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A ‘calcium capacitor’ shapes cholinergic inhibition of
cochlear hair cells
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Abstract Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells
of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of
ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to
shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin
near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic
cistern may play an essential role in calcium homeostasis, serving as sink or source, depending
on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic
stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell.
Activity-dependent synaptic modification may contribute to changes in hair cell innervation that
occur during development, and in the aged or damaged cochlea.
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Introduction and background

Mammalian cochlear hair cells are inhibited by cholinergic
neurons projecting from the superior olivary complex
in the brainstem (Guinan, 2006). These olivocochlear
efferents are activated by sound (Robertson, 1984; Brown,
1989), providing negative feedback that suppresses the
response of cochlear afferent neurons (Galambos, 1956;
Wiederhold & Kiang, 1970; Winslow & Sachs, 1987).
Medial olivocochlear efferents inhibit outer hair cells
(OHCs) to improve signal detection in background
noise (May & McQuone, 1995; Hienz et al. 1998) and
can provide protection from acoustic trauma (Rajan &
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Johnstone, 1988). In addition to these roles in the mature
cochlea, cholinergic efferents temporarily inhibit inner
hair cells during the first 2 postnatal weeks in rodents
(Glowatzki & Fuchs, 2000; Marcotti et al. 2004), possibly
to shape spontaneous afferent activity prior to the onset
of hearing (Johnson et al. 2013; Sendin et al. 2014).
Intriguingly, this immature innervation pattern reappears
in a mouse model of age-related hearing loss (Lauer et al.
2012). Thus, efferent feedback regulates hair cell function
moment-by-moment to improve acoustic detection, over
the course of days as protection from acoustic trauma,
and in as yet undefined ways early and late in life. This
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multiplicity of roles and timescales implies modulatory
mechanisms that extend beyond changes in membrane
potential and conductance. Efferent transmission to hair
cells is strongly activity dependent (Goutman et al. 2005;
Ballestero et al. 2011) resulting in part from a nitric
oxide-mediated process of retrograde facilitation (Kong
et al. 2012). Studies of postsynaptic calcium signalling
and the elaborate synaptic ultrastructure provide a
starting point for investigating shorter-term plasticity
and longer-term rearrangements during development and
ageing.

Inhibitory efferent innervation is common to hair cells
in all vertebrates (Manley & Koppl, 1998; Simmons,
2002a). In auditory hair cells of reptiles (turtles; Art
et al. 1984), birds (chickens; Fuchs & Murrow, 1992a)
and mammals (rodents; Erostegui et al. 1994; Blanchet
et al. 1996; Evans, 1996b; Nenov et al. 1996) inhibition
is produced by acetylcholine (ACh) opening ionotropic
ACh receptors, leading to activation of calcium-dependent
potassium channels. Cellular studies have increasingly
turned to efferent inhibition of the mammalian cochlea
with the obvious motivation to understand the human
condition. But equally, the specificity of innervation,
its plasticity and modulation during development, and
the diversity of functional roles for cochlear efferents
make them intrinsically interesting. A cross-section of
the mature mammalian organ of Corti illustrates the
specificity of these connections (Fig. 1).

In the mature cochlea the cholinergic medial
olivocochlear efferents (originating in the medial
olivary complex) contact OHCs (Guinan, 2006). Lateral
olivocochlear efferents (lateral olivary complex origin)

Figure 1. Cross-section of the organ of Corti (3-week-old rat
cochlea – unstained)
Hair cells are outlined in yellow, stereocilia and innervation
schematized. Type I (blue) and type II (turquoise) afferents contact
inner and outer hair cells, respectively. Type II afferents travel
hundreds of micrometres toward the cochlea base before contacting
hair cells (not shown). Medial (red) and lateral (fuchsia) efferents
contact outer hair cells and the dendrites of type I afferents,
respectively. Only a single lateral efferent is shown for clarity; in
reality a rich plexus of endings is formed beneath each inner hair cell.

contact the dendrites of type I afferents beneath inner
hair cells to release ACh, and possibly GABA, dopamine
and peptide neurotransmitters as well (Ruel et al. 2007).
During cochlear maturation, prior to the onset of hearing,
inner hair cells are inhibited temporarily by efferent
synaptic contacts (Glowatzki & Fuchs, 2000) similar in
action to those found later on OHCs (Oliver et al. 2000;
Lioudyno et al. 2004), and thought to be mediated by the
same pool of medial olivocochlear neurons (Simmons,
2002b).

