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Key points

� Parvalbumin-containing (PV) neurons from mouse CA1 hippocampus (HC) and prefrontal
cortex exhibit a fast spiking phenotype in vitro. Within CA1, HC PV cells are mainly comprised
of basket and bistratified cell types.

� Direct activation of muscarinic acetylcholine receptors (mAChRs) enhances excitability more
in CA1 HC than in prefrontal cortex PV cells.

� mAChR-induced excitation of CA1 PV cells occurs through direct activation of M1 mAChRs.
� Transgenetic deletion of M1 mAChRs from PV cells diminishes M1 mAChR expression and

cholinergic excitation of CA1 PV cells.
� mAChR-induced excitation exclusively in PV cells enhances GABAergic transmission in CA1

pyramidal cells.
� In vivo activation of M1 mAChRs in PV cells is important in recognition and working memory

but not spatial memory.

Abstract Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are
essential circuit elements of learning networks. As levels of acetylcholine rise during active learning
tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment
of either cholinergic or PV interneuron function induces learning deficits. Here, we examined
PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by
muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE
mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified
cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically
distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically
blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however,
CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1

mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE
and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR
immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC
PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology
enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells.
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Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object
recognition and, to a lesser extent, impaired spatial working memory, but reference memory
remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some
forms of learning and memory.

(Resubmitted 4 April 2014; accepted after revision 26 May 2014; first published online 30 May 2014)
Corresponding author J. Josh Lawrence: COBRE Center for Structural and Functional Neuroscience, Department
of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA. Email:
josh.lawrence@umontana.edu

Abbreviations ACh, acetylcholine; ACSF, artificial cerebrospinal fluid; ADF, afterdeflection; ADP, afterdepolarization;
AHP, afterhyperpolarization; BC, basket cell; BiS, bistratified cell; CNO, clozapine N-oxide; DR, discrimination
ratio; DREADD, Designer Receptors Exclusively Activated by Designer Drugs; FS, fast-spiking; HC, hippocampal;
hM3Dq, human Gq-coupled M3 receptor with ACh binding site mutated to bind clozapine N-oxide; Ihold, holding
current; KO, knockout; M1KO, M1 mAChR knock out; mAChR, muscarinic acetylcholine receptor; MS–DBB, medial
septum–diagonal band of Broca; MWM, Morris water maze; NOR, novel object recognition; OFM, open field
maze; O-LM, oriens lacunosum-moleculare; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; PFA,
paraformaldehyde; PFC, prefrontal cortex; PING, pyramidal cell-interneuron gamma; PV, parvalbumin; PV BCs, PV
basket cells; PV-CRE, parvalbumin-CRE; PV-M1KO, transgenic mice in which M1 mAChRs have been eliminated from
PV cells; PV-Rosa, mice obtained from crossing PV-CRE and Rosa26YFP mice, allowing the visualization of YFP in
PV cells; Ra, access resistance; Rin, input resistance; sIPSC, spontaneous inhibitory postsynaptic current; SOM-CRE,
somatostatin-CRE; SOM-Rosa, mice obtained from crossing SOM-CRE and Rosa26YFP mice, allowing the visualization
of YFP in SOM cells; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; WT, wild-type; τm, membrane
time constant.

Introduction

Cholinergic modulation of neuronal activity plays a
central role in learning and cognition (Hasselmo &
Sarter, 2011). Cholinergic activation of cortical and HC
targets is thought to contribute to the generation of theta
(Buzsáki, 2002) and gamma (Fisahn et al. 1998; Fellous
& Sejnowski, 2000; Buzsáki & Wang, 2012) oscillations.
These neuronal oscillations arise from the participation
of glutamatergic principal cells and diverse subtypes
of GABAergic inhibitory interneurons (Klausberger &
Somogyi, 2008). Cholinergic projection neurons from the
medial septum–diagonal band of Broca (MS–DBB) release
acetylcholine (ACh) into the hippocampus (Fadda et al.
1996; Pepeu & Giovannini, 2004), profoundly amplifying
the magnitude of theta oscillations (Lee et al. 1994).
Ablation of the MS–DBB cholinergic input to the HC
(Brito et al. 1983; Lee et al. 1994) or pharmacological
blockade of muscarinic ACh receptors (mAChRs; Givens
& Olton, 1990) reduces the magnitude of theta
oscillations. The loss of cholinergic control over HC and
cortical activity may also partially account for memory
impairments in Alzheimer’s disease (Coyle et al. 1983).

Cholinergically induced HC gamma oscillations in
vitro (Fisahn et al. 1998; Gulyás et al. 2010) are
eliminated in global M1 mAChR knockout (M1 KO)
mice (Fisahn et al. 2002). The frequency and magnitude
of gamma oscillations are thought to be determined
by the net excitation of the interneurons and the
kinetics of the inhibitory postsynaptic potentials (Bartos
et al. 2007; Buzsáki & Wang, 2012). Modelling and

physiological studies both indicate that excitation of
parvalbumin-positive (PV) interneurons is a primary
mechanism for the generation of gamma oscillations
(Cardin et al. 2009; Sohal et al. 2009; Oren et al. 2010;
Buzsáki & Wang, 2012).

Direct and synaptic mechanisms converge to control
PV interneuron excitability (Bartos et al. 2007; Buzsáki &
Wang, 2012), thereby regulating the participation of these
neurons in network activity. Although strongly regulated
by glutamatergic circuit mechanisms (Pouille & Scanziani,
2004), the cellular excitability of PV neurons is sub-
ject to regulation by multiple neuromodulators (Cobb &
Lawrence, 2010). Specifically, mAChR activation directly
depolarizes PV interneurons (Cea-del Rio et al. 2010;
Chiang et al. 2010; Pafundo et al. 2013), an effect that is
eliminated in global M1 KO mice (Cea-del Rio et al. 2010).
Single cell RT-PCR transcript analysis has indicated that
the M1 mAChR is the sole postsynaptic mAChR subtype
present in PV basket cells (PV BCs; Cea-del Rio et al.
2010). Therefore, loss of M1 mAChRs from PV cells could
potentially impair the generation of gamma oscillations
and contribute to, or account for, memory impairments
observed in global M1 KO mice (Anagnostaras et al. 2003),
particularly for memory tasks that require the engagement
of PV networks (Murray et al. 2011).

In this study, we generated homozygous PV-M1KO
mice by crossing PV-CRE and floxed M1 mice, selectively
eliminating M1 mAChRs from PV cell types. First, we
established that mAChR-induced changes in HC PV
cell excitability depend on the direct activation of M1

mAChRs. Second, mAChR activation of PV cells enhanced
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inhibitory synaptic transmission on to CA1 pyramidal
cells. Finally, in PV-M1KO mice, recognition and working
memory were impaired, but spatial memory remained
intact. Therefore, some forms of learning require direct
M1 mAChR-mediated excitation of PV microcircuits.

Methods

Ethics statement

All procedures were performed in accordance with the
University of Montana Institutional Animal Care and
Use Committee (Animal Use Protocols 030–10, 026–11
and 035–13). Mice were housed together in one breeding
pair per cage. After wean, mice were socially housed in
gender-specific groups of four to five littermates per cage
as backup breeders or experimental stock animals.

Determination of CRE zygosity

PV-CRE (Hippenmeyer et al. 2005; stock no.
008069; Jackson Labs, Bar Harbor, ME, USA) and

somatostatin-CRE (SOM-CRE; stock no. 013044; Jackson
Labs; Taniguchi et al. 2011) mice were genotyped by
quantitative PCR (Fig. 1A–C; Tesson et al. 2002), bred
to homozygosity and maintained as homozygous mouse
lines. Mouse DNA was extracted from tail snip samples
approximately 1–2 mm long using a QIAamp DNA Mini
Kit (catalogue no. 51306; Qiagen, Valencia, CA, USA).
Multiplex quantitative PCR was performed on extracted
mouse DNA using a Stratagene MX3005P Thermocycler
(Agilent Technologies, Santa Clara, CA, USA). Sample
DNA (1 μl) was added to a qPCR tube (catalogue no.
10011-764; Axygen Scientific, Union City, CA, USA)
containing PerfeCTa qPCR Supermix (10 μl, catalogue
no. 95063-200; Quanta Biosciences, Gaithersburg, MA,
USA), deionized H2O (7 μl), target primers and a probe
with FAM-tagged 5′ and quencher-tagged 3′ ends for
the CRE recombinase transgene (1 μl; primer 1: 5′-CCA
CCA GCC AGC TAT CAA CTC-3′; primer 2: 5′-CTT
AGC GCC GTA AAT CAA TCG-3′; 5′-/56-FAM/CGC
CCT GGA AGG GAT TTT TGA AGC/36-TAMSp/-3′;
Integrated DNA Technologies, Coralville, IA, USA),

M1 muscarinic receptor gene
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Figure 1. Determination of CRE zygosity and generation of PV-M1KO mice
A–C, quantitative PCR analyses yield fluorescence vs. cycle number plots for (A) Fam CRE gene and (B) Hex
reference gene, enabling the identification of mice containing one (heterozygous), two (homozygous), or no
(WT) CRE alleles. A and B, (red circle) homozygotes, (blue triangle) heterozygotes, (black square) WT and (green
diamond) water are indicated. Delta crossing threshold (Ct) is indicated by the black line. (C) After normalization
to known heterozygous Cts to 1, unknown samples (grey triangles) separate into Ct that can be categorized as
heterozygote or homozygote. D, standard PCR illustrating the capacity to distinguish the floxed M1 transgene
band from the WT band. Mice 1–9 were floxed M1

