01344 = 4866, CT01346 = 5063, mean 6 S.E.M.).

To determine if these compounds were capable of displacing

binding to sigma-2/PGRMC1 receptors in human brain, CT0093

and CT0109 were added in increasing concentrations to serial

sections of unfixed frozen cognitively normal elderly human frontal

cortex in the presence of a specific radioligand for sigma-2/

PGRMC1, 125I-RHM-4 [31] (Fig. 1 B–D). CT0109 and CT0093

both displaced the specific binding of this radioligand from human

tissue (Ki = 57623 and 33612 nM respectively, Fig. 1B, E). This

evidence demonstrates that these small molecules previously shown

to block Abeta oligomer effects in vitro and in vivo are in fact sigma-

2 selective ligands.

Sigma-2/PGRMC1 is expressed in neuronal cultures and is
positively correlated with Abeta oligomer binding

Sigma-2/PGRMC1 has been shown to be expressed in post-

synaptic densities in rat brain tissue [35]. Previous reports in tumor

Sigma-2/PGRMC1 Is Disease-Modifying Alzheimer’s Target
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cells indicate that PGRMC1 protein is localized to intracellular

compartments and the plasma membrane [32–34]. Immunofluores-

cent labeling of untreated 21 days in vitro (DIV) mixed hippocampal

and cortical cultures with a selective antibody directed against C-

terminal amino acids 185–195 showed sigma-2/PGRMC1 is

expressed at low levels in cell bodies of neurons and glia, and in

proximal neurites (Fig. 2A–D, red). In smaller caliber neurites,

sigma-2/PGRMC1 can also be detected in immunoreactive puncta

adjacent to synaptophysin-immunoreactive (Fig. 2A–D, green)

presynaptic terminals, consistent with a post-synaptic localization.

An average of 66.7%62.4 (average 6 S.E.M., N = 110 neurons) of

PGRMC1 positive puncta on neurons colocalize with synaptophysin

positive puncta (Fig. 2A–D, yellow). Sigma-2/PGRMC1 has a

transmembrane region from amino acid 20 to 43 [34], therefore the

C-terminus would be predicted to be intracellular, however the

orientation of the protein when it is present in the plasma membrane

is unclear [34]. Control experiments confirm that a substantial

amount of the protein exists at the plasma membrane with the C-

terminal end (amino acid 185–195) exposed to the extracellular

surface (Fig. S1).

Neuronal cultures treated with Abeta oligomers (400 nM) for

1 hour and co-immunolabeled for Abeta, sigma-2/PGRMC1,

MAP2 (to distinguish neurons from glia) and DAPI (to label

nuclei), exhibit a range of sigma-2/PGRMC1 expression levels in

their cell bodies and synaptic puncta (Fig. 2 E–H), as do control

cultures not treated with Abeta oligomers (Fig. 2I–L). We

analyzed expression levels of sigma-2/PGRMC1 and binding

intensity of Abeta oligomers within each cell to see if they were

positively correlated. We focused on the neuronal population for

this analysis because 1) oligomers bind specifically and saturably to

a single receptor site on neuronal synaptic puncta

(Kd = 518641 nM), whereas the subset of the glial population

that binds Abeta does so at 10-fold lower intensities than the

binding to neuronal synapses and binds monomer and oligomers

equally well, 2) oligomers are 10-fold more potent than monomers

at inducing functional changes in membrane trafficking and

causing synaptotoxicity and memory deficits in vivo [21], 3)

oligomer binding to neuronal synaptic puncta is highly correlated

with downstream functional changes in membrane trafficking rate,

and 4) oligomer binding to synaptic puncta causes synapse

regression that is reversible by washout [20,30]. Examination of

individual Abeta oligomer-treated neurons reveals that neurons

with more intense Abeta oligomer binding to synaptic puncta had

higher expression of sigma-2/PGRMC1 in both their cell body

and synaptic puncta (Fig. 2E–H). Dividing the cell population

into sigma-2/PGRMC1 intensity bins for each compartment

(according to the number of standard deviations from the

population mean) allows this correlation to be seen quantitatively

(Fig. 2M, N). This relationship is statistically significant for both

the cell body expression of sigma-2/PGRMC-1(Kruskal-Wallis

p,0.001) and for expression of sigma-2/PGRMC1 in synaptic

puncta (Kruskal-Wallis p,0.001), suggesting that binding of Abeta

to hippocampal and cortical neurons is positively correlated with

sigma-2/PGRMC1 expression.

Figure 1. Anti-Abeta compounds are ligands for sigma-2/PGRMC1 receptor. A, CT0109, CT0093, CT01344 and CT01346 displace the
fiduciary sigma-2 ligand [3H]-DTG from receptors on human B cell lines. B. Autoradiograms of 18.4 nM [125I]RHM-1 binding to human frontal cortex
slices in the presence of 10, 100, 1000, 10,000 nM of CT0109 and CT0093, N = 4. Color bar under images show false coloring scale. [125I]RHM-1 displays
specific saturable binding to human frontal cortex tissue as assessed by quantitative autoradiography in dose-response format (C) and as a Scatchard
plot (D). E. Dose response curves for data obtained from autoradiograms in B. The Ki’s for CT0109 and CT0093 at the [125I]RHM-1 binding site were
57623 nM and 33612 nM, respectively.
doi:10.1371/journal.pone.0111899.g001
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Abeta oligomer treatment causes progressive
upregulation of sigma-2/PGRMC1 expression

The total intensity of sigma-2/PGRMC1 expression in the cell

body of the pooled population of neurons and glia increases by

13% (63.2 S.E.M.) after 24 hours of Abeta oligomer exposure and

28% (63.7 S.E.M.) after 48 hours of exposure, but not after

1 hour (Fig. 3). This data suggests that Abeta oligomer treatment

causes a progressive upregulation of sigma-2/PGRMC1 expres-

sion in neurons.