Galambos first showed that electrical stimulation of
efferent axons suppressed the VIIIth nerve compound
action potential evoked by sound (Galambos, 1956). Sub-
sequent single unit recordings confirmed and extended
those observations (Wiederhold & Kiang, 1970; Winslow
& Sachs, 1987). The first intracellular recordings of hair
cell inhibition were obtained from fish lateral line hair cells
(Flock & Russell, 1973, 1976). Subsequent studies in the
turtle inner ear provided detailed evidence for the effect
of efferent inhibition on acoustic receptor potentials (Art
et al. 1982, 1984, 1985). Voltage-clamp recording from
chicken hair cells helped define the ionic mechanisms
and unusual pharmacology of the hair cell’s acetylcholine
receptor (AChR; Shigemoto & Ohmori, 1991; Fuchs &
Murrow, 1992a,b). In all vertebrate hair cells examined
to date, two types of ion channel mediate the effects of
acetylcholine (Fig. 2). The mammalian hair cell’s AChR
includes α9 and α10 subunits that form a non-selective
cation channel with ionic conductance and pharmacology
identical to that of the native hair cell AChR (Elgoyhen
et al. 1994, 2001). Calcium influx activates nearby small
conductance (SK) potassium channels (Erostegui et al.
1994; Blanchet et al. 1996; Evans, 1996a; Nenov et al. 1996;

Figure 2. Two-channel mechanism of hair cell inhibition
A, the ionotropic α9α10-containing AChR allows calcium entry that
opens nearby calcium-activated potassium channels. B, spontaneous
synaptic current recorded from rat outer hair cell (membrane
potential clamped at –60 mV). Biphasic waveform results from
sequential gating of channels as shown in A (unpublished recording
by M. Lioudyno).
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Dulon et al. 1998; Yuhas & Fuchs, 1999; Matthews et al.
2005) and large conductance BK channels in some hair
cells (Kong et al. 2005, 2007; Wersinger et al. 2010).

The cistern as a calcium capacitor

Cholinergic inhibition of hair cells relies on a rise in post-
synaptic calcium to activate calcium-dependent potassium
channels. This unusual method of inhibition no doubt
involves the near-membrane postsynaptic cistern that is
co-extensive with the presynaptic efferent terminal (Fig. 3;
Smith & Sjostrand, 1961; Saito, 1980; Fuchs et al. 2014), an
association also described for cholinergic (‘C’, cisternal)
synapses in spinal cranial motor neurons (Yamamoto
et al. 1991; Nagy et al. 1993). Both in hair cells and motor
neurons the synaptic cistern has been proposed to serve
as a calcium store, akin to the sarcoplasmic reticulum that
supports contraction in muscle, raising the possibility that
cholinergic inhibition occurs through some combination
of calcium influx and release from internal stores. The
participation of a calcium store is supported by the effects
of ryanodine and other store-active agents (Sridhar et al.
1997; Evans et al. 2000; Lioudyno et al. 2004). On the
other hand, the voltage dependence of ACh-evoked SK
current (Martin & Fuchs, 1992) and the brief time course
of efferent synaptic potentials (Oliver et al. 2000) are best
explained as resulting from calcium influx alone.

Detailed examination of cisternal structure suggests a
possible synthesis of these viewpoints. Multiple efferent
terminals contact single OHCs (Fig. 3; Murthy et al. 2009)
to cover several square micrometres of cell surface. The
synaptic cistern is co-extensive with the efferent terminals

Figure 3. Efferent synapses on mouse outer hair cells
A, cochlear cross-section showing OHCs from three rows (OHC1–3).
B, higher power view of multiple efferent terminals on one wild-type
OHC. C, high magnification showing parallel membranes that
demarcate the synaptic cistern in apposition to an efferent terminal
(reproduced from Fuchs et al. 2014, with permission).