+/+. E, schematic representation of CRE-mediated deletion of
the M1 mAChR in PV cells, generating PV-M1KO mice. FM1, floxed M1; M1KO, M1 mAChR knockout; mAChR,
muscarinic acetylcholine receptor; PV, parvalbumin; WT, wild-type.
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reference primers and a probe with a HEX-tagged
5′ and quencher-tagged 3′ end for the ultraconserved
element uc329 (1 μl; primer 1: 5′-GTC ATC AAG TGA
GAA AGA CAT CCT-3′; primer 2: 5′-CAT CAT GAA
TTT TGA TAA GCC CAT T-3′; 5′-/5HEX/CTC CTG
GCT GCC TGG CTG GC/3IABkFQ/-3′; Integrated DNA
Technologies). Following a 10 min hot start at 95°C,
DNA was amplified by 40 cycles at 95°C for 30 s and
60°C for 1 min. Using MxPro QPCR Software (Agilent
Technologies), fluorescence thresholds were determined
via an amplification-based thresholding algorithm with a
search range of 5–60%. DNA was determined to be hemi-
zygous or homozygous for CRE by the comparative Ct

method. For each reaction, known homozygous (CRE+/+,
red symbol), known heterozygous (CRE+/−, blue symbol),
known wild-type (WT; CRE−/−, black symbol) and no
template control (water, green symbol) samples were
used (Fig. 1A and B). For each unknown sample, ��Ct

was calculated by subtracting the �Ct of the transgene
CRE from the �Ct of the reference gene uc329, and
normalized based on ��Ct values of known homozygote
and heterozygote controls obtained in each run (Fig. 1C,
grey triangles). To validate results, all samples were run
in triplicate and analysed with a pedigree chart. No false
zygosity results were observed when samples were assessed
via pedigree.

Determination of floxed M1 and floxed Rosa26YFP
mouse zygosity

Mouse blood samples were DNA purified using a Qiagen
DNeasy Blood and Tissue Kit (catalogue no. 69506;
Qiagen). To determine the presence of the floxed M1

gene (Kamsler et al. 2010), standard PCR was performed
on extracted mouse DNA using a C100 thermocycler
(BioRad, Hercules, CA, USA; Fig. 1D). Sample DNA
(50 ng) was added to a master mix containing: 10 × Cl
buffer (5 μl), MgCl2 (1 μl), dNTP (1 μl), Taq (0.25 μl),
M1C1 primer (2.5 μl; 5′ TCA ACC TGT ACT GGT GAT
ACG), M1C2 primer (2.5 μl; 5′ AAC ACT ACT TAC
ACG TGG TGC) and M1C3 primer (0.5 μl; 5′ GAG CCT
CAG TTT TCT CAT TGG). Five microlitres of ladder
was added. The following thermal cycling program was
used: 34 cycles of 94°C for 2 min; 94°C for 10 s; 60°C
for 45 s; 72°C for 30 s; followed by 72°C for 5 min;
and finally 12°C. PCR products were combined with
10 μl of 6× gel loading dye and loaded into wells for gel
electrophoresis at 80–120 V for 45–90 min depending on
progress. The ultraviolet transilluminator Universal Hood
II (Biorad) was used for band determination. In addition,
using standard PCR, a homozygous Rosa26EYFP+/+
reporter line (stock no. 007920; Jackson Labs; Soriano,
1999; Madisen et al. 2009) was generated similarly to
that described above. The PCR protocol and set of
primer sequences (oIMR9020, oIMR9021, oIMR9102 and

oIMR9106) specific to Rosa26YFP mice (stock no. 007920)
was obtained from the Jackson Labs web site. All primers
used in standard PCR protocols were purchased from
Invitrogen (Grand Island, NY, USA).

Generation of PV-Rosa, SOM-Rosa and PV-M1KO
transgenic mice

F1 heterozygous PV-CRE+/−/Rosa26EYFP+/− mice
(referred to throughout the text as PV-Rosa mice)
were generated by crossing homozygous PV-CRE and
homozygous Rosa26YFP mice. Similarly, F1 heterozygous
SOM-CRE+/−/Rosa26EYFP+/− mice (referred to
throughout the text as Som-Rosa mice) were generated
by crossing homozygous SOM-CRE and homozygous
Rosa26YFP mice. Initially crossing PV-CRE+/+ mice
on to the C57BL/6 floxed M1

+/+ background (Kamsler
et al. 2010) generated F1 heterozygous PV-CRE+/−/floxed
M1

+/− mice, in which M1 mAChRs are deleted from
PV cells (Fig. 1E). F1 mice were then crossed, and
the resulting F2 and F3 generations were genotyped
using PCR and agarose gel electrophoresis to establish
separate mouse lines homozygous for floxed M1

+/+
or floxed M1

−/− alleles. For behavioural experiments,
floxed M1

+/+ and floxed M1
−/− groups were age matched

(7–20 weeks) and contained similar male/female and
PV-CRE+/+/PV-CRE−/− genotype ratios. No significant
differences in the performance of behavioural tasks were
detected between PV-CRE+/+ and PV-CRE−/− mice.
Thus, PV-CRE+/+ floxed M1

−/− and PV-CRE+/− floxed
M1

−/− mice were grouped together and are referred to
throughout the text as WT mice. PV-CRE+/+ floxed
M1

+/+ and PV-CRE+/− floxed M1
+/+ mice were grouped

together and are referred to throughout the text as
PV-M1KO mice. Global M1 KO mice (Hamilton et al.
1997) were backcrossed >12 generations on to a C57BL/6
background.

Immunocytochemistry

Mice were transcardially perfused with ice-cold
phosphate-buffered saline (PBS) containing (mM): 137
NaCl, 2.7 KCl, 10 Na2HPO4, 2 KH2PO4, pH 7.4,
followed by PBS, 4% paraformaldehyde (PFA, catalogue
no.15714-S; Electron Microscopy Sciences Hatfield, PA,
USA). Whole brains were postfixed in 4% PFA over-
night at 4°C. HC sections (50 μm thick) were then
obtained with a Vibratome VT1000 (Leica Microsystems
Inc., Buffalo Grove, IL, USA). Slices were either placed in
PBS for immediate immunohistochemical experiments or
cryopreserved at −20°C in PBS containing 10% sucrose
and 50% glycerol. Free-floating sections were washed
3× in PBS and then incubated for 30 min in 0.3%
Triton X-100 (catalogue no. BP151–500; Fisher Scientific,
Pittsburgh, PA, USA) and 10% donkey serum (catalogue
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no. S-30-100ML; Millipore, Billerica, MA, USA) or 7%
goat serum (S-1000; Vector Labs, Burlingame, CA, USA)
for 1 h, depending on the secondary antibody host.
Slices were incubated with the following primary anti-
bodies overnight at 4°C: chicken anti-GFP (directed
against YFP, 1:1000, catalogue no. GFP-1020; Aves Labs,
Inc., Tigard, OR, USA), mouse anti-PV (1:500, catalogue
no. P3088; Sigma-Aldrich, St Louis, MO, USA), rabbit
anti-M1 (1:400, catalogue no. mAChR-M1-Rb-Af340;
Frontier Institute Co. Ltd, Hokkaido, Japan) and goat
anti-vesicular ACh transporter (1:1000, catalogue no.
G448A; Promega, Madison, WI, USA). Slices were then
washed three times in PBS and incubated with the
following secondary antibodies for 60 min: Alexa Fluor
488 goat antichicken (1:1000, catalogue no. A-11039;
Invitrogen), Alexa Fluor 633 goat antimouse (1:1000,
catalogue no. A-21050; Invitrogen), or DyLight 649
AffiniPure Donkey Anti-Goat IgG (1:1000, catalogue no.
705-495-147; Jackson ImmunoResearch, West Grove, PA,
USA). For anti-M1 labelling, a goat antirabbit HRP (1:500,
catalogue no. NEF812001EA; PerkinElmer Waltham, MA,
USA) and a Tyramide Signal Amplification Plus Cyanine
Kit (catalogue no. NEL745001KT; PerkinElmer) were
utilized, similarly to previously described for in situ
hybridization (Yamasaki et al. 2010). Following secondary
staining, slices were incubated with Neurotrace 435/455
(1:100, catalogue no. N21479; Invitrogen) for 20–30 min
to label neuronal cell bodies. Specificity of the anti-M1

antibody to M1 mAChRs was confirmed using tissue from
the global M1 KO mouse (Hamilton et al. 1997). YFP
expression in Rosa26YFP mice was intensified using the
anti-GFP antibody and Alexa Fluor 488 secondary anti-
body. Slices were mounted on slides with Vectashield
(catalogue no. H-1400; Vector Labs). Images were acquired
with a Fluoview confocal imaging system (FV-1000;
Olympus America, Center Valley, PA, USA). Primary anti-
bodies were omitted for controls to verify signal and
determine noise.