While Abeta oligomer binding correlates positively with sigma-

2/PGRMC1 expression following 1 hour of Abeta oligomer

treatment (Fig. 2), it is not possible to analyze whether the

Figure 2. Sigma-2/PGRMC1 protein localizes to synaptic puncta on mature primary hippocampal cultures (21 days in vitro) and
expression levels are positively correlated with Abeta oligomer binding. sigma-2/PGRMC1 (A–D, red) is expressed at low levels in
untreated cultures and is localized in cell bodies of neurons and glia, in neurite shafts, and adjacent to presynaptic puncta (A–D, synaptophysin =
green) B. 66.7%62.4 (average 6 S.E.M., N = 110 neurons) of PGRMC1 positive puncta on neurons co-localize (yellow) with synaptophysin positive
puncta. E–L. Positive correlation between sigma-2/PGRMC1 expression and Abeta oligomer binding in neurons (Abeta oligomers = 400 nM, 1 hour
treatment). E–H. Only one neuron (MAP2 positive arrow #1 in E–H) in this field is labeled with punctate Abeta oligomer binding (G), and exhibits
elevated PGRMC1 expression (H, 3.36105 RFU) compared to surrounding neurons (#2 = 1.66105, #3 = 1.86105 RFU). I–L. Vehicle-treated cultures
express a similar range of sigma-2/PGRMC1 expression in neurons (arrow #1 in I = 2.626105, #2 = 1.216105 RFU). All scale bars = 20 microns. M,
Binning neurons according to their intensity of sigma-2/PGRMC1 immunofluorescence and graphing the average values for Abeta binding from each
bin reveals a positive correlation between the intensity of Abeta oligomer binding to synaptic puncta and the expression of sigma-2/PGRMC1 in the
cell body that is significant (Kruskal-Wallis, p,0.001). N. A similar analysis of sigma-2/PGRMC1 imunofluorescence in the synaptic puncta also shows a
positive correlation with Abeta oligomer binding intensity to synaptic puncta (Kruskal-Wallis p,0.001).
doi:10.1371/journal.pone.0111899.g002
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increase in PGRMC1 expression by treatment with Abeta

oligomers at 24 or 48 hours is associated with an increase in

Abeta binding. The progressive internalization of bound Abeta

oligomers with treatment times greater than 1 hour complicates

measurements of binding intensity at these longer time intervals

[30].

Reduction of sigma-2/PGRMC1 protein expression in
neuronal cultures decreases binding of Abeta oligomers

Since genetic knock-outs of sigma-2/PGRMC1 are not

currently available, we examined the role of sigma-2/PGRMC1

protein in mediating Abeta oligomer binding by reducing sigma-

2/PGRMC1 protein expression via siRNA-mediated gene silenc-

ing in mixed neuronal/glial cultures. Four pooled siRNA

sequences to the PGRMC1 protein sequence were added to

cultures at 1 or 2 mM final concentration and allowed to incubate

for 48 hours to reduce PGRMC1 protein levels via transcriptional

suppression. Treated cultures were immunofluorescently labeled

to detect Abeta binding and expression of sigma-2/PGRMC1

(Fig. 4A–F). Treatment with siRNA resulted in a reduction in

immunocytochemically detectable sigma-2/PGRMC1 protein in

the neuronal cell body and synaptic puncta of up to 28% (Fig. 4E)

compared to untreated cultures (Fig. 4D), or cultures that had

been treated with non-targeting siRNA (Fig. 4F). The same cells

showed a reduction in Abeta oligomer binding of up to 91%

(Fig. 4B) compared to untreated cultures (Fig. 4A) or non-

targeting siRNA treated cultures (Fig. 4C). The reduction in

sigma-2/PGRMC1 protein expression in neuronal cell bodies and

synaptic puncta was highly correlated with the reduction in Abeta

oligomer binding (Fig. 4G, linear correlation for cell bodies,

r2 = 0.799, p = 0.0011; Fig. 4H, linear correlation for synaptic

puncta r2 = 0.554, p = 0.02). The lack of a 1:1 correspondence

between loss of PGRMC1 and Abeta oligomer binding could be

due to a non-stoichiometric relationship between the two proteins,

and/or a differential effect on the brightest Abeta oligomer

binding neuronal population, or both (Fig. S2). These results

demonstrate that Abeta 1–42 oligomers bind directly to sigma-2/

PGRMC1 receptors or a protein closely associated with it.