(Fig. 4), lying only 14 nm from the postsynaptic membrane
(Fuchs et al. 2014) thereby defining a restricted diffusion
space where influx through AChRs can raise calcium to
high levels. Thus, for brief exposures to ACh the cistern
need only serve as a sink, or fixed buffer (Fig. 5A) to
absorb calcium and enable the rapid decay of ‘quantal’
potassium currents (Glowatzki & Fuchs, 2000; Oliver
et al. 2000; Katz et al. 2004; Ballestero et al. 2011). On the
other hand, should the cistern become calcium-loaded by
sustained influx, uptake would slow, so that SK channel
gating would be prolonged, calcium-induced calcium
release might occur, and additional calcium-dependent
processes could be triggered (Fig. 5B), as suggested by pre-
vious measurements with fluorescent calcium indicators
(Evans et al. 2000). Thus, one might view the cistern as
analogous to a capacitor, providing a path for current
flow (calcium uptake) until fully charged, at which point
current (calcium) flows elsewhere in the circuit (hair cell).
In this model, endoplasmic calcium-induced channels
(e.g. ryanodine receptors) allow calcium flow into, or out
of the store, depending on driving force. Calcium uptake
via ATP-dependent pumps also should be involved.

The effects of calcium store drugs such as ryanodine
can be interpreted in light of this model. Such treatments
should especially alter postsynaptic currents when the
synaptic cistern is calcium-loaded and able to serve as a
store. Thus, drugs affecting calcium uptake (inhibitors of
endoplasmic calcium pumps such cyclopiazonic acid and
thapsigargin) and release (ryanodine and cyclic adenosine
phosphoribose (cADPR)) altered the effect of prolonged

Figure 4. Demarcation and reconstruction of an efferent
synapse on a mouse OHC
A, single cross-section with the efferent terminal in magenta, the
synaptic cistern in green and afferent boutons in umber. B, Z-axis
projection (tilted forward �30 deg from the plane of section) from a
serial reconstruction of 29 sections including that in A (same scale).
Same colour scheme as in A with hair cell membrane shown in grey
lines. A presynaptic ribbon (turquoise) and associated vesicles
(yellow) face the afferent bouton (reproduced from Fuchs et al.
2014, with permission).
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cholinergic activation in vivo or in excised tissue, pre-
sumably because the synaptic cistern was loaded by
calcium influx through AChRs (Sridhar et al. 1997; Evans
et al. 2000; Lioudyno et al. 2004) or via voltage-gated
channels clustered at nearby ribbon synapses (Fig. 4B;
Frank et al. 2009; Meyer et al. 2009).

This model also predicts that responses to the brief
release of ACh should be relatively insensitive to drugs like
ryanodine. With some caveats this prediction is partially
upheld. The first caveat is that synaptic currents evoked
by high potassium or electrical stimulation of efferents
were altered in amplitude by ryanodine (Lioudyno et
al. 2004; Kong et al. 2012). However, this may be due
to changes in efferent release probability by a process
of calcium-dependent retrograde facilitation (see section
‘NO-dependent retrograde facilitation’ below). The time
course of synaptic currents may be more revealing
since this was unaffected by ryanodine at −80 mV
(inward potassium currents in 40 mM external potassium;
Lioudyno et al. 2004). However, the second caveat is
that synaptic waveform was significantly prolonged when
studied at −40 mV (Kong et al. 2012). This difference
may result from calcium loading via voltage-gated influx

Figure 5. The cistern as a calcium capacitor
A, Under normal operating conditions (low levels of efferent or hair
cell activity) calcium influx through hair cell AChRs (grey) is rapidly
absorbed and bound by the synaptic cistern – perhaps through
calcium-gated calcium channels such as the ryanodine receptor
(green channels). B, overloading of the cistern (e.g. from prolonged
efferent activity, or by voltage-gated calcium influx at nearby
ribbons, pumped into the cistern by sarco(endo)plasmic reticulum
calcium-ATPase (SERCA)) slows the uptake of efferent calcium and
leads to calcium-induced calcium release that amplifies and extends
activation of SK channels (black channels). The spread of calcium is
also thought to stimulate synthesis of nitric oxide (NO) to drive
retrograde facilitation.

at −40 mV, but absent at −80 mV. These observations
call for further study of the voltage dependence of
calcium store activity in hair cells, as has been described
for smooth muscle (Wu et al. 2002). Voltage-gated
calcium influx best activates SK channels in turtle hair
cells during inhibition of endoplasmic calcium pumps
(Tucker & Fettiplace, 1996) supporting their presence
in the synaptic cistern. However, neither ryanodine
receptors nor SERCA pumps have been immunolocalized
to hair cell synaptic cisterns, thus their positions in the
model are arbitrary (Fig. 5), although calcium-induced
calcium release channels probably do face the plasma
membrane, by analogy with sarcoplasmic reticulum
(Franzini-Armstrong & Protasi, 1997).