Cell quantification

PV-Rosa mouse tissue was fixed, sliced and stained with
anti-GFP and anti-PV antibodies as described above.
Fluoview software was used for colocalization between the
red and green channels based on thresholding determined
by secondary only background controls. The resulting
images were saved with anti-GFP (green), anti-PV (red)
and co-localized (yellow) channels separated. Images
(10×) were stitched together using Fiji’s built-in stitching
feature to generate an image containing the entire HC.
On each stitched HC image, a line was drawn delineating
the counting area in CA1 to ensure that the same
area was counted between experimenters. Two separate
experimenters counted green, red and co-localized
cells individually. While counting in Illustrator (Adobe

Systems, Inc., San Jose, CA, USA), cells were marked with a
symbol to ensure they were not counted twice. Cell counts
were averaged and grouped based on laminar distribution
in CA1.

Stereotaxic injections of floxed YFP and/or floxed
hM3Dq-mCherry AAV into CA1 hippocampus

Floxed YFP (Sohal et al. 2009) and floxed
hM3Dq-mCherry (Alexander et al. 2009; Krashes
et al. 2011) AAVs (�1012 vc ml−1) were obtained from
the University of North Carolina Vector Core (Chapel
Hill, NC, USA). hM3Dq is a human Gq-coupled M3

receptor that couples to Gq/11 proteins and differs from
the native human M3 receptor in two point mutations.
These mutations allow the orthosteric ACh binding site
to bind clozapine-N-oxide rather than ACh (Armbruster
et al. 2007). Unless otherwise stated, AAVs were injected
into dorsal CA1 HC. WT or homozygous PV-M1KO
mice were anaesthetized with 4% isofluorane, placed
ventral side down and secured in the Quintessential
Stereotaxic Injector (catalogue no. 53311; Stoelting Co.
Wood Dale, IL, USA) apparatus. Artificial Tears Lubricant
Ophthalmic Ointment (Akorn Inc., Lake Forest, IL, USA)
was gently applied to each eye and the surgery site was
cleaned with a povidone iodine preparation solution
(catalogue no. 82–255; Aplicare, Meriden, CT, USA). A
small mid-sagittal incision was made across the scalp to
expose bregma and lambda landmarks. A 33 gauge needle
(catalogue no. 7803-05; Hamilton Company, Reno, NV,
USA) inserted into a 10 μl syringe (catalogue no. 7635-01;
Hamilton Company) was centred on bregma and lateral
coordinates of 1.2 mm were used to level the skull in the x
direction. Lambda was then located and adjustments were
made to level the head in the y direction. The needle was
then moved 1.5 mm caudally and 1.4 mm laterally. A small
hole was made through the skull using an Ideal Microdrill
(catalogue no. 1730; Cellpoint Scientific, Gaithersburg,
MD, USA) and the needle was used to puncture the
cortex. The needle was then moved 1.1 mm into the brain
and 1.5 μl of virus was injected at 0.25 μl min−1. At
1–2 min following viral injection, the needle was slowly
removed and the procedure was repeated on the other
hemisphere. For ventral CA1, the stereotaxic coordinates
were anteroposterior: 2.8 mm, ML: 3.6 mm and DV:
2.3 mm. Following injections, bupivacaine (catalogue no.
NDC 0409-1163-01; Hospira, Inc., Lake Forest, IL, USA)
was applied topically and the scalp was sutured with
nylon suture 5-0 (catalogue no. MV-661; Oasis, Mettawa,
IL, USA). Mice that had received stereotaxic injections
were monitored postoperatively for 3 days for any signs
of pain or distress. Injected mice were used for imaging
or electrophysiological recordings approximately 14 days
after survival surgery.

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society



3468 F. Yi and others J Physiol 592.16

Slice preparation

Male and female mice (3–20 weeks for PV-Rosa;
9–37 weeks for AAV injected WT and PV-M1KO) were
used. Electrophysiology experiments utilized PV-M1KO
mice that were confirmed homozygous for CRE through
qPCR (see above). PV-Rosa, WT and PV-M1KO mice
were anaesthetized with isoflurane and then decapitated.
The brain was placed in ice-cold partial sucrose solution
containing (mM): 80 NaCl, 2.5 KCl, 24 NaHCO3, 0.5 CaCl2,
4 MgCl2, 1.25 NaH2PO4, 25 glucose, 75 sucrose, 1 ascorbic
acid, 3 sodium pyruvate, saturated with 95% O2/5% CO2,
pH 7.4. Transverse HC or coronal prefrontal cortical slices
(300 μm) were cut on a Vibratome 1200S (Leica Micro-
systems, Bannockburn, IL, USA) and incubated in warm
(36°C) oxygenated cutting solution for 30 min before their
transfer to a submerged recording chamber (Bischofberger
et al. 2006). Before each use, the Leica Vibrocheck device
was employed to minimize vibration of the blade in the
z-direction (Geiger et al. 2002).

Electrophysiology

Slices were transferred to a submerged chamber and
perfused with artificial cerebrospinal fluid (ACSF)
solution containing (mM): 125 NaCl, 2.5 KCl, 25 NaHCO3,
2 CaCl2, 1 MgCl2, 1.25 NaH2PO4 and 20 glucose, saturated
with 95% O2/5% CO2, pH 7.4, at 34–35°C. Pyramidal cells
or interneurons in CA1 were visualized using IR-Dodt
contrast and fluorescence video-microscopy on either a
Patch Pro 2000 (Scientifica Ltd, Uckfield, East Sussex, UK)
or Infrapatch (Luigs and Neumann, Ratingen, Germany)
on an upright Zeiss microscope (Axio Examiner D1; Carl
Zeiss Microscopy, LLC, Thornwood, NY, USA). On the
Patch Pro 2000, live YFP+ cells were visualized with
a blue (470 nm) collimated light-emitting diode (LED)
(M470L2-C4; Thorlabs, Newton, NJ, USA) driven by a
high-power LED driver with pulse modulation (DC 2100;
Thorlabs) or a 505 nm LED (LED4C11-SP; Thorlabs)
driven by a four-channel LED driver (DC4100; Thorlabs).
On the Infrapatch, a 505 nm LED was controlled by the
Colibri LED illumination system (Carl Zeiss Microscopy).
Pipettes were fabricated with a 2–4 M� tip resistance on a
two-step vertical puller (PC-10; Narishige, East Meadow,
NY, USA). For loose patch recording, the pipette was filled
with extracellular solution, negative suction was applied
until a stable access resistance (Ra) of 10–200 M� was
achieved and action potential (AP) currents (46–1035 pA)
were monitored in voltage clamp (holding potential of
0 mV). Loose patch and whole cell recordings were
obtained using a Multiclamp 700B amplifier (Molecular
Devices, Union City, CA, USA), filtered at 4 kHz and
digitized at 20 kHz (Digidata 1440A; Molecular Devices).
Solutions were heated to 34–35°C with an inline solution
heater (HPT-2, Scientifica; SH-27B/TC-324B, Warner,

Hamden, CT, USA). For atropine experiments, slices were
pre-equilibrated with 5 μM atropine for at least 30 min
before recording. In cases in which PV cells did not
exhibit APs in loose patch mode, cells were included in the
analysis only if APs could be triggered with an elevated K+
(7.5 mM) solution. For whole cell recordings, cell-attached
seal resistances ranged from 1 to 5 G� and Ra ranged from
6 to 20 M�. Upon obtaining whole cell mode, 3 min were
allowed to stabilize Ra and allow the exchange between
cytoplasm and intracellular solution. The intracellular
solution contained (in mM): 110 potassium gluconate,
40 KCl, 10 Hepes, 0.1 EGTA, 4 MgATP, 0.3 Na2GTP, 10
phosphocreatine biocytin 0.2%, titrated to pH 7.2 with
KOH, osmolarity 295–305 mosmol l–1. In experiments
with GDP-beta-S, Na2GTP was omitted from the intra-
cellular solution. Bridge balance was used throughout the
current clamp experiments and was monitored with a
100 ms long hyperpolarizing current step from –60 mV
every 20–60 s, depending on the acquisition protocol.
For spontaneous inhibitory postsynaptic current (sIPSC)
recordings, a CsCl-based intracellular solution was used
(in mM): 123 CsCl, 10 KCl, 30 Hepes, 5 EGTA, 4 MgATP,
0.3 Na2GTP, 1 QX-314, 10 phosphocreatine and 0.2%
biocytin, titrated to pH 7.2 with CsOH, osmolarity
295–305 mosmol l–1. In voltage clamp, access resistance
(Ra) was monitored with a −5 mV, 20 ms duration seal
test every 30 s. If Ra changed by >20% in either whole cell
or loose patch recording modes, the data were excluded
from further analysis.

Chemical reagents

DL-APV and QX-314 were obtained from Tocris
Bioscience (R&D Systems, Minneapolis, MN, USA).
Clozapine N-oxide (CNO) was obtained from Enzo
Life Sciences (Pittsburgh, PA, USA). All other chemical
reagents were purchased from Sigma-Aldrich.