Sigma-2 receptors are expressed in human brain and are
dysregulated in Alzheimer’s patients

Serial sections of human frontal cortex from age-matched

normal control and AD patient brains were treated with

radioligands specific for sigma-2 receptors ([125I]RHM-4) or for

the unrelated protein sigma-1 ([3H]-(+)-pentazocine) and analyzed

by autoradiography for binding of the radioligands. Similar to

previous reports, sigma-1 receptor exhibited a 54% decline in

expression levels in AD patient brains vs. age-matched cognitively

normal individuals (Fig. 5A, C 4 normal, 4 AD patient brains

[CDR stage 3], p = 0.0375, Student’s t-test), in parallel to the

decline in FDG-PET signal and neuronal loss seen as AD

progresses[43]. Because the AD patient brain samples examined

are CDR stage 3 (severely demented) and therefore likely have a

significant degree of cell loss, this suggests that sigma-1 receptor

expression remains constant in surviving neurons in AD brain

(however we did not measure cell loss directly in these cases). In

contrast, incubation of adjacent tissue sections from these same

brains with radiolabeled sigma-2/PGRMC1 ligand [125I] RHM-4

[32] (Fig. 5B, D) indicates that the level of sigma-2 receptors in

AD patients are not different from controls. This could be due to

upregulation of sigma-2 receptors in surviving neurons or a

downregulation in neurons followed by an upregulation in glia; the

present data do not distinguish between these possibilities. This

evidence demonstrates that sigma-2 receptors are espressed in

human neocortex and may be dysregulated in Alzheimer’s disease.

Human mutations in sigma-2/PGRMC1 sequence have not

been specifically studied for association with neurodegeneration

risk, however there is little tolerated genetic variability in this

protein or its family members in the general human population

(Fig. S3), suggesting that the MAPR proteins (Table S2) are

essential.

Abeta oligomer binding to neurons is displaced by
sigma-2 selective small molecules and a C-terminal
antibody to sigma-2/PGRMC1

We have shown that our sigma-2 selective small molecules are

capable of preventing and displacing Abeta oligomer binding to

mature primary hippocampal and cortical cultures 21DIV [30].

To confirm the role of the sigma-2/PGRMC1 protein in

Figure 3. Abeta oligomer treatment causes progressive upregulation of sigma-2/PGRMC1 expression. Expression of sigma-2/PGRMC1
in the cell body of the entire culture cell population significantly increases with time of exposure to Abeta oligomers (A, C, E, 400 nM Abeta
oligomers, *p = 0.05, ***p = 0.001, Student’s t-test, N.1500 neurons and glia per condition) compared to vehicle-treated cultures (B, D, F). All scale
bars = 20 microns. G. Immunofluorescent intensity of sigma-2/PGRMC1 in Abeta oligomer-treated cells, relative to vehicle treatment, at 1 hr, 24 hr
and 48 hr.
doi:10.1371/journal.pone.0111899.g003
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mediating the binding of Abeta 1-42 oligomers, we treated cultures

with Abeta oligomers for 30 minutes, then added a C-terminal

specific PGRMC1 antibody to live cultures for 30 minutes, or vice-

versa. The cells were then fixed and immunofluorescently labeled

to detect Abeta binding (Fig. 6A–H). This antibody, which is

directed against the C-terminal amino acids 185–195 of sigma-2/

PGRMC1, significantly reduced Abeta oligomer binding to

synaptic terminals on hippocampal and cortical neurites regardless

of whether it was added before (Fig. 6D, green bar in I
[prevention], 58% reduction) or after (Fig. 6H, green hatched

bar in I [treatment], 26% reduction) the oligomers. This suggests

that oligomers are competitively displaced from receptors at

synaptic sites. Non-immune IgG (Fig. 6C, G and maroon bars in

I) and an N-terminal antibody to sigma-2/PGRMC1 (data not

shown) cannot reduce oligomer binding under either condition.

We have previously shown that our sigma-2 selective small

molecules are capable of preventing and reversing Abeta oligomer-

induced membrane trafficking deficits in mature primary 21DIV

hippocampal and cortical cultures (a memory and synaptic

plasticity-relevant measure), but have no effect on membrane

trafficking when added to cultures in the absence of Abeta

oligomers [30]. We attempted to test whether blocking Abeta

Figure 4. PGRMC1 mediates the binding of Abeta oligomers to neurons in vitro. Co-immunolabeling for Abeta oligomer binding (A–C) and
sigma-2/PGRMC1 expression (D–F) in the same field of view in hippocampal and cortical cultures (21DIV). Untreated neurons (A, D) exhibit Abeta
oligomer binding to synaptic sites on neurites and low levels of sigma-2/PGRMC1 expression. In the presence of siRNA to sigma-2/PGRMC1, both
Abeta oligomer binding and sigma-2/PGRMC1 expression are significantly reduced (B, E). Non-targeting siRNA (C, F) has no effect. G. H. Graphs of
immunocytochemically detectable PGRMC1 protein expression associated with neuron cell bodies (G) and synaptic puncta (H), and Abeta oligomer
binding to synapses for each of nine separate experiments (expressed as a percentage of untreated control culture values mean 6 S.E.M.). siRNA-
mediated reduction in PGRMC1 protein expression of up to 28% results in a corresponding decrease in Abeta oligomer binding by up to 91% (linear
regression for PGRMC1 expression in neuronal cell bodies, r2 = 0.799, p = 0.0011; for PGRMC1 expression in synaptic puncta, r2 = 0.554, p = 0.02).
doi:10.1371/journal.pone.0111899.g004
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oligomer binding with the C-terminal antibody to PGRMC1