Plasticity of efferent transmission

Electrical stimulation of the efferent axons in excised
cochlear coils has been used to quantify transmitter release
and aspects of synaptic plasticity. The mammalian cochlea
provides two opportunities for such experiments: on inner
hair cells before the onset of hearing, and on outer hair cells
in the mature cochlea. At the inner hair cell contact the
resting quantum content was about 1, but with repetitive
stimulation rose 2- to 3-fold (Goutman et al. 2005).
During prolonged trains of stimulation the summed,
facilitated IPSPs could completely prevent action potential
firing in these immature inner hair cells. Efferent synaptic
transmission onto older OHCs had a smaller resting
quantum content and facilitation was more prominent
(Ballestero et al. 2011). Efferent transmitter release onto
inner hair cells is supported by a combination of P/Q-
and N-type voltage-gated calcium channels (VGCCs;
Zorrilla de San Martin et al. 2010). In addition, L-type
VGCCs and associated BK potassium channels in the
efferent terminal act as negative modulators of transmitter
release, presumably by abbreviating the presynaptic action
potential. Activation of metabotropic GABA receptors
(GABAB(1a,2)Rs) down-regulates the amount of ACh
released at the efferent synapse by inhibiting P/Q-type
VGCCs (Wedemeyer et al. 2013). These are mechanisms of
negative feedback, suppressing efferent transmission. The
following section describes positive feedback in the form
of retrograde facilitation, driven by calcium-dependent
production of nitric oxide (NO) in the hair cell. This effect
depends on calcium signals associated with the synaptic
cistern.

NO-dependent retrograde facilitation

Cholinergic efferent contacts are found on IHCs
prior to the onset of hearing at postnatal day 12–14.
Efferent release of ACh onto such young IHCs
evokes outward SK-mediated currents (inhibitory
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postsynaptic currents, IPSCs) at −40 mV. When the
membrane-impermeant ryanodine receptor agonist,
cyclic adenosine phosphoribose (cADPR) was included
in the intracellular (pipette) solution, evoked IPSCs
were longer-lasting (Kong et al. 2012), supporting
the hypothesis that ryanodine receptors are present
on the synaptic cistern; their enhanced gating by
cADPR prolonged SK channel activity. In addition,
and unexpectedly, evoked and spontaneous IPSCs
occurred more frequently, as though presynaptic
release efficacy had increased. This was confirmed
by measuring efferent quantum content during low
frequency (1 Hz) evoked release. Treatment with cADPR
or ryanodine (1 μM) increased quantum content 5-
to 9-fold. Efferent quantum content could also be
increased significantly by voltage-gated calcium influx
into the hair cell (depolarizing steps interleaved with
efferent stimulation). Thus, increases in postsynaptic
calcium by voltage-gated influx or enhanced release
from internal stores led to an increase in presynaptic
quantum content – presumably by way of a retrograde
extracellular messenger. Exposure to the nitric oxide (NO)
donor 3–morpholinosydnonimine (SIN–1; 100–250 μM)
increased the amplitude and frequency of spontaneous
IPSCs, nominating NO as a messenger for retrograde
facilitation. Exposure to the NO scavenger 2–(4-carbox
yphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide
(c-PTIO) effectively prevented the increase in quantum
content normally produced by cADPR or hair cell
depolarization.

Inner and outer hair cells can produce NO in response
to ATP-evoked calcium influx (Shen et al. 2005, 2006), and
nitric oxide synthase immunoreactivity has been described
throughout cochlear epithelia, including hair cells, and
afferent and efferent nerve endings (Heinrich et al. 1997;
Riemann & Reuss, 1999). NO stimulates guanylate cyclase
to produce cyclic GMP, leading to cGMP-dependent
phosphorylation of vesicular release proteins and effects
on calcium regulation (Meffert et al. 1996; Garthwaite,
2008). Given the variety of voltage-gated channels present
in the efferent terminal (Zorrilla de San Martin et al. 2010)
one possibility is that NO alters channel gating through
direct nitrosylation (Bredt & Snyder, 1994). BK channel
activity has been observed directly in efferent terminals
(Wangemann & Takeuchi, 1993); it will be of interest to
examine modulation by NO.

