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Abstract

Anxiety disorders (ADs) are common mental disorders caused by a combination of genetic and environmental factors. Since
ADs are highly comorbid with each other, partially due to shared genetic basis, studying AD phenotypes in a coordinated
manner may be a powerful strategy for identifying potential genetic loci for ADs. To detect these loci, we performed
genome-wide association studies (GWAS) of ADs. In addition, as a complementary approach to single-locus analysis, we also
conducted gene- and pathway-based analyses. GWAS data were derived from the control sample of the Molecular Genetics
of Schizophrenia (MGS) project (2,540 European American and 849 African American subjects) genotyped on the Affymetrix
GeneChip 6.0 array. We applied two phenotypic approaches: (1) categorical case-control comparisons (CC) based upon
psychiatric diagnoses, and (2) quantitative phenotypic factor scores (FS) derived from a multivariate analysis combining
information across the clinical phenotypes. Linear and logistic models were used to analyse the association with ADs using
FS and CC traits, respectively. At the single locus level, no genome-wide significant association was found. A trans-
population gene-based meta-analysis across both ethnic subsamples using FS identified three genes (MFAP3L on 4q32.3,
NDUFAB1 and PALB2 on 16p12) with genome-wide significance (false discovery rate (FDR] ,5%). At the pathway level,
several terms such as transcription regulation, cytokine binding, and developmental process were significantly enriched in
ADs (FDR ,5%). Our approaches studying ADs as quantitative traits and utilizing the full GWAS data may be useful in
identifying susceptibility genes and pathways for ADs.
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Introduction

Anxiety disorders (ADs) are common mental disorders charac-

terized by excessive, prolonged, and debilitating levels of anxiety,

with substantial lifetime prevalence [1]. They are subdivided into

clinical diagnostic categories such as generalized anxiety disorder

(GAD), panic disorder (PD), posttraumatic stress disorder (PTSD),

obsessive-compulsive disorder (OCD) and phobias, based on their

onset, symptoms, and course. ADs are complex diseases that are

caused by a combination of genetic and environmental factors.

Family and twin studies have demonstrated that ADs have

significant familial aggregation, and their heritability estimates

range from 30 to 50% [2,3].

Numerous genetic studies of ADs have been conducted

targeting candidate genes. The most intensively studied candidate

genes are related to neurotransmitter systems involved in the

regulation of anxiety, neuropeptides, and stress response [3].

However, most of these studies have produced inconsistent or

negative results. One of the reasons for inconsistency between

studies may be due to Type I error from poorly-chosen candidates

or Type II error due to small sample size underpowered to detect

individual susceptibility variants of small effect.

Genome-wide association studies (GWAS) have proven to be a

successful method for the identification of common genetic

variants that increase susceptibility to complex diseases or traits.

Recently, several GWAS of ADs such as PD [4,5], PTSD [6,7,8],
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OCD [9], and phobias [10] have been published. However, the

top findings in these studies have not overlapped with previous

candidates and explained only small proportions of the total

genetic variance. The failure to replicate the same single

nucleotide polymorphisms (SNP) between studies may be attrib-

utable to poor power with small sample sizes and allelic and/or

phenotypic heterogeneity across populations.

GWAS usually focus on the most significant individual variants

without considering the global evidence of the gene tested. Unlike

genetic variants that have different allele frequencies, linkage

disequilibrium (LD) structure, and heterogeneity across diverse

human populations, the gene itself is highly consistent across

populations [11]. Gene-based analysis might produce more

consistent results and improve power with a smaller number of

statistical tests. Furthermore, with the gene as the unit of analysis,

biological pathway analysis using available functional information

might facilitate the identification of the pathogenic mechanisms of

complex diseases such as ADs. Therefore, both gene- and

pathway-based analyses could have better statistical power for

detecting susceptibility loci and provide a complementary

approach to single-locus analysis.