would prevent the downstream functional effects of Abeta

oligomers on trafficking. We added the C-terminal antibody

directed against amino acids 185–195 of sigma-2/PGRMC1, non-

immune IgG or 6E10 antibody (which recognizes amino acids 3–8

on the Abeta sequence) to cultures 1 hour before oligomers, and in

the absence of oligomers, and measured the effect on membrane

trafficking rate 24 hours later. Abeta oligomers induce a significant

deficit in trafficking rate compared to vehicle-treated cultures

(Fig. 6J, red bar vs. blue bar). This oligomer-induced trafficking

deficit is prevented by preincubation of the cultures with 6E10

(Fig 6J, red bar vs. orange striped bar), but not with C-terminal

antibody to sigma-2/PGRMC1, or by nonimmune IgG (Fig. 6J,

red bar vs. green and maroon striped bars respectively). However,

in the absence of Abeta oligomers, the C-terminal antibody to

sigma-2/PGRMC1 induces trafficking deficits all on its own

(Fig. 6J, blue bar vs. green bar), while nonimmune IgG and 6E10

do not (Fig 6J, blue bar vs. maroon and orange bars). This

suggests that the observed induction of trafficking deficits is

unlikely to be due to a nonspecific effect of IgG molecules. When

added to living cells, the C-terminal antibody to sigma-2/

PGRMC1 does not appear to block Abeta-oligomer-induced

deficits because like oligomers it accelerates exocytosis rate. Small

molecule sigma-2/PGRMC1 ligands do not affect the exocytosis

rate in the absence of Abeta oligomers.

These results highlight the critical role that sigma-2/PGRMC1

plays in the synaptic plasticity-relevant process of membrane

trafficking. Sigma-2/PGRMC1 protein directly associates with

proteins that regulate membrane trafficking [33,34], translocating

from endoplasmic reticulum to the plasma membrane [31,33,34]

and stabilizing surface receptor expression of proteins. The

bivalent binding sites of whole IgG molecule may attach to two

PGRMC1 molecules at the plasma membrane extracellular

surface and trap the molecule at the surface or induce

internalization, or affect the protein’s interaction with other

proteins, altering the overall process of membrane trafficking.

However this does not preclude the possibility that smaller IgG

molecules such as Fab fragments could be therapeutically

efficacious at blocking Abeta oligomer-induced trafficking deficits.

Figure 5. Sigma2/PGRMC1 receptor is present in human neocortex and is upregulated in AD. A. Control receptor expression (unrelated
receptor sigma-1 labeled with [3H]pentazocine 1 nM) declines in advanced AD patient frontal cortex sections vs. age-matched cognitively normal
individuals (N = 4, *p = 0.0375, Student’s t-test). B, adjacent sections from the same individuals labeled with [125I] sigma-2 antagonist RHM-4 (0.2 nM)
reveal sigma-2 receptor expression is not significantly changed in the disease state vs. normal individuals (N = 4). TB = Total binding. NSB = non-
specific binding in presence of 10 fold excess cold ligand. C, D, Quantified values for binding in images shown in A and B expressed as the percent of
specific binding in controls.
doi:10.1371/journal.pone.0111899.g005
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Endogenous Abeta oligomers are displaced from human
AD patient brain sections by a CogRx compound and
antibody to sigma-2/PGRMC1

Koffie et al. [44], reported that a 2 micron wide halo around

dense-core thioflavin-S positive plaques in human AD patient

brain contain an increased concentration of Abeta oligomers

bound to neurons that can be visualized with immunohistochem-

ical detection methods. This same region is associated with a

decreased number of synapses [44,45]. We tested whether

CT01344 and the C-terminal antibody to sigma-2/PGRMC1

were capable of displacing endogenous Abeta oligomers from this

halo region around amyloid plaques in human AD patient brains

(see Fig S4 for patient characterization and description of analysis

algorithm) under non-equilibrium conditions. Adjacent tissue

sections of unfixed postmortem neocortex were incubated in a

fixed volume of solution containing increased concentrations of

CT01344, antibody or vehicle for 1 hour then fixed and

immunolabeled for Abeta and co-stained with Thio-S to detect

amyloid plaques (Fig. 7A). Abeta intensity in the plaque halo

region was measured via automated image processing and

graphed as a percentage of vehicle values (Fig. 7B). CT01344

dose-dependently reduced Abeta immunofluorescence in the 2

micron wide halo (Spearman’s Rho = 20.492, p = 0.038) and the

antibody also reduced Abeta immunofluorescence in the halo (p,

0.05, Student’s t-test). These results demonstrate that endogenous

human Abeta oligomers can be dose-dependently displaced from

tissue binding sites by sigma-2/PGRMC1-selective small mole-

cules and antibodies directed against the C-terminal region of this

protein.

Figure 6. C-terminal antibodies directed against the C-terminus of PGRMC1 prevent (A–D) and displace (E–H) Abeta oligomer
binding to neurons and glia. Abeta oligomers bind to a subset of neurons and glia in mature hippocampal primary neurons 21DIV (A, E, red bar
in I) compared to vehicle-treated (no Abeta) cultures (B, F, blue bar in I). Graphs in I are average of 3 experiments (avg. intensity of Abeta oligomer
puncta + S.E.M., expressed as a percentage of Abeta oligomer-treated condition, difference in binding intensity vs. Abeta oligomer condition *p,
0.05, Student’s t-test). Abeta oligomer binding to cultured neurons is significantly reduced in the presence of C-terminal antibody to sigma-2/
PGRMC1 regardless of whether it is added before (D, green bar in I [prevention], 58% reduction) or after (H, green hatched bar in I [treatment], 26%
reduction) oligomers. This suggests that oligomers are competitively displaced from receptors at synaptic sites. Non-immune IgG (C, G and maroon
bars in I) and an N-terminal antibody to sigma-2/PGRMC1 (data not shown) cannot reduce oligomer binding under either condition. J Effects of
antibodies on membrane trafficking rate in the presence or absence of Abeta oligomers (expressed as a percentage of vehicle-treated in the absence
of Abeta, difference in trafficking rate vs. Abeta oligomer- or vehicle-treated condition *p,0.05, Student’s t-test). The C-terminal antibody directed
against amino acids 185–195 in sigma-2/PGRMC1 does not rescue oligomer-induced deficits, but induces trafficking deficits on its own in the absence
of Abeta oligomers, pointing to a critical role of this protein in normal membrane trafficking.
doi:10.1371/journal.pone.0111899.g006
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Behaviorally efficacious sigma-2/PGRMC1 selective small
molecules are functional antagonists at the receptor