Data analysis

Acquisition and analysis of electrophysiological data were
performed in Axograph X (Axograph Scientific, Sydney,
Australia). APs in loose patch and whole cell current clamp
were detected by the Event Detection Plug-In Program
in Axograph X using the first derivative as a threshold
(100–500 pA ms−1). The height of the AP was calculated
from the AP threshold to the peak of the first AP during
a 100–200 pA depolarizing current from −60 mV. After-
deflection (ADF) was defined as the difference between
the average voltage in a baseline region 1 ms before the
current step and the averaged voltage in a 100 ms time
window commencing 200 ms after the termination of the
current injection (Cea-del Rio et al. 2010). The adaptation
coefficient was calculated by dividing the first interspike
interval by the last interspike interval of the AP train during
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a 700 pA current step. Membrane time constant (τm) was
obtained by a single exponential fit of the voltage response
after a –200 pA current injection from −60 mV in current
clamp. Capacitance was calculated by dividing τm by
the steady-state input resistance (Rin). AP half-width was
determined from the time to reach 50% of peak to the time
to reach 50% during repolarization. Sag ratio (SS/peak)
was calculated by dividing the average steady-state voltage
response in the last 200 ms by the peak voltage response in
the first 200 ms from a 1 s long –150 pA or –200 pA current
injection from −60 mV. For event detection of sIPSCs, raw
data were digitally filtered at 1 kHz. Optimal detection
threshold was determined by calculating the nearest 0.5
increment between two and four times the standard
deviation of noise in which the false positive/positive ratio
fell below 0.05 (Lawrence et al. 2004). sIPSC amplitudes,
frequencies and rise times were then measured by the
Event Detection Plug-In Program in Axograph X, using
a variable template algorithm (0.5 ms 10–90% rise; 10 ms
exponential decay, Clements & Bekkers, 1997). To pre-
dict the level of depolarization required to reduce the AP
amplitude in loose patch mode, the relationship between
the first derivative of AP amplitude and depolarization
level was determined from a series of depolarizing current
steps (+100–700 pA) from −60 mV in current clamp.
After being normalized to the maximum rising slope,
data from six different recordings were pooled together
to obtain a linear regression.

M1 mAChR signal intensity analysis

Three consecutive confocal slices (0.2 μm steps each)
containing a PV cell body and nearby dendrite were
z-projected to a single flat projection. A rectangular region
of interest that contained both the YFP+ cell body or
dendrite and adjacent M1 mAChR labelling within the
stratum pyramidale (SP) was defined. The signal intensity
of M1 mAChR (red) and YFP (green) was extracted as a text
file using ImageJ. Sequential line series were organized into
intensity vs. distance traces in Axograph X. Traces (6–20)
were averaged and then normalized to the maximum M1

mAChR intensity (within the neighbouring SP layer) and
maximum YFP intensity (within the PV cell). The average
M1 mAChR signal intensity within the YFP PV cell was
defined as the cytoplasmic M1 mAChR signal for soma or
dendrites. Channels were acquired sequentially to mini-
mize overlapping excitation of fluorophores.

Anatomical identification of interneurons

Biocytin (0.2%) was included in the recording pipette for
post hoc morphological identification of recorded cells.
After whole cell recording, HC slices were fixed overnight
at 4°C in PBS containing 4% PFA, transferred to PBS and
kept for up to 2 weeks at 4°C. After permeabilization with

0.3% Triton X-100 in PBS for 2 h at room temperature,
slices were incubated in PBS overnight at 16°C with
Alexa 633-conjugated streptavidin (final concentration
1 μg ml−1, catalogue no. S-21375; Invitrogen) in
PBS. Slices were cryopreserved in PBS containing 30%
sucrose and then resectioned at 100–150 μm thickness
using a sliding microtome (HM430; Thermo Scientific,
Waltham, MA, USA). After staining with Neurotrace
435/455 (1:100 in PBS) and mounting on gelatin-coated
slides in Vectashield (catalogue no. H-1400; Vector
Labs), sections were imaged with a Fluoview FV-1000
confocal imaging system (Olympus) with a 25× objective
(XLPL25XWMP; Olympus, Tokyo, Japan). Confocal
stacks (800 × 800 pixels) of interneurons were flat
projected, rotated and cropped in PhotoShop 13.0 for
display. BCs were defined as having an axonal distribution
in the SP (Ribak et al. 1978; Buhl et al. 1994). Bistratified
cells (BiSs) were defined as possessing axon largely
restricted to stratum oriens (SO) and stratum radiatum
(Buhl et al. 1994; Sik et al. 1995; Maccaferri et al.
2000). Oriens-lacunosum moleculare (O-LM) cells were
defined as possessing an axon that projected largely to
stratum-lacunosum moleculare (McBain et al. 1994; Sik
et al. 1995). A single cell, consistent with the axon
arborizations of an axo-axonic cell (Buhl et al. 1994;
Freund & Buzsáki, 1996), was observed in which the axon
was localized primarily to the border of the SP and SO
and possessed collaterals that took on a chandelier-like
appearance.

Behavioural screening and testing

Behavioural training was only carried out during daytime
hours. Naive mice were used in this study unless otherwise
specified. Each mouse underwent a preliminary screen
according to standard criteria (Crawley & Paylor, 1997),
including home cage behavioural observation, eye twitch,
ear twitch, righting reflex and weight. For the righting
reflex, the mouse was observed as its cage was gently shaken
back and forth to ensure it could maintain balance. The
other reflexes were assessed by gently touching the tip
of the whiskers, corner of each eye and tip of each ear
with a cotton applicator. Mice that failed any of the above
criteria were excluded from further testing. One day before
each behavioural experiment, mice were individually
caged. On the day of testing, each mouse was habituated
to the behavioural room environment 30 min before
commencement of behavioural testing. Every behavioural
experiment utilized an overhead camera and ANY-maze
position tracking software (catalogue no. 60005; Stoelting
Co.) to record activity. The time of day for each experiment
was between 10.00 and 16.00 h and variation in time was
equally distributed among test groups. The experimenter
was blind to genotype during all behavioural experiments.
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After each behavioural experiment, mice were placed back
in their original cages or humanely euthanized.

Open field maze

The open field maze (OFM) was adapted from a previously
described system (Crawley, 2007). Each mouse was placed
in a 40 cm × 40 cm × 35 cm OFM apparatus (catalogue
no. 60100; Stoelting Co.) for 60 min. The number of line
crossings, rearings, average speed and time immobile were
quantified. The same mice used in the OFM were also used
in subsequent novel object recognition (NOR) and Morris
water maze (MWM) tasks.

Non-rewarded spontaneous alternation T-maze

To assess working memory, mice were subjected to
a non-rewarded spontaneous alternation T-maze task
(Deacon & Rawlins, 2006), with the addition of a 30 s intra-
trial delay to assess the effects of memory load, modelled
after Carlén et al. (2012). Each arm of the plexiglass
T-maze measured 30 cm long, 10 cm wide and 20 cm
tall (21st Century Materials, Missoula, MT, USA). The
removable plexiglass doors were 10 cm wide, 20 cm tall
and approximately 2 cm thick. A permanent floor was
omitted so that paper towels lining the bottom could be
changed between each mouse. A total of 28 mice were used
(PV-M1KO, n = 14; WT, n = 14). For each trial, a mouse
was placed in the start arm of the maze and allowed to
explore until it chose a goal arm. It was then immediately
confined to that arm for 15 s using a removable ‘door’
(thin piece of plexiglass). The door and the mouse were
then both removed, and the mouse was placed back into
the start area to begin a new choice trial. This was repeated
five times. The remaining five trials consisted of the same
protocol, except after the mouse was removed from the
goal arm it was placed in an empty cage for 30 s before
being placed back in to the start arm. After each mouse
completed 10 trials, the walls of the maze were wiped
down with 30% ethanol and the paper towel flooring was
changed.

Novel object recognition

The novel object recognition (NOR) test was performed
over the course of 3 days, similar to as previously
described (Bevins & Besheer, 2006). The same apparatus
(40 cm × 40 cm × 35 cm field) was used as in the OFM.
Familiar objects were grey cubes (4.0 cm length); the novel
object was a black sphere (4.3 cm diameter; Stoelting
Co.). On each day of the test, mice were habituated to
the behavioural testing room for 30 min before testing.
On day 1, to reduce the novelty effect of environmental
exploration, each mouse underwent 20 min of habituation
to the OFM. On day 2, two identical grey cube objects

were placed in opposite corners of the apparatus and each
mouse was allowed 20 min of exploration. On day 3,
one of the grey cube objects was replaced with a black
spherical object, and each mouse was returned to the field
to interact with both familiar and novel objects. Time spent
exploring novel and familiar object zones was measured
during the first 5 min of testing. The discrimination
ratio (DR), calculated as the novel object interaction time
divided by the total time interacting with both objects, was
statistically compared to the theoretical mean of 0.5 using
a parametric one-sample t test. Novel object duration on
day 3 could not be attributed to a bias in location pre-
ference because DR was not significantly different from
the theoretical value of 0.5 for both WT and PV-M1KO
mice on day 2 (P > 0.05). The experimenter was absent
from the room for the duration of the trial. The objects
and apparatus were cleaned with 35% ethanol after each
trial. An 8 cm perimeter around the object defined the
object zone.

Morris water maze

The MWM test was used to evaluate reference learning
using spatial cues. The protocol was adapted similarly
to that previously described (Vorhees & Williams, 2006).
Both groups of PV-M1KO (n = 13) and WT (n = 12)
mice underwent a 3 day training period and four trials
per day (each from a random quadrant) for a total of
12 training trials per mouse. The mice were allowed 45 s
to locate a submerged platform placed in a circular tank
containing opaque water. Cues were placed around the
perimeter of the tank to allow the mouse to use distal cues
for navigation to the platform. Mice that did not locate the
platform within 45 s were gently guided to it. After 1 day
of rest (day 4), the probe trial (1 min long) was conducted
on day 5.

