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ANATOMY AND BLOOD SUPPLY
The trachea connects the larynx to the carina, ex-

tending from the cricoid cartilage to its bifurcation 
into the left and right main bronchi. Anteriorly, it is 
composed of horseshoe-shaped cartilagenous rings 
making up two thirds of its circumference and pos-
teriorly by a membranous portion connecting the 
rings.1 In the neck, it is covered by the cervical fascia 
and infrahyoid muscles, crossed by the isthmus of 
the thyroid and the jugular venous arch. The carotid 
sheath and inferior thyroid artery are lateral to the 
trachea, the esophagus—posterior, and the recur-

rent laryngeal nerve lies in the groove between the 
two. In the thorax, it is crossed by the brachiocephal-
ic artery and the left brachiocephalic vein.2

The trachea functions as a conduit for ventila-
tion, clears secretions, warms, humidifies and cleans 
the air for the respiratory zone, and keeps the air-
way free of foreign material through coughing and 
intrinsic defense mechanisms.3,4 The microanatomy 
of the trachea consists of a pseudostratified ciliated 
epithelium composed of ciliated cells, goblet cells, 
basal cells, and neuroendocrine cells4,5 (Fig. 1). The 
submucosa is rich in elastin, submucosal glands, 
and smooth muscle. The cartilage is of a hyaline 
nature.4 The tracheal walls are composed of 15–20 
incomplete cartilaginous rings joined together by 
fibrous tissue and smooth muscle.2 The tracheal lu-
men is generally ovoid in shape although variations 
appear even without disease. This lumen flattens an-
teroposteriorly. Two thirds of the circumference of 
the trachea is composed of normally C-shaped (or 
horseshoe-shaped) rings anteriorly while the rest is 
composed of a flat posterior membranous wall. This 
posterior wall is made of a thin membrane support-
ed by the trachealis muscle.3 There are about 2 rings 
per centimeter of trachea (see Figure 2 for photo-
graph of a human trachea).
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The trachea’s blood supply comes from its lat-
eral pedicles, vessels which originate from the in-
ferior thyroid, subclavian, supreme intercostal, 
internal thoracic, innominate, and superior and 
middle bronchial arteries.6 All of these vessels in-
terconnect along the lateral surface and form im-
portant longitudinal vascular anastomoses. The 
lateral and anterior tracheal walls receive their 
blood supply from transverse segmental vessels 
which extend from these 2 lateral longitudinal 
networks and run between the cartilage rings. The 
transverse vessels feed capillary beds beneath the 
endotracheal mucosa that nourish the cartilage by 

diffusion. The esophageal arteries and their subdi-
visions supply the posterior membranous portion 
only.6 The trachea’s intricate blood supply makes 
devascularization easy and reconstruction especial-
ly challenging.

TRACHEAL REPLACEMENTS

Indications
The indications for tracheal replacement are 

lesions that cannot be resected and reconstructed 
safely with end-to-end anastomosis or long-segment 
congenital stenosis, which cannot be effectively man-
aged with slide or patch tracheoplasty. Acquired le-
sions include malignancy, traumatic injury, and 
subglottic or tracheal stenosis. The general limits 
for safe resection are about one half of the tracheal 
length in adults and one third in small children. Very 
lengthy lesions that cannot be safely removed and re-
constructed primarily are managed palliatively with 
long-term T-tubes or stents. The clinical course of 
these patients is usually complicated with multiple 
infections and frequent hospital admissions. There-
fore, a safe and dependable tracheal replacement 
remains an important unmet need.

Fig. 1. Cellular composition of the human tracheal epithelium.

Fig. 2. Human trachea harvested intraoperatively from donor 
lung used for transplantation.
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Requirements
The requirements for tracheal replacements 

are to be laterally rigid but longitudinally flexible, 
to have a surface composed of ciliated respiratory 
epithelium (although some authors have consid-
ered this not essential), or at least to have a sur-
face which facilitates epithelial resurfacing. They 
must also be biocompatible, nontoxic, nonimmu-
nogenic, and noncarcinogenic. They must not dis-
locate or erode over time, avoid accumulation of 
secretions, resist bacterial colonization, and must 
be permanent.