Little is known about the functional pharmacology of ligands for

the sigma-2/PGRMC1 receptor. In tumor cells, agonists for

sigma-2/PGRMC1 cause toxicity by triggering caspase 3 activa-

tion [46,47] whereas sigma-2/PGRMC1 antagonists do not

[47,48]. We tested the behaviorally efficacious compounds

CT0109 and CT0093 [30] to determine whether they behave as

functional agonists or antagonists. In both primary hippocampal/

cortical cultures and in the SKOV-3 tumor cell line, sigma-2/

PGRMC1 agonist siramesine activated caspase-3/7 (Fig. 8A, B)

while CT0109, CT0093 and the sigma-2 antagonist RHM-1 did

not. Similarly, sigma-2/PGRMC1 agonists siramesine, WC-26

and SV-119 caused dose-dependent cell death in mature primary

neuronal cultures (Fig. 8C) and in SKOV-3 human ovarian

cancer cells (Fig. 8D), measured using fluorescent substrates for

caspase-3/7 to detect enzymatic activity, but sigma-2/PGRMC1

antagonists RHM-1, CT0109 and CT0093 did not affect cell

viability except at very high concentrations (.100 mM). These

results indicate that the compounds CT0093 and CT0109 behave

as antagonists in these functional assays. Finally, we treated

hippocampal and cortical cultures with ascending concentrations

of SV119 to induce caspase activation, in the presence of 40 mM of

each of the sigma-2/PGRMC1 antagonists CT0109, CT0093 and

RHM-1 (Fig. 8E). CT0109 and CT0093 significantly blocked the

activation of caspase-3/7 by SV119, but the antagonist RHM-1

did not. This result suggests that there may be functionally distinct

subtypes of sigma-2/PGRMC1 antagonist.

Discussion

Synaptic dysfunction and loss caused by age-dependent

accumulation of synaptotoxic Amyloid beta (Abeta) 1–42 oligo-

mers has been proposed to underlie cognitive decline in

Alzheimer’s disease (AD) [3–8,49]. We have discovered highly

brain penetrant small molecule receptor antagonists that rescue

oligomer-induced synapse loss and membrane trafficking deficits

in vitro, and cognitive deficits in Alzheimer’s mouse models [30].

Counterscreening against a panel of receptors and ion channels

revealed that these small molecules bind selectively and with high

affinity to sigma-2/PGRMC1 receptors. Sigma-2/PGRMC1

receptors are expressed in neurons and glia at low levels in

primary 21DIV mixed hippocampal and cortical cultures, and

oligomer binding to neuronal puncta is positively correlated with

sigma-2/PGRMC1 receptor expression. Abeta oligomer exposure

progressively upregulates receptor expression in vitro, and perhaps

in Alzheimer’s disease as well. Sigma-2/PGRMC1 receptors are

also expressed in human brain at low levels, and are dysregulated

in Alzheimer’s disease. Knock-down of sigma-2/PGRMC1

protein expression reduces oligomer binding up to 90%. CogRx’s

behaviorally efficacious small molecules appear to act as functional

antagonists at the sigma-2/PGRMC1 receptor. These small

molecules, as well as antibodies specific for the C-terminal region

of sigma-2/PGRMC1 can prevent and competitively displace

Abeta oligomer binding to neurons in vitro, and to human

Alzheimer’s patient brain sections in a dose-dependent manner.

Collectively, these data demonstrate that Abeta oligomers bind

directly to sigma-2/PGRMC1 receptors, or a protein closely

associated with it that itself mediates oligomer binding. Regardless

of the precise mechanism, sigma-2/PGRMC1 selective small

molecule antagonists have the potential to be disease-modifying

therapeutics for Alzheimer’s disease patients.

Sigma-2/PGRMC1 translocates between subcellular and plas-

ma membrane locations [33,34,50], and our studies suggest that

the C-terminus of at least part of the plasma membrane-localized

sigma-2/PGRMC1 protein appears to be exposed to the

extracellular environment where it interacts directly with Abeta

oligomers or a protein that directly binds them. While it has been

suggested that the C-terminus of sigma-2/PGRMC1 is on the

cytoplasmic side of cell surface membranes [50], there is evidence

that this domain of the protein can be extracellular [51].