Statistical analysis

Statistical analyses were performed with Prism 6 software.
Parametric tests were employed, but in cases where
population data failed the Shapiro–Wilk normality
test, nonparametric tests were employed. For electro-
physiological data, two-tailed paired Student’s t tests or
Wilcoxon signed rank test were used for paired tests;
Student’s t tests and Mann–Whitney test were used for
two-tailed unpaired tests. The Kolmogorov–Smirnov test
was used for the cumulative distribution of data from
sIPSC detection. All electrophysiological data are pre-
sented as means ± S.E.M. (n = number of recordings) with
significance set at P < 0.05. For behavioural experiments,
data are presented as means± S.E.M. (n=number of mice);
Mann–Whitney test, one-way ANOVA, two-way ANOVA
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and Bonferroni’s tests were used to evaluate statistical
comparisons.

Results

Hippocampal CRE-expressing parvalbumin cells
are predominantly comprised of basket and
bistratified cells

PV-CRE mice have been used to visualize and manipulate
PV cell types in the neocortex and HC (Fuchs et al.
2007; Kuhlman & Huang, 2008; Cardin et al. 2009;
Sohal et al. 2009; Murray et al. 2011). Although several
PV-CRE mouse lines allow the expression or deletion
of specific genes from PV cells (Fuchs et al. 2007; Chen
et al. 2010; Wen et al. 2010), neither the anatomical
identity nor the specificity of CRE-recombinase enzyme

expression has been fully established in the HC of these
lines.

We crossed homozygous PV-CRE and Rosa26-EYFP
reporter mice (Srinivas et al. 2001; Madisen et al. 2009),
creating PV-Rosa mice (see Methods). PV-Rosa mice
expressed cytoplasmic EYFP in CRE-expressing cells,
enabling PV cells to be visually targeted in acute HC slices
(Fig. 2). Twenty-five of 43 YFP+ cells were anatomically
identified. Within the CA1 SP (n = 19), we identified
PV-Rosa YFP+ interneurons as perisomatically targeting
BCs (Fig. 2A and C; n = 6), dendrite targeting BiSs (Fig. 2D
and F, n = 13) and a single putative axo-axonic cell (n = 1;
data not shown). All PV-Rosa interneurons possessed a
fast-spiking (FS) phenotype (187.2 ± 12.42 Hz at 700 pA
1 s depolarizing current, n = 30; Fig. 3, Table 1; Zhang
& McBain, 1995; Atzori et al. 2000; Rudy & McBain,
2001; Lien & Jonas, 2003). PV-Rosa BCs located in CA1
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Figure 2. PV-Rosa and Som-Rosa interneurons in the CA1 HC
A, live IR Dodt contrast and 505 nm fluorescent (inset) images of a PV-Rosa interneuron in the hippocampal CA1
SP. B, voltage responses to 1 s long hyperpolarizing or depolarizing current steps from the cell shown in A. C,
morphologically identified PV-Rosa BC as revealed by (red) biocytin labelling of the cell in (A), counterstained with
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SP possessed a prominent apical dendrite and axon that
ramified within SP (Maccaferri et al. 2000; Bartos et al.
2001; Fig. 2C). PV-Rosa BCs and PV-Rosa BiSs had similar
characteristics in that they were located in SP, exhibited a
FS phenotype, were comparable in size, exhibited modest
spike frequency adaptation and displayed high sag ratios
(Figs 2A–F and 3, and Table 1). However, compared
to PV-Rosa BCs, PV-Rosa BiSs possessed a significantly
higher Rin and longer τm than PV-Rosa BCs (Table 1).
Both vertically and horizontally oriented PV-Rosa SO
cells possessed a FS phenotype when depolarized with
a large current step (+700 pA; Fig. 3A, Table 1), but
exhibited a stuttering firing pattern with relatively small
current (Fig. 2H), which was distinct from PV-Rosa BCs
and PV-Rosa BiSs. Morphologically, PV-Rosa SO cells
projected mainly to the SP layer, although the axonal

arborization occasionally included regions bordering SO
and SR (Fig. 2I).

O-LM cells in rats have been observed to be weakly
PV-positive (Klausberger et al. 2003; Klausberger, 2009).
To explore the potential overlap between PV-Rosa SO
cells and O-LM cells further, we also recorded from
SOM-Rosa SO cells (Fig. 2J–L). SOM-Rosa SO cells
exhibited a significantly lower sag ratio, higher Rin and
wider half-width than PV-Rosa SO cells (Figs 2J–L and
3B–F and Table 1), indicating that PV-Rosa SO cells are
electrophysiologically distinct from O-LM cells (Fig. 3L;
Lawrence et al. 2006c). These parameters are comparable
to previous studies indicating that the AP half-width of
O-LM cells is wider than that of SO PV-Rosa cells (BCs
and BiSs; Fig. 3C–F and Table 1; Lien & Jonas, 2003; Gloveli
et al. 2005; Péterfi et al. 2012).
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Figure 3. Active and passive properties
of PV-Rosa and Som-Rosa interneurons
A and B, average AP frequency vs.
+100–700 pA depolarizing current steps
and (B) current–voltage relationship for
(blue) PV-Rosa BCs (n = 6), (red) PV-Rosa
BiSs (n = 13), (green) PV-Rosa SO
interneurons (n = 11), (magenta) SOM-Rosa
interneurons (n = 12) and (grey) a CA1 PC
for reference. B, open symbols denote SS
voltage responses; closed symbols denote
peak responses. Continuous lines denote
slopes through 0 pA and –50 pA or
–100 pA points for peak voltage responses,
illustrating a higher sag ratio in PV-Rosa
than SOM-Rosa interneurons. C, AP
waveforms of the first five APs from a
representative cell from the respective cell
types, showing that PV-Rosa interneuron
subtypes exhibit a narrower AP half-width
than in the SOM-Rosa interneuron or CA1
PC. D, phase plots of dV/dt vs. voltage for
the respective cell types illustrating a larger
dV/dt in PV-Rosa interneurons than the
SOM-Rosa SO interneuron or CA1 PC. E,
population data of AP half-width over the
course of a 1 s long, +300–700 pA current
step from −60 mV for (blue) PV-Rosa BCs
(n = 6), (red) PV-Rosa BiSs (n = 13), (green)
PV-Rosa SOs (n = 11), (magenta) Som-Rosa
interneurons (n = 12) and (grey) CA1 PC
(n = 5). F, scatter plot showing that PV-Rosa
interneuron subtypes have a narrower AP
half-width and higher sag ratio than SOM
Rosa interneurons or CA1 PCs. AP, action
potential; BC, basket cell; BiS, bistratified
cell; PC, pyramidal cell; SO, stratum oriens;
SS, steady state.
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Table 1. Intrinsic membrane properties

PV-Rosa BC BP-Rosa BiS PV-Rosa SO SOM-Rosa YFP+ WT YFP+ Homo CA1 PC PV-Rosa PFC
Property (n = 6) (n = 13) cells (n = 11) (n = 15) PV-M1KO (n = 8) PV-M1KO (n = 9) (n = 8) (n = 7)

Rin (M�) 66.0 ± 8.7∗†‡§¶∗∗†† 100.0 ± 7.3¶∗∗ 104.5 ± 5.6¶∗∗ 272.9 ± 25.7†† 113.8 ± 15.9¶∗∗ 139.6 ± 22.2¶∗∗ 176.8 ± 23.5∗∗ 121.7 ± 13.4
95.6 ± 6.4§¶∗∗††

First AP half-
width (μs)

261 ± 19†§¶∗∗†† 329 ± 20§¶∗∗†† 385 ± 30¶∗∗ 639 ± 33†† 315 ± 18§¶∗∗†† 496 ± 50¶∗∗ 870 ± 32†† 465 ± 33
366 ± 18§¶∗∗††

First AP height
(mV)

45.3 ± 3.8¶ 47.8 ± 3.7¶ 59.0 ± 3.5 52.9 ± 2.0 55.6 ± 2.1¶ 55.5 ± 3.4¶ 73.4 ± 4.6∗∗†† 54.4 ± 2.9
51.4 ± 2.4¶

Cm (pF) 115.8 ± 13.3§†† 98.8 ± 4.0§†† 88.9 ± 6.0 89.2 ± 7.4 84.6 ± 10.2 76.0 ± 10.0¶ 138.7 ± 30.6 75.7 ± 9.4
98.6 ± 4.1§¶††

Sag ratio
(SS/peak)

1.0 ± 0.01¶§‡∗∗†† 1.0 ± 0.01¶§∗∗†† 0.95 ± 0.01∗∗ 0.81 ± 0.03†† 0.88 ± 0.06 0.77 ± 0.07†† 0.92 ± 0.02†† 0.97 ± 0.01
1.0 ± 0.0‡§¶∗∗

τ (ms) 7.1 ± 0.2∗†¶∗∗ 9.3 ± 0.5¶∗∗ 9.1 ± 0.9¶∗∗ 22.9 ± 1.6†† 9.0 ± 1.1¶∗∗ 9.9 ± 1.4¶∗∗ 21.1 ± 2.5†† 8.9 ± 1.0
8.8 ± 0.4¶∗∗

Adaptation
coefficient

0.73 ± 0.10 0.66 ± 0.04¶ 0.77 ± 0.05¶ 0.69 ± 0.04†† 0.56 ± 0.05†† 0.66 ± 0.07 0.47 ± 0.08†† 0.80 ± 0.05
0.7 ± 0.0‡¶

Frequency at
700 pA (Hz)

223.3 ± 42.6§ 163.6 ± 13.4§ 195.4 ± 18.1§ N.A. 152.9 ± 17.8§ 95.4 ± 4.8†† N.A. 184.4 ± 17.2
187.2 ± 12.4§

Ihold (pA) −11.9 ± 42.3 −25.4 ± 10.8¶§ −43.8 ± 21.5 −43.0 ± 12.2 −61.0 ± 23.9¶†† −68.9 ± 19.7¶†† 66.8 ± 17.3∗∗ 29.9 ± 35.1
−30.6 ± 13.5¶

Values are means ± S.E.M. Abbreviations: AP, action potential; BC, basket cell; BiS, bistratified cell; Homo, homozygous; M1KO, M1 muscarinic acetylcholine receptor
knockout; PC, pyramidal cell; PFC, prefrontal cortex; PV, parvalbumin; SO, stratum oriens; SS, steady state; WT, wild-type. ∗P < 0.05 compared to PV-Rosa BiSs.
†P < 0.05 compared to PV-Rosa SO cells. ‡P < 0.05 compared to YFP+ cells in WT PV-M1KO mice. §P < 0.05 compared to YFP+ cells in Homo PV-M1KO mice. ¶P < 0.05
compared to CA1 PCs. ∗∗P < 0.05 compared to SOM-Rosa cells. ††P < 0.05 compared to PFC PV cells.