Most genetic association studies focus on categorical traits

comparing allele frequencies for diagnosed cases versus controls.

However, if GWAS indicate that multiple genes affect these

disorders, this implies that their genetic liability is distributed

quantitatively rather than qualitatively [12]. For common

disorders like ADs, disease states can be interpreted as being the

extremes of continuous liability dimensions. Therefore, statistical

power can be enhanced by studying the broader distribution than

by dichotomizing the same distribution into cases and controls

[12,13]. Furthermore, previous studies suggest that ADs exhibit

strong lifetime comorbidity, partially due to shared genetic risk

factors between them and with anxious personality traits like

neuroticism [14,15,16]. Therefore, studying AD phenotypes in a

coordinated manner is an alternative approach to increase the

statistical power for identifying susceptibility genes for ADs, as

demonstrated by prior reports from our group [17].

The aim of this study is to conduct GWAS of ADs as

quantitative traits as well as categorical traits in unselected

population samples from the United States consisting of 2540

European American (EA) and 849 African American (AA)

subjects. To optimally utilize the GWAS data sets, we examined

our results at 3 levels: (i) SNP-based analyses (ii) gene-based

analyses and meta-analyses combining these results, and (iii) gene-

set based analyses.

Materials and Methods

Subjects
Data for the analyses came from the ‘‘control’’ sample originally

part of a large schizophrenia study (Molecular Genetics of

Schizophrenia (MGS)). The full MGS control sample is described

in detail elsewhere [18]. Briefly, the available sample consisted of

unrelated subjects selected during 2004–2007 by random digit

dialing from approximately 60,000 US households. Institutional

review board approval was obtained at NorthShore University

HealthSystem. Participants first consented online to use of their

DNA and phenotypic information for the study of any illness or

trait and then signed an identical hard-copy consent at the time of

venipuncture. They were screened and excluded for psychotic and

bipolar disorders for use as a comparison group for genetic

association studies of these more severe psychiatric phenotypes but

were not excluded for other common psychiatric disorders such as

depression and anxiety. Self-reported ancestry [19] was confirmed

by genotypic data with ancestry-informative markers [18]. The

data were obtained with permission from dbGaP (Database of

Genotypes and Phenotypes, http://www.ncbi.nlm.nih.gov/gap,

Study Accessions: phs000021.v3.p2 (‘‘Genetic Association Infor-

mation Network (GAIN)’’) and phs000167.v1.p1 ‘‘nonGAIN’’).

Data for the EA subjects were combined from both the GAIN

(n = 1442) and nonGAIN (n = 1367) datasets. These derived from

the same original sample but had been separately deposited into

dbGaP. Data for the AA subjects were obtained from the GAIN

subsample (n = 979).

Diagnostic measures
All MGS control subjects completed an online psychiatric

screening interview that included the lifetime version of the

Composite International Diagnostic Interview, Short Form (CIDI-

SF) [20]. The CIDI-SF is accurate compared with the full CIDI

[20] and has been used for self-report. Because of its brevity and

cost effectiveness, the CIDI-SF is suitable for an online interview to

screen common psychiatric disorders in the general population

[18]. For those subjects with requisite response data, we applied

DSM-based algorithms to the CIDI-SF responses to obtain the

following six lifetime clinical phenotypes: major depression

(lifetime prevalence of total sample, 30.0%), GAD (18.4%), panic

attacks (2.1%), agoraphobia (6.5%), social phobia (14.3%), and

specific phobia (11.7%). We note that only panic attacks, and not

panic disorder, could be identified due to limitations in the items

included in that section of the CIDI-SF. In the present study, we

used the latter five AD phenotypes for the analyses. Besides

attempting to identify subjects meeting full symptomatic criteria

(‘‘cases’’, score = 2), we also sought to differentiate subjects who

were highly symptomatic but did not meet full criteria (‘‘sub-

syndromal’’, score = 1) versus those with few or no reported

symptoms (‘‘unaffecteds’’, score = 0). This was operationalized by

either (i) keeping the full symptomatic criteria and removing the

diagnostic requirements of distress/impairment or (ii) reducing the

symptomatic severity or duration. This strategy produced ordered,

rather than classification variables that served as input indicators

for the factor analyses described below. It also identifies more

extreme comparison groups for use in case-control (CC) analyses,

since diagnostic thresholds are defined for clinical purposes and

may not sufficiently differentiate subjects by the risk alleles they

carry.