Approaches
The approaches used for tracheal replacement 

include stents and synthetic prostheses and scaffolds 
and are summarized in Table 1. The use of autolo-
gous tissues in combination with synthetic material is 
summarized in Table 2. The most interesting recent 
advances in the field of tracheal reconstruction per-
tain to tracheal transplantation and tissue engineer-
ing and are described in further detail.

TRACHEAL TRANSPLANTATION

Nonrevascularized Grafts
Autografts

Tracheal excision and immediate orthotopic 
reimplantation (fresh autograft) often fail due to 

a delay in revascularization.46,72–75 However, this de-
pends on the length of the autograft.74,76 Despite 
possible survival in short segments, the cartilage 
eventually resorbed and the segment was replaced 
with fibrous tissue.77 In longer segments, dissolu-
tion, stenosis, and obstruction followed due to loss of 
blood supply.74 A new experimental technique using 
composite cervical skin and a costal cartilage flap has 
shown some promise over long segments although 
long-term follow-up is required.78

Allografts
Fresh tracheal allografts without immunosup-

pression will lead to rejection.35,76,79,80 Rejection 
of fresh allografts of any length occurs even with 
immunosuppression, in the absence of revascular-
ization.26,63,74,77 All these grafts necrose, liquefy, or 
result in stenosis. Preserved and devascularized 
allografts also failed due to cartilage resorption, 
scar replacement, fibrosis, and eventual complete 
obstruction.46,76,81,82 Cryopreserved allografts for 
small window defects83 and short segments84 reepi-
thelialized but failed over longer lengths.85 Patients 
transplanted with chemically fixed allografts for 
noncircumferential defects required multiple sub-
sequent operations with a decannulation rate of 
only 60% in children and even lower in the adult 
population.86 The literature implies that blood sup-
ply is critical for successful transplantation.

Table 1.  Tracheal Replacements: Stents, Synthetic Prostheses and scaffolds, and Nonviable Tissue

Stents
 � Silicone7,8 Advantages

  Removable
  Inert
  Adjustable
 � Minimal granulation tissue

Disadvantages
  Difficult placement
  Tend to dislodge
 � Lack of reepithelialization led to  

obstruction
 � Metallic8,9 Advantages

  Ease of placement with local anesthesia
  Higher internal: external diameter
 � Less obstruction

Disadvantages
  Permanent
 � Difficult to adjust and remove

 � Bioabsorbable10–12 Advantages
  Promote epithelialization
 � Provide rigidity

Disadvantages
 � Long-term modeling remains to be  

determined
Synthetic prostheses and scaffolds
 � Solid Materials

  Stainless steel13

  Steel coil14

  Silicone15,16

  Polythene17,18

  Teflon19

 � Hydroxylapatite20,21

Disadvantages22

  Many patients suffered from obstructive 
granulation tissue and vascular erosion

  Required longer resections of previously 
native trachea

 � Prompted development of porous structures

 � Porous Materials22, 23

  Meshes supported to prevent air leakage with:
    Foreign material24–34

    Sealed with tissues35–39

  �  Biopolymers32,40–42

Disadvantages22

  Overgrowth with scar tissue
 � Eventual obstruction and stenosis

Nonviable tissue
  Cadavaric tissue
  �  Fixed, frozen, 

lyophilized tissues

Advantages
 � Rejection avoided43,44

Disadvantages
  Replaced with granulation and scar tissue45

 � Necrosis of cartilage and epithelium46–48
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Vascularized Grafts
Autografts

Revascularization of fresh short-segment tracheal 
autografts was performed using omentum,87–89 inter-
costal muscle,90 deltopectoral muscle,91 pectoralis 
major muscle,92 free costal cartilage grafts,93 chon-
dromuscular flaps,94 musculofascial flaps,95 or other 
vascular pedicles such as the latissimus dorsi.59,60 
Omental flaps longer than 4 cm frequently resulted 
in ischemic tracheal segments and stenosis.96 Prelim-
inary implantation into a vascularized tissue or flap 
with delayed transfer into the defect has proven to 
be more successful.38