To examine the extent and specificity of CRE
expression, an anti-PV antibody was used in PV-Rosa
mice (Fig. 4A and Ba). Endogenous YFP (Fig. 4Bb) and
anti-PV (Fig. 4Bc) signals exhibited strong co-localization
(Fig. 4Bd). Of 281 YFP+ cells, 266 (94.7%) were PV+,
while 266 of 333 (79.9%) PV+ cells were YFP+. No
statistically significant differences were observed in the
number of EYFP+, PV+ and colocalized cells across SO,
SP and stratum radiatum layers of HC (P > 0.05; Fig. 4C),
suggesting that CRE was expressed in virtually all PV
cells.

mAChR activation enhances PV cell excitability in
both CA1 HC and PFC

As cholinergic modulation in both HC and prefrontal
cortex (PFC) may be involved in learning and memory
(Croxson et al. 2011; Hasselmo & Sarter, 2011), we
first examined the capacity of mAChR activation to
modulate the cellular excitability of PV cells in HC
(Cea-del Rio et al. 2010) and layer 2/3 PFC (McCormick
& Prince, 1985; Erisir et al. 1999). Table 1 describes
the intrinsic membrane properties of these cells. To iso-
late the postsynaptic contribution of mAChRs to PV
cells, the ionotropic synaptic transmission was blocked
with the AMPA receptor antagonist DNQX (25 μM), the
NMDA receptor antagonist APV (50 μM) and the GABAA

receptor antagonist gabazine (5 μM). We applied a 1 s
long depolarizing current step to PV cells every 20 s
while maintaining the recorded YFP+ cells at −60 mV in
PV-Rosa mice. In representative recordings from CA1 HC
(Fig. 5A) and PFC (Fig. 5D) YFP+ cells, bath application of
10 μM muscarine enhanced intrinsic excitability in both

HC (Fig. 5B and C) and PFC (Fig. 5E and F) PV cells.
After the offset of the current step, mAChR activation
converted the afterhyperpolarization (AHP) to an after-
depolarization (ADP) in the HC (Fig. 5B, inset) but not
PFC (Fig. 5E, inset) PV cell. As a population, mAChR
activation enhanced AP frequency in both HC (from
80.7 ± 6.6 Hz to 103.5 ± 9.4 Hz, P = 0.0007, n = 8;
Fig. 5G, closed circles) and PFC (from 88.5 ± 7.2 Hz to
129.4 ± 12.3 Hz, P = 0.002, n = 7; Fig. 5G, open circles)
PV cells. Notably, muscarine application converted the
AHP to ADP (from −1.7 ± 0.5 mV to 1.7 ± 1.0 mV,
P = 0.016, n = 8; Fig. 5H) and reduced the relative holding
current (Ihold; from 1.2 ± 1.9 pA to −40.9 ± 10.4 pA,
P = 0.0006, n = 8; Fig. 5I) in HC PV cells (open circles).
In contrast, the AHP amplitude (from −1.5 ± 0.3 mV
to −1.9 ± 0.4 mV, P = 0.45, n = 7; Fig. 5H) and
relative Ihold (from 0.6 ± 1.0 pA to −16.3 ± 10.0 pA,
P = 0.14, n = 7; Fig. 5I) were unchanged in PFC
PV cells (closed circles). Therefore, mAChR activation
of PV cells exhibited differences in ADF (Fig. 5H) and
relative Ihold (Fig. 5I) between HC and PFC PV cells
(P < 0.05).

These results suggest subtle differences in underlying
mechanisms by which mAChRs enhance the excitability
of HC and PFC PV cells. Consistent with previous studies
(Cea-del Rio et al. 2010; Chiang et al. 2010), mAChR
activation of HC PV cells is accompanied by a prominent
ADP (Fig. 5H) and change in Ihold (Fig. 5I). However,
these depolarizing features of mAChR modulation were
relatively absent from PFC PV cells (Kawaguchi, 1997;
Pafundo et al. 2013). Although mAChR modulation of
both HC and PFC PV cells may contribute to cognitive
processes, we focused on HC PV cells in subsequent
electrophysiological experiments.
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Muscarinic enhancement of action potential
frequency in hippocampal CA1 parvalbumin
interneurons occurs through direct activation of M1

muscarinic acetylcholine receptors

To investigate the effect of mAChR activation on PV cell
firing frequency under more physiological conditions, we
employed non-invasive loose patch recordings from YFP+
cells located in the CA1 pyramidal cell layer of PV-Rosa
mice (Fig. 6). In ACSF conditions, 10 of 10 PV cells fired
spontaneously (5.7 ± 2.0 Hz). After bath application of
10 μM muscarine, AP frequency was profoundly increased
(to 20.9 ± 4.0 Hz; P = 0.002, n = 10; Fig. 6A, E and
F). To examine whether mAChR activation increased PV
cell firing through enhanced glutamatergic excitation on

to PV cells, we blocked ionotropic glutamatergic trans-
mission with the AMPA and NMDA receptor antagonists
DNQX and APV, respectively. Under these conditions, the
baseline spontaneous firing frequency was similar to ACSF
conditions (P = 0.24, Mann–Whitney U test, U(15) = 47).
The muscarine application increased PV cell AP frequency
(from 8.8 ± 2.4 Hz in control to 17.2 ± 4.6 Hz in
muscarine, P = 0.033, n = 7; Fig. 6B, E and F) to the same
extent as in ACSF conditions (P = 0.47). Preincubation
with the mAChR antagonist atropine reduced the fraction
of PV cells that exhibited spontaneous firing (four of nine
were silent) and blocked the mAChR-induced increase in
AP frequency (from 5.8 ± 2.7 Hz to 5.6 ± 2.3 Hz, P = 1.0,
n = 9; Fig. 6C, E and F).
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compared to SO (9.1 ± 2.6; Mann–Whitney test, U18 = 18, P = 0.0136, n = 10) or SR (1.0 ± 0.33; Mann–Whitney
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To examine whether the postsynaptic activation of
M1 mAChRs on PV cells mediated the mAChR-induced
increase in PV cell firing, we eliminated M1 mAChRs
specifically from PV cells by generating a mouse line
that lacked M1 mAChRs in PV cells (PV-M1KO mice;
see Methods). Stereotaxic injection of a floxed YFP AAV
(Sohal et al. 2009) into the CA1 HC of PV-M1KO mice,
which drove expression of YFP in PV cells, enabled us to
visualize PV cells in PV-M1KO mice. Similar to atropine
conditions, a comparable fraction of PV cells (three of

seven) did not exhibit spontaneous firing in control
conditions in PV-M1KO mice (Fig. 6Dc). In addition,
mAChR-induced enhancement of AP firing frequency in
PV cells was eliminated in PV-M1KO mice (Fig. 6D–F;
from 4.6 ± 4.1 Hz to 3.8 ± 3.5 Hz, n = 7, P = 0.25).