Given prior evidence supporting shared genetic liability across

these AD phenotypes [14,15,16], we performed factor analyses to

estimate an overall score (factor score; FS) for each subject. Due to

substantial correlation between phenotypic and genetic factor

structure of ADs, this approach should provide FS that represent

shared genetic risk. We conducted the analyses as reported in our

previous paper [17]. Briefly, we entered scores for the five AD

clinical phenotypes into factor analyses in Mplus (version 4) [21].

Exploratory factor analyses with one versus two latent factors each

produced reasonable solutions that adequately fit the data, so, we

chose to use the former solution representing a single common

factor. The overall factor structure was similar across the AA and

EA subjects although their thresholds somewhat differed, indicat-

ing differences in frequency of phenotypic scores (prevalence)

between populations. We constrained factor loadings to be equal

across these two samples in order to score all subjects in a manner

that was consistent across populations. A confirmatory factor

analysis was carried out in Mplus to estimate a single FS for each

subject for use as quantitative phenotype in association analyses.
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Statistical analyses
To correct for multiple testing, false discovery rate (FDR, q-

value) was calculated, which is an estimate of the proportion of

false discoveries among all significant markers when the

corresponding p-value is used as the threshold for declaring

significance [22]. This approach provides a good way to find true

effects controlling false discoveries and is much less affected by

number of tests, which is an arbitrary factor [23]. Q-values less

than 5% and 25%, respectively, were taken as significant and

suggestively significant for SNP-, gene-, and pathway-based

analyses.

SNP-based analysis. As previously described in detail [24],

DNA samples were genotyped at the Broad Institute using the

Affymetrix 6.0 array. Quality control procedures excluded about

5% of all subjects due to low genotype call rates (,0.95),

heterozygosity outliers, sample duplicates, sex typing discrepan-

cies, or genetic relatedness. SNPs were excluded if a SNP call rate

,0.95, Hardy-Weinberg equilibrium p-value ,161025, and

minor allele frequency (MAF) ,0.05 for both cases and controls.

A total of 626,833 (EA) and 730,090 (AA) autosomal SNPs were

available for further analyses.

We performed regression analyses assuming additive genetic

effects in PLINK [25] to test the main effects of SNPs on the

outcome phenotypes. These included gender and age as covari-

ates, given their strong association with ADs. To account for the

genetic substructure of human populations, multidimensional

scaling (MDS) was used. MDS produced eight components, none

of which were correlated with FS or CC status. Therefore, no

MDS dimensions were included as covariates in the analyses. In

the present study, two phenotypic strategies were compared. First,

linear regression analyses including all subjects were conducted

using FS as a quantitative outcome variable. These scores

incorporate all of the phenotypic information in a statistically

coordinated fashion from the factor analyses. Second, logistic

regression was applied in a CC approach, designating subjects

scoring a ‘‘2’’ for any of the clinical phenotypes as a ‘‘case’’ versus

those scoring ‘‘0’’ on all as ‘‘hyper-normal’’ controls (no full or

subsyndromal AD or major depression).

Quantile-quantile (QQ) plots were used to evaluate overall

significance of the GWA analyses and the potential impact of

population stratification. The inflation factor l was calculated on

the basis of the median chi-square. Haploview 4.2 [26] was used to

create Manhattan plots of p-values from the GWA analyses and to

examine LD between markers. Power calculations were performed

using the program Quanto v1.2.4 (http://hydra.usc.edu/gxe).