Allografts
Nontracheal allografts, such as fresh and 

cryoperserved allogeneic aorta, required no immu-
nosuppression and had no graft rejection in most 
cases. However, aortic grafts were deemed unsuit-
able for tracheal replacement because of failure to 
regenerate and incorporate recipient tissue, requir-
ing stenting and/or retransplantation.97,98

In tracheal allografts, the epithelium is the 
major site of antigenicity and removal with a de-
tergent99 or irradiation100 was thought to prevent 
rejection.101–104 Reepithelialization occurred by 
migration from the host epithelium105 while the 
chondrocytes remained of donor origin.106 How-
ever, complete epithelial regeneration failed and 

allografts were eventually rejected.107 Other studies 
focused on providing immunosuppression, which 
allows for initial revascularization of a heterotopi-
cally transplanted graft to improve success of ortho-
topic allotransplantation.108,109

The first clinical tracheal allotransplantation was 
reported in 1979, where a donor trachea was first 
implanted heterotopically under the sternocleido-
mastoid muscle and pedicled orthotopically after 3 
weeks.110 No immunosuppression was required, and 
short-term integration with surrounding tissue and 
reepithelialization was achieved. Another case, later 
performed with omental revascularization and im-
munosuppression, eventually led to necrosis and ste-
nosis requiring stent placement.111

Direct Revascularization
The blood supply to the trachea makes it chal-

lenging for direct revascularization. A composite 
graft composed of a thyrotracheal graft with anasto-
moses of the thyroid artery to the common carotid 
artery112 has been attempted. Venous anastomosis 
was also required to prevent soft-tissue necrosis.113,114 
Long-term results have not been reported.

There is also an expanding role for free flaps to al-
low for revascularization of autografts and allografts. 
Their long-term outcomes for large tracheal defects 
have been reviewed by Yu et al.115 The free flaps used 
include radial forearm flap,115–118 anterolateral thigh 

Table 2.  Tracheal Replacements: Autologous Tissues ± Synthetic Material

Materials Outcomes

Autologous tissues ± synthetic material
 � Free grafts Materials

  Fascia26,49,50

  Diced cartilage14

  Dermal grafts51

  Pericardium39

  Omentum38

  Periosteum52,53

  Perichondrium54

  Buccal mucosa + auricular cartilage55

  Dura mater56

  Bladder mucosa57

  Periosteum52,53

 � Jejunal patches58

Perichondrium on fascial flaps formed cartilage, 
reepithelialized but eventually stenosed

Nasal cartilage resorbed
Bladder mucosa led to edema and obstruction
Patch graft with costal cartilage and pericardium 

successfully treated long congenital stenosis
  Cartilage resorbed
  Pericardium replaced with mature scar tissue
  Tracheal growth reduced
A similar patch graft used in adult maintained patent 

airway over 2-year period

 � Vascularized  
flaps

Materials
  Pedicled intercostal latissimus dorsi59

  Trapezius muscle60

  Periosteum61

  Buccal mucosa61

 � Proplast + skin flaps + conchal cartilage62

All met with limited success with few reports of  
long-term follow-up

 � Tube 
reconstruction

Materials
  Tubed pedicles (skin grafts + rib and costal  

  cartilage)63

  Polypropylene rings between dermis and  
  platysma64

  Cartilage hemirings from costal arches65

 � Aorta66–68

  Esophagus69–71

All required long multistage operations resulting in 
many complications (infections and failure to heal)



 Haykal et al. • Advances in Tracheal Reconstruction

5

flap,119,120 sternohyoid muscle,121 and a saphenous 
corticoperiostal flap.122

Clinically, the transplantation of a fresh laryngeal 
allograft was performed to replace a stenotic larynx 
following a motorcycle accident. This allograft also 
included a 5-ring segment of trachea, thyroid, para-
thyroids, a portion of the attached pharyngeal wall, 
both superior laryngeal nerves, and the right recur-
rent nerve. Arterial, venous, and neural anastomoses 
were performed, and perfusion was established early 
in the procedure. Over time, the patient regained 
vocal cord function and normal deglutition. Despite 
one episode of rejection, health and function were 
good at 40 months, with continued immunosuppres-
sion.123