Developmental plasticity of efferent innervation

During postnatal maturation of the cochlea, cholinergic
efferents inhibit inner hair cells directly (Glowatzki &
Fuchs, 2000), perhaps to modulate ongoing spontaneous
generation of action potentials (Johnson et al. 2011,
2013; Sendin et al. 2014) that drive activity in associated

afferent neurons (Tritsch et al. 2007; Tritsch & Bergles,
2010). These efferent contacts on inner hair cells are
temporary, appearing near the day of birth, and have
disappeared by the onset of hearing at about postnatal
days 12–14 in mice and rats (Fig. 6; Katz et al. 2004;
Roux et al. 2011). The synaptic mechanism is identical to
that found later on OHCs, mediated by α9α10-containing
AChRs and associated SK calcium-dependent potassium
channels. It is not yet known what mechanisms direct these
changes in innervation, but some hints are provided by
observations in transgenic mouse models. For example,
efferent synapses remain intact and functional up to
4 weeks after birth on IHCs of calcium channel null mice
(Brandt et al. 2003), suggesting some interdependence
between developmental changes in hair cell excitability
and innervation.

One consequence of presbycusis (age-related hearing
loss) in humans and in mouse models is the loss of
afferent contacts onto inner hair cells (Nadol, 1979; Pauler
et al. 1986; Spoendlin & Schrott, 1990; Chen et al. 2006;
Stamataki et al. 2006). IHCs also lose afferent synaptic
contacts after acoustic trauma (Kujawa & Liberman, 2009)
or ototoxic insult (Schmiedt et al. 2002). Efferent synaptic
contacts return to aged inner hair cells (Lauer et al. 2012)
in the C57Bl6 mouse that is a model for age-related hearing
loss (Fig. 6). Presumptive efferent contacts also have
been observed on IHCs following afferent denervation
by ouabain (Ruel et al. 2007; Yuan et al. 2013). The factors
governing synaptic rearrangements during development,
ageing and after trauma are unknown. Certainly there
will be a role for growth factors and guidance molecules
(Wang & Green, 2011; Brugeaud et al. 2013). Another
possibility is activity-dependent governance of efferent
synaptic morphology (Murthy et al. 2009) and perhaps
competition between afferent and efferent neurites for
synaptic territory on the hair cell. Such competition is

Figure 6. Efferent re-arrangements on inner hair cells
Inner hair cells of the cochlea are temporarily innervated by efferent
neurons (red) prior to the onset of hearing (postnatal day 12–14 in
rats and mice). Efferent contacts may reappear under conditions that
reduce afferent (blue) innervation: age-related hearing loss, acoustic
trauma (?), ototoxic damage (?). Thin green lines at efferent contacts
represent postsynaptic cisterns. Ribbons (turquoise) surrounded by
vesicles (yellow) face afferent boutons.
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suggested by the more extensive afferent innervation of
OHCs in SK2-null mice that lose efferent contacts (Fuchs
et al. 2014).

Speculation

Efferent neurons that inhibit cochlear hair cells exhibit
several forms of synaptic plasticity. It is not clear yet what
larger role negative feedback plays (Zorrilla de San Martin
et al. 2010; Wedemeyer et al. 2013). However, short-term
facilitation (Goutman et al. 2005; Ballestero et al. 2011) is
required to raise the initially low quantum content, and
is consistent with the higher frequency firing required for
inhibition in vivo (Gifford & Guinan, 1987). Retrograde
facilitation via calcium-dependent NO production is
particularly interesting in the context of the developmental
and trauma-related changes described above. The synaptic
cistern, in addition to its role in regulating on-going
synaptic calcium signals, could link global hair cell activity
to innervation (Fig. 7). Several questions come to mind.
What is the functional capacity of efferent synapses on aged
or damaged IHCs? Do they recapitulate the cholinergic
inhibition seen during development, or take on a novel
role? Is the establishment or maintenance of returning
efferent synapses activity dependent or NO dependent?
Do efferent and afferent synapses compete for territory on
the IHC? Answers to these questions will help to identify
targets for modulation of synaptic changes wrought by
cochlear damage.

Figure 7. Nitric oxide (NO) dependent plasticity
Prior to the onset of hearing, and following cochlear damage,
efferent re-innervation of inner hair cells may be modulated by
NO-dependent feedback. This can be driven by calcium influx at
efferent or afferent specializations. It will be of interest to determine
whether NO can also alter afferent synaptic function.
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