Gene-based analysis. Gene-based association analysis in

each population was performed using the versatile gene-based test

for genome-wide association studies (VEGAS) [27]. In brief,

VEGAS tests for association on a per-gene basis, by considering

the p-value of all SNPs within genes (including +/250 kb from the

59 and 39 UTR), accounting for LD and number of SNPs per

gene. For a given gene with n SNPs, association p-values were first

converted to upper tail chi-squared statistics with 1 degree of

freedom (df). The observed gene-based test statistic was then the

sum of all of the chi-squared 1 df statistics within the gene. Using

the Monte Carlo simulation, the empirical gene-based p-value was

calculated as the proportion of simulated test statistics that

exceeded the observed gene-based test statistic.

Previous studies have found consistent genetic effects on

common diseases across different racial groups even if LD patterns

and allele frequencies differ considerably across populations

[11,28–30]. Therefore, to increase statistical power, trans-popu-

lation meta-analysis of gene-based GWA analyses using FS or CC

was conducted. To test overall significance, Stouffer’s Z-score

method [31] implemented in METAL [32] was used. Z-scores for

each gene were combined across samples in a weighted sum, with

weights proportional to the square-root of the sample size for each

study [31]. Given unequal numbers of cases and controls, the

effective sample sizes were calculated as Neff = 4/(1/Ncases+1/

Ncontrols) for the CC analyses.

Gene-set enrichment analysis. Gene-set enrichment anal-

ysis was carried out to complement the results from gene-based

GWA analyses and to determine which potential biological

pathways could play a role in ADs. For the analysis, we included

all genes from the gene-based meta-analysis test with a p-value ,

0.01 using the public domain tool provided by the Database for

Annotation, Visualization and Integrated Discovery (DAVID)

bioinformatics platform [33]. We used gene ontology (GO) to

create gene-sets because it provided the largest amount of

information and is well structured. Considering the redundant

nature of annotations, groups of similar annotations were

combined using ‘Functional Annotation Clustering’ (kappa

value.0.5). We selected the best significantly enriched terms of

individual groups. By performing these enrichment analyses, we

attempted to identify whether the genes most associated with ADs

were more prevalent in any known GO terms than would be

expected by chance.

Results

SNP-based analysis
After application of QC parameters, 2540 EA and 849 AA

subjects had FS values available for analyses. Of these, samples for

case-control analysis consisted of 1697 EA subjects (757 cases and

940 controls) and 597 AA subjects (324 cases and 273 controls),

respectively (Table 1). The genomic inflation factors l for the FS

and CC analyses, respectively, were 1.004 and 1.005 in EA and

1.004 and 1.008 in AA, suggesting no significant inflation (Figure

S1 in File S1). The QQ and Manhattan plots for theses SNP-based

GWA analyses are displayed in Figures S1 and S2 in File S1.

Overall, no SNP reached genome-wide significance or sugges-

tive significance for any GWA analyses in either the EA or AA

samples (Table 2 and Figure S2 in File S1). The most significant

signal was observed at SNP rs4692589 located in MFAP3L on

4q32.3 from the results using the FS traits in the EA sample

(p = 8.6361027, q = 0.37; Table 2). Of note, among top findings in

the same analysis was SNP rs2170820, located in TMEM132D
(12q24.3), a gene which has been reported to be associated with

PD in a European Caucasian sample [4].

Gene-based analysis
Using VEGAS, SNPs in each GWA analysis were mapped to

approximately 17,700 genes (FS-EA: 17,660, FS-AA: 17,678, CC-

EA: 17,655, CC-AA: 17,669). No deviations from the expected

distribution of p-values were observed in the QQ plots of each

gene-based analysis (Figure S3 in File S1). Using FS, a gene

reached a significant q-value (MFAP3L, q = 0.035; Table 3) and

another 11 genes reached suggestive significance (q,0.25) in the

EA sample, whereas none reached suggestive significance in the

AA sample. Using CC, three genes reached suggestive significance

(PF4V1, CXCL1, and CXCL6) in the EA sample, whereas none

reached suggestive significance in the AA sample.