In 2010, a donor tracheal allograft was initially 
heterotopically transplanted under the forearm 
fascia to allow for indirect revascularization in an 
immunosuppressed patient. The donor posterior 
membranous part necrosed and was replaced with 
the recipient’s buccal mucosa. The graft was subse-
quently moved to the orthotopic position, by which 
time the patient no longer required immunosup-
pression. The graft was fully lined with both donor 
and recipient epithelium and had viable donor tra-
cheal cartilage surrounded by recipient blood ves-
sels. It was harvested on a radial forearm free flap 
and inserted into a 4.5-cm defect.124 Recently, they 
have moved toward the use of autologous cells as 
reepithelialization was found to be very slow with the 
use of a buccal mucosa (unpublished results).

TRACHEAL TISSUE ENGINEERING
The long-term risks of chronic immunosuppres-

sion and their contraindications in malignant disease 
have led to interest in tissue-engineering techniques.

The use of the term “tissue engineering” implies 
the replacement of tissues and organs by isolation 
and culture of cells outside the body, which are 
seeded later into a biocompatible scaffold before 
implantation. The 3 components required for tissue 
engineering are cells, scaffolds, and bioreactors.

Cells
Epithelial Cells

In the trachea, resident epithelial cells are locat-
ed along the basal layer. These cells can be isolated, 
cultured, and differentiated in vitro.125–128 Nontra-
cheal exogenous cells that can be used for epithelial 
regeneration include embryonic stem cells, induced 
pluripotent stem cells, and cells from mesenchymal 
origin such as mesenchymal stem cells, human am-
niotic fluid stem cells, and umbilical blood cord–de-
rived stem cells.129

Chondrocytes
Regeneration of endogenous cartilage can be 

stimulated in vivo by implantation of a gelatin sponge 
slowly releasing basic fibroblast growth factor130,131 or 
bone morphogenetic protein 2.132,133 The regener-
ated cartilage is of fibrous rather than hyaline na-
ture. Autologous sources of chondrocytes include 
the nose, ribs, and ear, and these have been isolated 
and expanded in vitro in cell flasks and in a 3-dimen-
sional culture system.134–138 Despite the formation of 
a well-vascularized neotrachea, these scaffold-free 
constructs showed signs of mechanical failure. Allo-
geneic chondrocytes have also been used for the re-
pair of joint cartilage and are intriguing due to their 
low antigenicity.139,140

The exogenous use of autologous stem/progeni-
tor cells has been considered as a safer alternative 
and a better option for cell amplification. These 
include autologous adipose-derived stem cells and 
mesenchymal stromal cells and induced pluripotent 
stem cells.141

Scaffolds
Synthetic

The advantages of synthetic scaffolds include tai-
loring of size and shape and the ability to control 
their properties such as strength, degradation time, 
porosity, and microstructure. However, they lack 
the macro- and microanatomic structures of natural 
scaffolds. There are many potential materials.142–146 
The biodegraded molecules from polyglycolic acid 
led to a low pH environment and excited a vigorous 
inflammatory response when transplanted.147 Hydro-
gels also have a slow degradation rate and noncon-
trolled long-term biologic response.148

Recently, a long-segment circumferential trachea 
along with the carina and the main bronchi was fab-
ricated from a nanocomposite polymer (POSS) co-
valently bonded to polyurethane (PCU). The casted 
form was made into the cartilage “U” shaped rings, 
and the coagulated form was used for the “connec-
tive” tracheal part. It was shown to support recipient 
progenitor cells and was used clinically.149 Long-term 
remodeling and outcome remain unknown.

Natural and Decellularized
Natural and decellularized scaffolds are thought 

to be advantageous because they support adhesion, 
proliferation, and differentiation of many differ-
ent cell types.150 They are composed of extracel-
lular matrix material such as collagens,42,134,137,151,152 
fibrin/hyaluronic acid,135 and other glycosami-
noglycan products. The limitations are their 
lack of consistency, structure malleability, and 
biodegradability.
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In 2004, a tissue-engineered tracheal patch was 
used as a bioartificial construct for a tracheal defect in 
a 58-year-old man.153 It was composed of autologous 
muscle, fibroblasts, and a collagen matrix from a de-
cellularized porcine proximal jejunum segment. This 
scaffold was incubated for 3 weeks in a bioreactor be-
fore transplantation. After 12 weeks, the bioartificial 
patch had a ciliated pseudostratified epithelium and 
was integrated into the adjacent airway.153