Consistent with a reduction in mAChR-induced
depolarization, the mAChR-induced decrease in AP
amplitude (ACSF, 83.0 ± 6.5%, P = 0.034, n = 8, Fig. 7A;
DNQX+APV, 81.3 ± 2.8%, P = 0.001, n = 6, Fig. 7B),
was eliminated in the presence of atropine (106.6 ± 3.5%,
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P = 0.20, n = 3, Fig. 7C) and in PV-M1KO mice
(103.5 ± 6.6%, P = 0.63, n = 4; Fig. 7D). As AP amplitudes
in extracellular recordings are related to the first derivative
of intracellularly recorded APs (Henze et al. 2000), we
determined the relationship between the initial membrane
potential and first derivative of APs from 1 s depolarizing
current induced AP in whole cell recordings (Fig. 7E–H),
which probably reflects the availability of functional
sodium channels at a given membrane potential. Through
linear regression from the reduction in extracellular AP

amplitude in loose patch mode (n = 6; Fig. 7I), mAChR
activation was associated with a depolarization in ACSF
(4.4 ± 1.7 mV, P = 0.034) and DNQX/APV conditions
(4.8 ± 0.7 mV, P = 0.001) but not atropine (1.7 ± 0.9 mV,
P = 0.20) or in the PV-M1KO mouse (0.9 ± 1.7 mV,
P = 0.63; Fig. 7J). Collectively, these data indicate that
mAChR-induced modulation of AP frequency occurs
through direct activation of M1 mAChRs on PV cells.
Moreover, as indicated by the mAChR-induced reduction
in AP amplitude, muscarine depolarized PV cells.
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Genetic deletion of M1 muscarinic acetylcholine
receptors from hippocampal CA1 parvalbumin
interneurons diminishes cholinergic excitation of
parvalbumin cells

To investigate postsynaptic mechanisms further by which
direct mAChR activation enhanced the firing frequency
of CA1 PV cells, we employed whole cell patch clamp
recordings. As M1 mAChRs are coupled to Gq, we intra-
cellularly loaded PV cells with GDP-beta-S to test whether
postsynaptic disruption of G-protein signalling could
block the mAChR-induced enhancement in intrinsic
excitability. Using a similar experimental design to that in
Fig. 5, we found that PV cells preloaded with GDP-beta-S
(15 min) prevented mAChR-induced alterations in
intrinsic excitability (from 79.6 ± 12.7 to 65.8 ± 12.6 Hz,
P=0.12, n=4), further implicating postsynaptic mAChRs
in the cholinergic neuromodulation of CA1 PV cells. In
addition, these results indicate that the mAChR-induced
increase in PV firing frequency could not be explained by
an indirect, network-induced activation of postsynaptic
Gq-coupled metabotropic glutamate receptors 1 or 5
(McBain et al. 1994; van Hooft et al. 2000).

To examine the specific contribution of M1 mAChRs,
we visualized the PV cells with a floxed YFP AAV and
obtained whole cell recordings from WT (see Methods)
and PV-M1KO mice (Fig. 8) using an experimental design
similar to that used in PV-Rosa mice (Fig. 5). In the pre-
sence of DNQX (25 μM), APV (50 μM) and gabazine
(5 μM), we applied a 1 s long depolarizing current step to
PV cells every 20 s while maintaining the cells at −60 mV
in WT or PV-M1KO mice. In a representative recording
from a WT mouse, bath application of 10 μM muscarine
increased AP frequency from 69 Hz (Fig. 8A and B, blue)
to 83 Hz (Fig. 8A and B, red). Moreover, after the offset of
the current step, muscarine converted the AHP (Fig. 8A,
inset, blue) to a small ADP (Fig. 8A, inset, red). In contrast,
in a PV-M1KO mouse, mAChR activation did not increase
AP frequency (from 63 Hz to 61 Hz) or convert the AHP
to an ADP (Fig. 8C and D, red). As a population, mAChR
activation enhanced AP frequency in both WT (from
70.1 ± 6.7 Hz to 97.2 ± 6.2 Hz, P = 0.008, n = 8) and
PV-M1KO mice (from 77.6 ± 4.7 Hz to 81.9 ± 4.9 Hz,
P = 0.0009, n = 9; Fig. 8E), but the mAChR-induced
increase in AP frequency was significantly larger in WT
than PV-M1KO mice (P < 0.001, Fig. 8E). Although
mAChR activation reduced the AHP in both WT (from
−1.8 ± 0.3 mV to 0.9 ± 1.1 mV, P = 0.0078, n = 8) and
PV-M1KO mice (from −5.2 ± 0.7 mV to −1.8 ± 1.0 mV,
P = 0.0039, n = 9), only WT mice generated an ADP
(Fig. 8F). Consistent with that observed in a global M1 KO
mouse (Cea-del Rio et al. 2010), the AHP under control
conditions was larger in PV-M1KO mice (−5.2 ± 0.7 mV,
n = 9) than in WT mice (−1.8 ± 0.3, n = 9, P = 0.0007;
Fig. 8F, blue) at comparable AP frequencies (P = 0.37).

Upon mAChR activation, a larger AHP was also observed
in PV-M1KO mice (P < 0.05) than in WT mice (Fig. 8F,
red). Rin was unaltered during muscarine application
(red) in both WT (from 94.4 ± 13.8 to 99.6 ± 16.2 M�,
p = 0.25, n = 8; Fig. 8G, closed symbols) and PV-M1

KO mice (from 115.9 ± 15.5 to 118.5 ± 16.7 M�,
p = 0.50, n = 9; Fig. 8G, open symbols). Activation of M1

mAChRs depolarized PV cells, as measured by the change
in Ihold. Although the initial Ihold of PV cells in WT and
PV-M1KO mice did not differ under control conditions
(−64.9 ± 23.2 pA vs. −68.6 ± 20.0 pA, P = 0.17), mAChR
activation induced a change in Ihold in PV cells from WT
mice (−91.1 ± 25.8 pA, P = 0.0078, n = 8) but not in
PV cells from PV-M1KO mice (−10.5 ± 8.4 pA, P = 0.20,
n = 9; Fig. 8H). Thus, PV cells from WT and PV-M1KO
mice differed in the capacity to generate mAChR-induced
changes in Ihold (P = 0.0016).

M1 mAChR activation altered the input–output
relationship of PV cells (Fig. 8I). M1 mAChR activation
enhanced AP frequency in WT (300–700 pA, P < 0.05,
n = 6; Fig. 8I). In contrast, the mAChR-induced increase
in AP frequency was eliminated in PV-M1KO mice
(100–700 pA, P > 0.05, n = 7; Fig. 8J, blue vs. red) and
the dynamic range of AP firing was reduced relative to WT
mice (P < 0.05 at 600–700 pA; Fig. 8J, grey vs. blue). The
current–voltage relationship, as revealed by −200, −100
and 100 pA current steps from−60 mV (part of the current
step protocol displayed in Fig. 8I and J), also indicated
no significant difference (P > 0.05) between control and
muscarine in both WT and PV-M1KO mice. No differences
in AP threshold (from −35.3 ± 2.5 to −35.9 ± 2.8 mV,
P = 0.20, n = 8) or τm (from 10.2 ± 0.7 to 11.0 ± 0.9 ms,
P = 0.31, n = 8) were observed upon mAChR activation
in HC PV cells. Finally, differences in mAChR activation
between WT and PV-M1KO mice could not be explained
by differences in the subtype of interneuron recorded.
Similar proportions of HC BCs, BiSs and SO PV cells were
encountered in WT and PV-M1KO mice and the effects of
mAChR activation were similar between these PV inter-
neuron subclasses.

The apparent discrepancy in M1 mAChR mRNA trans-
cript expression between single cell PCR (Cea-del Rio et al.
2010) and in situ hybridization (Yamasaki et al. 2010)
in PV cells led us to compare the protein expression of
M1 mAChRs in PV cells from WT and PV-M1KO mice.
Using a floxed YFP AAV to label PV cells, we examined
M1 mAChR localization in CA1 PV cells from WT and
PV-M1KO mice (Fig. 9). As M1 mAChRs are trafficked
from intracellular pools to the cell surface, we examined
intracellular expression of M1 mAChRs in PV-M1KO and
WT mice in somatodendritic regions, normalizing M1

mAChR labelling to the surrounding CA1 SP (Fig. 9).
M1 mAChR expression was significantly higher in WT
(n = 6) than PV-M1KO (n = 5) mice both at somatic
(0.25 ± 0.03 vs. 0.13 ± 0.02, P = 0.004; Fig. 9G–I) and
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dendritic (0.39 ± 0.08 vs. 0.16 ± 0.03, P = 0.03; Fig. 9J–L)
locations. M1 mAChR expression was also observed in PV
cells from CA3, dentate and cortex (data not shown).

mAChR-induced neuromodulation (Fig. 8) and M1

mAChR expression (Fig. 9) were greatly diminished in

PV-M1KO mice. Despite the selective elimination of M1

mAChRs from PV cells, we observed no overt deficits in
other markers for cholinergic transmission. Cholinergic
neuromodulation remained intact in HC principal cells,
as indicated by the persistence of M1 mAChR labelling
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Figure 8. M1 mAChRs control the cellular excitability of hippocampal CA1 PV cells
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representative PV cell under (blue) control and (red) 10 μM muscarine conditions (APs truncated for display). Inset,
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Control (blue) and muscarine (red) conditions are indicated. ∗ in I denotes P < 0.05 between control conditions
in (grey) WT and (blue) PV-M1KO mice (unpaired t test, P < 0.05 for 600–700 pA). PV cells were visualized with
a floxed YFP AAV in both WT and PV-M1KO mice. ADF, afterdeflection; AP, action potential; M1KO, M1 mAChR
knockout; mAChR, muscarinic acetylcholine receptor; PV, parvalbumin; WT, wild-type.
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Figure 9. Cytoplasmic M1 mAChR labelling in hippocampal PV cells at somatic and dendritic
compartments from WT vs. PV-M1KO mice
M1 mAChR intensity (red) was measured in 0.6 μm thick sections through the cell body and dendrite of PV cells
(white box for cell body; dotted box for dendrite in C and F) labelled with floxed YFP AAV (green) in (A–C) WT and
(D–F) PV-M1KO mice. G, somatic M1 mAChR intensity was measured in the region (white box in C) containing
cytosolic YFP. M1 mAChR intensity was normalized relative to the maximum intensity in the neighbouring CA1
stratum pyramidale. H, similar analysis as in (G) but in a PV-M1KO mouse. Note the relative absence of M1

mAChR intensity from the cytosol. I, population data showing significant somatic M1 mAChR intensity of PV cells
between WT (n = 6) cells and PV-M1KO (n = 5; P = 0.0043, Mann–Whitney test, U9 = 0). J and K, similar
analysis as in (G) and (H) but measured from dendrites of PV cells of WT and PV-M1KO. L, population data
showing significant dendritic M1 mAChR intensity of PV cells between WT (n = 6) cells and PV-M1KO (n = 5;
P = 0.03, Mann–Whitney test, U9 = 3). M1KO, M1 mAChR knockout; mAChR, muscarinic acetylcholine receptor;
PV, parvalbumin; WT, wild-type.
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in the CA1 pyramidal cell layer (Fig. 9E), cholinergically
induced plateau potentials in CA1 pyramidal cells (Fraser
& MacVicar, 1996) and vesicular ACh transporter labelling
of cholinergic fibres in the HC (data not shown).