Although there was no full overlap of top associated genes

between the two populations, several genes showed evidence of

association in both. Therefore, we conducted trans-population

meta-analyses of gene-based studies using FS or CC. Top findings

from the gene-based meta-analysis using FS and CC are shown in

Table 3. Three genes met the criteria for genome-wide signifi-
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cance according to the threshold that allows for 5% false discovery

rate (NDUFAB1, PALB2, and MFAP3L; all q-values = 0.028).

Ten other genes in five loci reached a suggestively significant level

using FS (4q32, 11p15, 16p12, 20p13, and 20q11), while three

genes reached the genome-wide suggestive level using CC

(PF4V1, CXCL1, and CXCL6; Table 3).

Gene-set enrichment analysis
We next examined all genes with p,0.01 in the gene-based

meta-analysis to see whether they were enriched with known GO

terms, using DAVID with the whole genome background as a base

set. The numbers of genes included in the analyses were 296 (FS)

and 322 (CC). GO enrichment analysis showed that two terms

using FS (‘‘pattern specification process’’ and ‘‘cytokine binding’’)

and two terms using CC (‘‘nucleoplasm’’ and ‘‘transcription

regulator activity’’) were significantly enriched in ADs (q,0.05)

(Table 4).

Discussion

We report here the results from the GWAS of ADs in two

populations using quantitative and categorical phenotypes at SNP,

gene, and pathway levels. We included 2540 EA and 849 AA

subjects from the MGS control sample and conducted association

analyses using two phenotypic approaches that sought to combine

information across these disorders based upon prior research that

suggests that they possess shared genetic risk factors. The first

utilized factor analysis to extract a single phenotypic score for each

subject for use as a quantitative trait. The second approach

focused on categorical diagnoses that compared allele frequencies

for clinical cases versus hyper-normal controls.

There were notable differences between results obtained using

the two phenotypic methods. Most of the top SNPs were not the

same, although many that were nominally significant in one were

also in the other. The overall significance of SNPs (p- and q-values)

was greater using FS than CC in the EA sample. This is not

surprising, as the factor analytic phenotypes should provide more

powerful targets for genetic association than the categorical

phenotypes for several reasons: quantitative traits generally have

greater information content, and there were more subjects with

useable quantitative traits than categorical traits [34]. However,

this was not the case with the AA sample where the significance of

top findings was similar between the FS and CC analyses

(Tables 2). In the AA sample, the difference in the sample sizes

between the FS and CC analyses was not as large as for the EA

sample, which may result in the smaller differences in power.

At the SNP level, none of the SNP results reached genome-wide

significance. The most likely reasons for the modest p-values seen

in each GWA analysis may be insufficient power to detect very

small genetic effects. In the FS analyses, the power of our samples

were 35% in EA (n = 2540) and 0.6% in AA (n = 849) with an

additive model, a type I error rate of 561028, and an effect size

explaining of 1% total variance. In the CC analyses, the power of

the samples were 0.09% in EA (757 cases vs. 940 controls) and

0.01% (324 cases vs. 273 controls) with the log-additive model, a

type I error rate of 561028, a frequency of 0.25 and an effect size

of 1.2. Therefore, it was not surprising that we could not detect

any locus of genome-wide significance.

While SNP-based GWA analysis focuses on the most significant

individual variants, the gene-based approach tests the global null

hypothesis about the SNPs located per gene. Gene-based tests

allowed us to explore the impact of multiple variants in a gene

even if the gene did not contain any SNP reaching genome-wide

significance. Therefore, we performed gene-based GWA analyses

in the present study. Only when using FS in the trans-population

gene-based meta-analysis did we detect significant association

signals in three genes (MFAP3L on 4q32.3 and NDUFAB1 and

PALB2 on 16p12). We will review these genes in turn.