In 2008, a 30-year-old woman was the recipient of 
a decellularized allogeneic trachea for replacement 
of her left main bronchus. This scaffold required 25 
cycles of decellularization based on the absence of 
major histocompatibility complex markers within the 
cartilage.154 The scaffold was then recellularized in a 
bioreactor with primary autologous epithelial cells and 
mesenchymal stem cell–derived chondrocytes. The pa-
tient did not develop antidonor antibodies and did not 
receive immunosuppressive therapy. The procedure 
has since been modified to use the recipient’s body as 
a bioreactor: seeding the scaffold intraoperatively with 
autologous respiratory epithelial and bone marrow–
derived mononuclear cells.155 This in vivo tissue-engi-
neered approach was used in a case series of 9 pediatric 
and adult patients with benign and malignant diseases 
on a compassionate basis. No graft-related mortality 
was reported after follow-up of 12–42 months, with all 
bioengineered grafts remaining vascularized and lined 
with healthy respiratory mucosa. However, partial col-
lapse of the scaffolds was noted in 3 patients.156,157 The 
collapse was thought to be due to degradation of the 
extracellular matrix architecture and a decrease in the 
mechanical and angiogenic properties that occurs af-
ter long-term storage.158 The group felt that decellular-
ized matrices led to unpredictable results and has since 
moved on to use an artificial tracheal and bronchial 
scaffold from a nanocomposite polymeric material.149

Bioreactors
Bioreactors are laboratory tissue-culture devices 

that provide a controllable, mechanically active envi-
ronment and can be used to study and improve tis-
sue-engineered structures159 (Figure 3). They enable 
the cell seeding process, allow for proliferation on a 
large scale and production of 3D constructs,160,161 and 
provide an optimal physiological environment for cell 
adhesion, growth, and differentiation by provision of 
flow of nutrient media and mechanical stimulation 
mimicking conditions of growing organ.162 Their 
operational conditions may be manipulated (such 
as pH, temperature, oxygen tension, and nutrient 
supply). Several bioreactors have been described for 
tracheal tissue engineering,163–167 and a commercial 
version of this bioreactor launched by Harvard Biosci-
ence currently exists and was used for the first human 

tissue-engineered tracheal replacement.154 Following 
the first clinical transplantation, the authors turned 
to in situ tissue engineering mentioning long-lasting 
seeding period, high costs, potential risks of cell dif-
ferentiation instability, and contamination as bottle-
necks to integration of bioreactor-seeded tracheas.168

CONCLUSIONS
The anatomical features of the trachea, which 

include its proximity to major vessels, segmental 
blood supply, anteroposterior heterogeneity, lateral 
rigidity, and longitudinal flexibility, make it more 
complex than a simple conduit. The presence of 
different tissues, including respiratory epithelium, 
submucosa, cartilage, and blood vessels, makes re-
construction of the trachea particularly challenging. 
The attempts that have shown the greatest promise 
have used tissue-engineered techniques with decel-
lularized allografts. However, there continues to be 
some significant challenges with biological scaffolds 

Fig. 3. Decellularized scaffold and bioreactor setup in incu-
bator. Adapted from Haykal S, Salna M, Zhou Y, et al. Dou-
ble-chamber rotating bioreactor for dynamic perfusion cell 
seeding of large segment tracheal allografts: comparison 
to conventional static methods. Tissue Eng Part C Methods 
2014 Mar 5. [Epub ahead of print].169 Adaptations are them-
selves works protected by copyright. So in order to publish 
this adaptation, authorization must be obtained both from 
the owner of the copyright in the original work and from the 
owner of copyright in the translation or adaptation.
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composed of the extracellular matrix particularly re-
lated to revascularization. Plastic and reconstructive 
microsurgeons can significantly contribute to this 
field by combining free-flap techniques to allow for 
initial revascularization of these scaffolds followed 
by a delayed reconstruction, thus providing a nov-
el technique for reconstruction of circumferential 
long-segment tracheal defects. 
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