In vitro, the more sigma-2/PGRMC1 is expressed in cells, the

more Abeta is bound to cells and treatment with Abeta oligomers

results in a progressive upregulation of the amount of sigma-2/

PGRMC1 expressed in cells. In the mammalian brain, sigma-2/

PGRMC1 is normally expressed at low levels. In severely

demented Alzheimer’s disease patients (CDR stage 3) expected

to have a high degree of cell loss, the density of sigma-2 receptors

remains unchanged compared to age-matched normal individuals,

while the density of the unrelated sigma-1 receptor is decreased by

54%, as has been previously reported [43]. Collectively, these data

suggests that oligomers may upregulate expression levels of the

receptors that mediate their own binding, contributing to disease

pathology. The consequences of any potential receptor upregula-

tion for eventual drug dosing in human clinical trials are not

expected to be significant, as the total amount of drug present is

typically in vast excess to the number of receptors expressed on

tissue. Studies in cell lines have shown that binding affinity of

drugs to sigma-2/PGRMC1 receptor is constant despite a 10-fold

difference in expression levels (Bmax) of the receptors [52]. To

Figure 7. Antibodies and compounds directed against sigma-2/
PGRMC1 dose-dependently displace endogenous human
Abeta oligomers from specific tissue locations in Alzheimer’s
brain neocortical tissue sections. A, Abeta oligomers located in a 2
micron halo surrounding compact thioflavin-S positive plaques is
displaced from frozen postmortem human AD brain tissue sections
(N = 7 patients) by C-terminal sigma-2/PGRMC1 antibody and receptor
antagonist CT01344 (B) in a dose-dependent manner compared to
vehicle-treated brain sections from the same individual (Spearman’s
rank order, rho = 20.492, p = 0.038). All scale bars = 20 microns. See
Fig. S4 for details on quantification method.
doi:10.1371/journal.pone.0111899.g007
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date, there are no reports of mutations in sigma-2/PGRMC1 that

are associated with neurodegenerative diseases, human but

mutations in this receptor are very rare, suggesting this gene is

essential. Antibodies specific for the C-terminus of this receptor

disrupt the normal process of membrane trafficking within

neurons and glia in vitro, reinforcing the concept that this protein

is essential for normal function. It is therefore possible that this

protein is critically involved in AD, but understanding its role will

require clinical examination in a large cohort of patients.

There are several reports in the literature of Abeta oligomer

receptors, but this is the first report we are aware of in which

greater than 90% of Abeta oligomer binding could be abolished by

genetic knock-down of the putative receptor. This is also the first

report we are aware of demonstrating that oligomers can be

competitively displaced from binding sites in dissociated cell

culture and in tissue by small molecule therapeutic agents and

antibodies specific for the same receptor. Using these compounds

to calculate off-rate of endogenous human oligomers, as well as to

investigate the equilibrium between the various structural forms of

Abeta protein found in human and transgenic animal model brain

tissue is the subject of future studies. Much has been made recently

of variability in oligomer preparations [53], however, the fact that

therapeutic compounds and antibodies displace both synthetic and

endogenous human oligomers validates an approach in which

multiple preparations are used and compared in the course of drug

discovery and elucidation of the fundamental underpinnings of

oligomer biology.

Figure 8. CogRx sigma-2/PGRMC1-selective small molecules are functional antagonists. A, B Sigma-2/PGRMC1 agonist siramesine causes
dose-dependent activation of caspase 3 in primary neuronal cultures (A) and in SKOV-3 human ovarian cancer cells (B) but sigma-2/PGRMC1
antagonists RHM-1, CT0109 and CT0093 do not. C, D Sigma-2/PGRMC1 agonists siramesine, WC-26 and SV-119 cause dose-dependent cell death in
primary hippocampal/cortical cultures (C) and in SKOV-3 human ovarian cancer cells (D) but sigma-2/PGRMC1 antagonists RHM-1, CT0109 and
CT0093 do not, except at very high concentrations (.100 mM). (E) Treatment of cultures of hippocampal and cortical cells with 20 to 80 mM SV-119
for 24 hours induced the activation of caspase 3/7 (*p,0.05 by 2-tailed Student’s t-test compared to control). Co-treatment of cultures with 40 mM
CT0109 or CT0093 did not increase caspase activity and blocked the activation by the agonist SV-119.
doi:10.1371/journal.pone.0111899.g008
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The compounds we identified as being capable of displacing the

oligomers appear to act as functional antagonists at the sigma-2/

PGRMC1 receptor because they can block small molecule

agonist-induced caspase activation. If oligomers acted as agonists

in this functional context (i.e., if they induced caspase activation),

the story would be a simple one; oligomers trigger caspase-

mediated signaling through sigma-2/PGRMC1 and antagonists

block it. However, despite several literature reports that oligomers

induce caspase activation [46,54,55] we have been unable to

detect oligomer-induced caspase activation in 21 DIV primary

hippocampal and cortical neuronal cultures following treatment

for 3–48 hours at Abeta oligomer concentrations up to 28 uM.

Therefore, rigorous designation of compounds as functional

‘‘agonists’’ and ‘‘antagonists’’ in the context of oligomer biology

will await identification of relevant signaling pathways down-

stream of oligomer interactions with sigma-2/PGRMC1. Candi-

dates proteins include Insig/SCAP, P4, MAP1LC3 and UVRAG,

as well as those mediating cholesterol metabolism [33,34].

Understanding the interaction of sigma-2/PGRMC1 with proteins

involved in intracellular trafficking [56] may further explain the

mechanisms by which Abeta oligomers exert an effect on

membrane trafficking, synaptic plasticity and cognitive loss. It is

interesting to note that even at the level of the well-described

caspase activation downstream of sigma-2 selective ligand binding,

not all functional antagonists appear to be equally effective.

Relevant drug binding sites on sigma-2/PGRMC1 are still coming

into focus. In the meantime, it is clear that the compounds

described in this manuscript are capable of blocking the

synaptotoxic effects of Abeta oligomers that occur via interactions

with sigma-2/PGRMC1, and that they represent potential disease-

modifying therapeutics.