NDUFAB1 is a subunit of NADH dehydrogenase, a nuclear

encoded subunit of mitochondrial Complex I, which regulates the

redox status of nicotinamide adenine dinucleotide/nicotinamide

adenine dinucleotide hydride (NAD/NADH), and could be

observed in both the cytoplasm and nucleus. NDUFAB1 may be

involved in the regulation of NAD and NADH which influence

fundamental cellular processes such as cellular metabolism, gene

expression, and ion channel regulation, although the function of

NDUFAB1 in ADs remains to be established [35,36].

PALB2 encodes for the protein PALB2, which co-localizes with

BRCA2 in the cell nucleus and promotes its localization and

stability in cellular structure like chromatin and nuclear matrix

[37]. SNP rs420256 in PALB2 has been reported to be associated

with bipolar disorder in Caucasians in previous studies [38,39]. In

our study, rs420259 did not show any significant association with

ADs in either the EA or AA samples (FS-EA p = 0.11; FS-AA

p = 0.37). Rs8062954 on the same LD block (r2 = 0.12, D’ = 1.00)

with rs420259 was nominally associated with ADs using FS in the

AA sample (FS-AA p = 4.8861025).

MFAP3L encodes a transmembrane protein, microfibrillar-

associated protein 3-like. The intracellular region of this protein

reportedly contains a cluster of phosphorylation sites and

phosphatidylinositol-3 kinase (PI3K) regulatory subunit, which

suggests the involvement of MFAP3L in the signal transduction of

PI3K/AKT pathway [40]. The PI3K/AKT pathways are known

Table 1. Demographic characteristics of European and African American samples.

Sample European American African American

case control case control

Factor score 2540 849

Gender ratio (female/male) 1.07 1.60

Age (s.d.) 50.8 (16.4) 45.6 (13.3)

Case control 757 940 324 273

Gender ratio (female/male) 1.72 0.67 2.34 1.05

Age (s.d.) 48.3 (14.6) 52.1 (17.2) 44.4 (12.6) 46.2 (13.3)

s.d., standard deviation.
doi:10.1371/journal.pone.0112559.t001
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for regulating metabolism, cell growth, and cell survival [41].

Recent studies have indicated that both dopamine and serotonin

partially exert their actions by modulating the activity of AKT

[42,43]. Furthermore, chromosome 4q32 region was suggested to

be associated with ADs (PD, SAD, and phobia) in a previous

linkage study [44], although this region was not confirmed in a

recent meta-analysis of linkage data for ADs [45].

To further explore the GWAS data, we took a pathway-based

approach, providing complementary information to single-marker

and gene-based methods. In the GO term enrichment analyses, we

found two terms (‘‘pattern specification process’’ and ‘‘cytokine

binding’’) using FS and two terms (‘‘nucleoplasm’’ and ‘‘transcrip-

tion regulator activity’’) using CC to be significantly enriched in

ADs, based on the results from the trans-population gene-based

meta-analysis. As observed in the SNP- and gene-based analyses,

the significance of the top pathways was greater using FS than CC

(Table 4). Among these significant pathways, one intriguing

pathway is ‘‘cytokine binding’’, proteins of which function to

control the survival, growth and differentiation of tissues and cells

via interaction with cytokines. Recent studies have suggested that

inflammation of neurons and inflammatory cytokine production

contribute to the pathophysiology of depression and anxiety [46].

Actually, cytokines and their signaling pathways have significant

effects on the metabolism of multiple neurotransmitters such as

serotonin, dopamine, and glutamate and on synaptic plasticity

[47]. An increase in inflammatory markers such as IL-1, IL-6,

TNF-alpha, and IFN-gamma have been documented in ADs

including PTSD, PD, and OCD as well as anxiety-related

personality traits such as neuroticism [46]. The genes in the

significant pathways are worthy of follow-up in the future research.

Several limitations in this study should be addressed. First, in

the present study, we did not perform replication analyses of the

top findings identified in the SNP-, gene-, pathway-based analyses.

However, to increase the statistical power, we conducted the meta-

analyses of the gene-based analyses by combining the two

populations. In future research, further replication studies are

needed to confirm our findings. Second, the distribution of FS

used for the GWA analyses was not normally distributed. Like

most psychiatric phenotypes, the distribution was quite skewed,

with many of the unaffected subjects falling under a peak at the

lower end of the score. Therefore, p-values for some markers in the

GWAS might have been biased by this feature of the FS

distribution. We tested this for SNPs on different chromosomes

by comparing normal-theory regression with permutation testing

and did not detect major differences. Third, the gender ratio

differs significantly between cases and controls in both EA and AA

samples, which may affect results. Therefore, we conducted the

analyses controlling for gender and age instead of conducting

gender-specific analyses because it reduce the statistical power.

Fourth, the gene- and pathway-based analyses assumed that the

local SNPs only modify the function of the local gene. Thus, both

cis and trans regulation of the genes should be considered in the

future analyses [48]. Fifth, since the sample size of the EA sample

was much larger than the AA sample, most of the top findings in

the gene-based meta-analysis were found in the EA sample.

Therefore, caution is needed to interpret the results given genetic

heterogeneity between the two populations.

In conclusion, our results demonstrate the potential advantage

of studying AD phenotypes as quantitative traits for identifying

shared susceptibility genes. In addition, our study provides a

strategy to utilize the full information of GWAS to find new genes

and pathways that would be missed in a single SNP analysis.

Further studies are necessary to confirm our findings and clarify

the underlying mechanisms of ADs.

Supporting Information

File S1 Figure S1 in File S1 Quantile-quantile (QQ) plots
of each SNP-based genome-wide association analysis. (a)

FS-EA, (b) FS-AA, (c) CC-EA, (d) CC-AA. FS, factor score

analysis; CC, case-control analysis; EA, European Americans; AA,

African Americans. Figure S2 in File S1 Manhattan plots of
each genome-wide association analysis. (a) FS-EA, (b) FS-

AA, (c) CC-EA, (d) CC-AA. FS, factor score analysis; CC, case-

control analysis; EA, European Americans; AA, African Ameri-

cans. Figure S3 in File S1 Quantile-quantile (QQ) plots of
gene-based genome-wide association analysis. (a) FS-EA,

(b) FS-AA, (c) CC-EA, (d) CC-AA. FS, factor score analysis; CC,

case-control analysis; EA, European Americans; AA, African

Americans.

(DOCX)

Table 4. GO term enrichment analysis based on the results from the meta-analysis of gene-based GWAS in European and African
American samples.

GO term Count % Fold Enrichment p q

FS

GO: 0007389 B: pattern specification process 14 5.0 3.6 0.0002 0.0025

GO: 0019955 M: cytokine binding 9 3.2 5.5 0.0002 0.0030

GO: 0000793 C: condensed chromosome 7 2.5 3.6 0.0132 0.16

GO: 0030155 B: regulation of cell adhesion 7 2.5 3.5 0.0154 0.23

GO: 0016563 M: transcription activator activity 13 4.6 2.1 0.0196 0.24

CC

GO: 0005654 C: nucleoplasm 26 9.2 2.0 0.0015 0.019

GO: 0030528 M: transcription regulator activity 40 14.1 1.6 0.0017 0.024

GO: 0009952 B: anterior/posterior pattern formation 8 2.8 3.8 0.0049 0.078

GWAS, genome-wide association study; FS, factor score analysis; CC, case-control analysis.
B, biological process; M, molecular function; C, cellular component.
doi:10.1371/journal.pone.0112559.t004
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