Pharmacological model for compound-receptor
interactions

The accompanying paper [30] presented evidence supporting

the hypothesis that our compounds block the synaptotoxic effects

of Abeta oligomers via allosteric antagonism rather than direct

competitive antagonism. The present results provide additional

evidence favoring the former scenario. Direct competitive

antagonism would not be expected to result in an enhanced

decrease in prebound oligomers from tissue under non-equilibri-

um binding conditions. Instead the observed dose-dependent

displacement of endogenous oligomers from human Alzheimer’s

brain tissue (Fig. 7) make it more likely that our compound

changes the affinity of the receptor for Abeta oligomers and

increases the off-rate of the oligomers. This experimental result

also makes it unlikely that our compounds reduce oligomer

binding by inducing internalization of oligomer receptors, since

this machinery is not likely to be functioning in frozen tissue

sections.

Pharmacological model for oligomer-receptor
interactions

The data presented here indicate that sigma-2/PGRMC1 is

critically required for binding of Abeta oligomers to neurons,

either as 1) a direct binding site, or 2) by modulating conformation

of a direct binding site. In the first model, small molecule ligands

for sigma-2/PGRMC1 could block the binding of Abeta oligomers

by allosterically modulating sigma-2/PGRMC1 itself, and reduc-

tion of sigma-2/PGRMC1 protein expression by siRNA pro-

foundly reduces oligomer binding by directly eliminating the

binding site for Abeta. In the second model, small molecule ligands

for sigma-2/PGRMC1 block the binding of Abeta oligomers by

allosterically modulating sigma-2/PGRMC1, which in turn alters

the conformation of a tightly associated oligomer receptor protein.

Reduction of sigma-2/PGRMC1 protein expression by siRNA

reduces oligomer binding by eliminating the ability of sigma-2/

PGRMC1 to stabilize the binding conformation of the receptor

protein. The data obtained to date are consistent with either

model. Our compounds’ mechanism of action is also consistent

with both possibilities.

The saturable binding of oligomers to a single site on neurons,

together with the total loss of oligomer binding in the presence of

compound or antibody specific for sigma-2/PGRMC1, would

seem to argue for the first model, however oligomer binding to

another protein that is very tightly linked to sigma-2/PGRMC1

would show the same pattern. It could be argued that support for

the second model comes from the fact that sigma-2/PGRMC1

receptors are ubiquitously distributed both within and outside the

nervous system, yet oligomers only bind to a subset of neurons.

The subcellular localization of sigma-2/PGRMC1 in different

tissues and cell types, and how this localization may change in

response to signaling or damage, is not currently clear. Additional

support for the second model comes from published reports that

PGRMC1 stabilizes plasma membrane localization of EGFR and

mPRa [57,58].

Some support for a model with PGRMC1 modulating a binding

site for Abeta oligomers could come from the lack of a 1:1

stoichiometric relationship between loss of oligomer binding and

loss of PGRMC1 protein expression as detected by immunohis-

tochemistry (Fig. 4). Reduction of sigma-2/PGRMC1 expression

levels of up to 30% in neurons leads to reduction of oligomer

binding up to 91%. The two are highly correlated (r2 = 0.799 for

cell bodies and r2 = 0.554 for synaptic puncta) with a slope of

2.560.5 for correlations with cell bodies and 2.660.5 for

correlation with synaptic puncta, suggesting that for every one

PGRMC1 receptor lost, 2–3 oligomers are not binding. This data

suggests that the relationship between sigma-2/PGRMC1 expres-

sion and Abeta oligomer binding may not be strictly stoichiometric

(one sigma-2/PGRMC1 molecule may bind to three oligomers, or

one PGRMC1 may coordinately regulate expression and/or

modulate three molecules which themselves bind Abeta oligomers

directly). The details of this stoichiometry would need to be

examined with quantitative labeling techniques for both sigma-2/

PGRMC1 and Abeta oligomers, which is currently quite

challenging to perform on oligomers without knowing whether

such modifications alter secondary and tertiary structure.

Whether this would be the case for human oligomers in tissue

sections remains to be seen, and would require identification of

equilibrium binding conditions and an understanding of the

stoichiometry between detection antibodies and human oligomers.

The lack of stoichiometry could also be due to a differential effect

of PGRMC1 protein loss on Abeta oligomer binding to a subset of

the neuronal population; the two possibilities are not mutually

exclusive.

The second model is also supported by reports of oligomer

receptor candidates that have appeared in the literature [9–

11,13,27–29]. For several of these candidate receptors, oligomer

binding to neurons (visualized via immunohistochemistry) is

reduced by at most 50% when the receptor levels are eliminated

by genetic knock-out [27,29]. In contrast, siRNA-mediated

reduction of sigma-2/PGRMC1 results in greater than 90%

reduction of oligomer binding with a strong correlation between

the amount of knock down of sigma-2/PGRMC1 protein and the

amount of reduction of oligomer binding (r2 = 0.7994 for cell

bodies and r2 = 0.554 for synaptic puncta). Small molecules

selective for sigma-2/PGRMC1 completely eliminate detectable
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oligomer binding from neurons in vitro and dose-dependently

displace oligomers from Alzheimer’s patient brain tissue. If

oligomers do bind directly to another protein, sigma-2/PGRMC1

likely plays a central role in its regulation. This is supported by

PGRMC1’s demonstrated role in stabilizing surface expression of

transmembrane receptors [57,58]. Additional studies will be

required to test whether there is a direct interaction of sigma-2/

PGRMC1 with candidate oligomer receptors. Given what is

known about the mechanisms of synaptic plasticity, it is possible

that the single, saturable oligomer binding site is in fact part of a

multi-protein receptor complex that may include several of these

candidate receptors. Such a multi-protein complex might change

its constituent proteins depending on the electrical signaling

pattern and history at a given synapse and thus exhibit a state-

dependency. In contrast to other candidate oligomer receptors,

small molecules with high affinity for sigma-2 receptors have

reached Phase II clinical trials with no apparent mechanism of

action-based toxicity reports. Decades of study have implicated

sigma-2 receptors in several CNS disorders, but it has not been

previously implicated in Alzheimer’s disease or other neurode-

generative disorders. To date, no clinical trials with selective small

molecules targeting this receptor for treatment of Alzheimer’s

disease have been conducted. The identification of the sigma-2

ligand binding activity as the protein PGRMC1 has opened up

new avenues of research into CNS damage and dysregulation, and

the mechanisms that mediate it [32].

Abeta oligomers are formed via self-association of monomeric

protein that builds up with age, and are likely to be structurally

polydisperse in the brain. Oligomer levels correlate with cognitive

function in Alzheimer’s disease [6,59,60]. Our evidence indicates

that oligomers bind saturably to a single binding site on neurons

and can be displaced by small molecule allosteric antagonists. We

have also shown that oligomers bind directly to sigma-2/

PGRMC1 or a protein whose binding site for oligomers can be

modulated by sigma-2/PGRMC1. The high affinity, selective

sigma-2/PGRMC1 compounds that we have discovered are

capable of preventing binding of oligomers and of displacing

bound oligomers, thereby preventing and treating oligomer-

induced trafficking deficits and synapse regression. These mole-

cules rapidly prevent and treat cognitive deficits in wild-type and

aged transgenic Alzheimer’s mouse models and sustain this

cognitive improvement long term [30].

Oligomers thus represent pathological ligands that behave

according to the principles of mass action. Brain-penetrant

antagonists to sigma-2/PGRMC1 receptors represent a novel

approach to blocking Abeta oligomer binding and downstream

signaling and are potentially capable of halting disease progres-

sion. This is good news for Alzheimer’s patients, for whom no

disease-modifying therapies currently exist.

Supporting Information

Figure S1 PGRMC1’s C-terminal amino acids 185–195
are exposed at the extracellular surface of the plasma
membrane. Untreated cultures were formaldehyde-fixed then

immunolabeled with anti-synaptophysin antibody. This antibody

can only detect the synaptophysin protein following detergent

permeabilization of the plasma membrane (A), which allows the

large IgG molecule physical access to the intracellularly located

synaptophysin protein. In the absence of detergent, punctate

synaptophysin immunolabeling is not visible (B). In contrast,

cultures immunolabeled with anti-PGRMC1 antibody directed

against the protein’s C-terminal amino acids 185–195 can detect

PGRMC1 in the absence of detergent (D), although it is 55%67

(S.D.) less intense than that which is detected following

permeabilization with detergent (C), indicating that this region

of the protein is not located exclusively intracellularly. This

suggests that substantial amounts of the C-terminus are likely

exposed on the plasma membrane extracellular surface. Scale bar

= 20 microns.

(TIF)

Figure S2 siRNA-mediated reduction of PGRMC1 ex-
pression reduces the number of neurons that exhibit the
most intense binding of Abeta oligomers. (Note different
y-axis scales) A–D siRNA-treated cultures (black bars) exhibit

fewer cells labeled most brightly with Abeta oligomers compared

to untreated cultures; these neurons also have the highest sigma-2/

PGRMC1 expression. Dividing the cell population into Abeta

oligomer binding intensity bins allows this absence to be seen

quantitatively. siRNA-treated neurons (filled bars) have similar

numbers of neurons as untreated cultures (open bars, A), and

similar numbers of neurons with little (B) or moderate (C)

detectable Abeta oligomer binding to neuritic puncta, but exhibit a

dramatic absence of the most brightly oligomer-labeled neurons

expressing the highest levels of sigma-2/PGRMC1 protein (D)

compared to untreated cultures. In untreated cultures (open bars),

neurons with Abeta oligomer punctate labeling of .300 average

intensity (D) represent 27% of the total neuronal population (A).

Following siRNA treatment (black bars), this neuronal population

decreases to 3% of total. Thus the impact on this bright binding

population may have a disproportionate effect on the population

total binding average. This is one possible reason why siRNA-

mediated reduction of PGRMC1 protein expression by 30% but

reduces Abeta oligomer binding by 90%.

(TIF)

Figure S3 MAPR family sequence conservation across
species.

(DOCX)

Figure S4 Method of analyzing endogenous Abeta
oligomer binding displacement from fresh frozen post-
mortem neocortical Alzheimer’s patient brain sections.
A. Brain tissue section showing ThioS labeling of dense core

plaques and (B) same section immunolabeled for Abeta 1–42. C,

D Enlargement of yellow boxes in A and B showing individual

plaques (C) and corresponding Abeta labeling (D). E, F
Enlargement showing single plaques and Abeta label. G. Outline

of mask drawn around one plaque and 2 mm plaque halo around

edge of plaque by analysis macro. H Mask is transferred to Abeta

immuno-fluorescent channel and intensity in the plaque halos are

measured. I. Table shows characteristics of patients with a

diagnosis of AD (CERAD score ‘‘definite’’ by postmortem

neuropathological exam) used in this study and number of plaques

analyzed in each treatment group from each case. Statistical

analysis of data from this experiment is described in Methods.

(TIF)

Table S1 Activity of CT0109 in target screening panel.

(DOCX)

Table S2 Genetic analysis of MAPR family members
PGRMC1, PGRMC2, neudesin (NENF) and neuferricin.

(DOCX)
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