In summary, the combination of electrophysiological
and immunocytochemical evidence demonstrates that
direct postsynaptic M1 mAChR activation is a pre-
dominant mechanism by which CA1 PV cells undergo
muscarinic cholinergic neuromodulation.

Muscarinic activation of parvalbumin cells enhances
GABAergic transmission

Cholinergic agonists increase the amplitude and frequency
of sIPSCs in CA1 pyramidal neurons (Pitler & Alger, 1992;
Behrends & Bruggencate, 1993), raising the possibility
that activation of M1 mAChRs on PV cells (Figs 5, 6
and 8) contributes to the mAChR-induced potentiation

of GABAergic transmission. As reported previously that
the cholinergic agonist carbachol increases sIPSCs and
network oscillations in HC (Pitler & Alger, 1992; Williams
& Kauer, 1997; Fisahn et al. 1998; Reich et al. 2005),
we used carbachol (5 μM) to examine mAChR-induced
sIPSCs in CA1 pyramidal cells from WT and PV-M1KO
mice (Fig. 10). In the presence of DNQX and APV, in
WT (Fig. 10A, C and D, blue; n = 9) and PV-M1KO
(Fig. 10B–D, blue; n = 8) mice, baseline sIPSC frequency
(P = 0.54) and amplitude (P = 0.16) were not significantly
different. We then examined the capacity of mAChR
activation to enhance sIPSCs in WT and PV-M1KO mice.
In WT mice, carbachol increased both IPSC amplitude
(from−37.3±3.8 pA to−72.7±11.4 pA, P=0.033, n=7;
Fig. 10A and C) and IPSC frequency (from 12.5 ± 1.1 Hz
to 16.8 ± 1.7 Hz, P = 0.0018; Fig. 10A and D). In
PV-M1KO mice, IPSC amplitude (from −33.6 ± 7.2 pA
to −56.0 ± 14.1 pA, P = 0.031, n = 6; Fig. 10B and C) and
frequency (from 9.7 ± 2.4 Hz to 16.4 ± 2.3 Hz, P = 0.031;
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Figure 10. Carbachol evokes sIPSCs from both WT and PV-M1KO mice
Representative response to carbachol (5 μM) application in (A) WT mice and (B) PV-M1KO mice (raw traces
displayed). Population data showing the change of sIPSC in (C) amplitude and (D) frequency in response to
carbachol application in WT mice (paired t test, t6 = 2.75, P = 0.0328; t6 = 5.3, P = 0.0018, n = 7, respectively),
and in PV-M1KO mice (Wilcoxon matched pairs signed rank test, W5 = 21, P = 0.0313; W5 = 21, P = 0.0313,
n = 6, respectively). M1KO, M1 muscarinic acetylcholine receptor knockout; PV, parvalbumin; sIPSC, spontaneous
inhibitory postsynaptic current; WT, wild-type.
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Fig. 10B and D) were also increased following carbachol
application.

The cholinergic enhancement of sIPSCs in CA1
pyramidal cells in PV-M1KO mice was probably the result
of the mAChR-induced activation of non-PV HC inter-
neuron subtypes, such as cannabinoid-sensitive CCK+
interneurons (Reich et al. 2005; Cea-del Rio et al. 2010,
2012; Nagode et al. 2011, 2014) and SOM-positive O-LM
cells (Lawrence et al. 2006a,c; Lawrence, 2010). Moreover,
mAChR-induced inhibition of GABA release (Pitler &
Alger, 1992) from the activation of presynaptic M2

mAChRs on PV cells (Hájos et al. 1998; Hefft et al. 2002;
Seeger et al. 2004; Freund & Katona, 2007; Szabó et al.
2010) would be expected to reduce the magnitude and
frequency of sIPSCs from PV cells.

To circumvent the confounding influence of mAChRs
expressed on non-PV interneuron subtypes, as well as the
activation of presynaptic M2 mAChRs on PV cells, we
employed a recently developed technology (Armbruster
et al. 2007) to activate postsynaptic mAChRs expressed
only on PV cells. By expressing an evolved M3-like
mAChR, Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs; Alexander et al. 2009) in PV
neurons (Figs 11A–C and 12A–F), we examined the impact
of DREADD activation of PV cells on cellular excitability
and IPSCs in CA1 pyramidal cells.

Ten days after injection of floxed hM3Dq-mCherry AAV
into the CA1 region of PV-CRE mice, we performed
whole cell recordings to examine DREADD-induced
changes in PV cell excitability. In a representative recorded
PV cell (Fig. 11A and B), hM3Dq-mCherry expression
appeared to be restricted to the somatodendritic domain
of the biocytin-filled cell, as suggested by the (white)
co-localization of (green) hM3Dq-mCherry and (red)
biocytin signals (Fig. 11C). Activation of hM3Dq with
the DREADD-specific agonist CNO (0.5 μM) was similar
to mAChR activation with muscarine (Fig. 11D and E). As
a population, hM3Dq activation increased AP frequency
(from 80.2 ± 10.7 to 144.7 ± 29.9 Hz, P = 0.031, n = 6),
converted AHP to ADP (from −1.1 ± 0.4 to 1.5 ± 1.0 mV,
P = 0.031, n = 6; Fig. 11H) and depolarized PV cells (Ihold:
from −97.6 ± 19.0 to −188.3 ± 35.0 pA, P = 0.016, n = 7).
There were no significant differences between hM3Dq
(n = 6) and mAChR (n = 8) activation on AP frequency
(normalized increase relative to baseline: 1.78 ± 0.23 vs.
1.47 ± 0.19, P = 0.18; Fig. 11F and G), ADF (1.5 ± 1.0 vs.
1.9 ± 1.1 mV, P = 0.72; Fig. 11H and I), or change in Ihold

(−90.7 ± 41.0 vs. −91.1 ± 25.8, P = 0.60; Fig. 11J and K),
respectively.

Having established that CNO excited hM3Dq (Fig. 11)
expressed on PV cells (Fig. 12A–F), sIPSCs were monitored
in CA1 pyramidal cells before and after bath application
of CNO (Fig. 12G and H). CNO increased both sIPSC
frequency (from 6.9 ± 1.2 Hz to 10.6 ± 1.7 Hz;
P = 0.0008, n = 9; Fig. 12I and K) and amplitude

(from 30.8 ± 5.3 pA to 34.7 ± 6.2 pA, P = 0.0315,
n = 9; Fig. 12J and L). To investigate the potential
origin of IPSCs evoked by DREADD stimulation, we
conducted an electrotonic analysis of IPSC waveform by
examining the distribution of IPSC rise times in control
and CNO conditions. Consistent with an enhancement
in GABAergic inhibition originating from electrotonically
close somatodendritic locations, CNO increased the
frequency of fast rising (0.38–0.42 ms; P < 0.05), but not
slower rising (0.42–0.90 ms; P > 0.05) sIPSCs (Fig. 12N).
However, there was no significant difference in sIPSC
waveform between treatment groups (P = 0.67; Fig. 12M).
Taken together, we conclude that direct muscarinic
excitation of PV cells increases the frequency of GABAergic
IPSCs.

The role of M1 muscarinic acetylcholine receptors in
parvalbumin cells during locomotor activity and
learning

We have established that M1 mAChRs are expressed
on HC PV cells and account almost completely
for mAChR-induced alterations in PV excitability.
Furthermore, mAChR-induced excitation of PV cells
induced IPSCs in CA1 pyramidal cells. Next, using WT and
PV-M1KO mice, we determined the role of M1 mAChRs
on PV cells in a variety of behavioural tasks that have
been shown to be sensitive to PV neuronal activity and/or
cholinergic neuromodulation.

We first examined locomotor activity. Hyperactivity
in global M1 KO mice (Miyakawa et al. 2001; Gerber
et al. 2001) has been suggested to occur through
reduced GABAergic inhibition on to substantia nigral
dopamininergic neurons (Gerber et al. 2001). As PV
cells provide powerful feedforward inhibition to striatal
projection neurons (Tepper et al. 2010), we examined
locomotion of WT (Fig. 13A) and PV-M1KO (Fig. 13B
and C) mice in an OFM. As a population, we found that
deletion of M1 mAChRs from PV cells did not significantly
alter locomotor activity, as measured by line crossings
(Fig. 13D), rearings (Fig. 13E), average speed (Fig. 13F)
and time immobile (Fig. 13G; P > 0.05). We therefore
conclude that M1 mAChRs on PV cells do not play a major
role in normal locomotion.

Next, we examined the role of M1 mAChRs on PV
cells in memory tasks. Global M1 KO mice exhibit a
deficit in working memory but normal spatial memory
(Miyakawa et al. 2001; Anagnostaras et al. 2003). A similar
dissociation between these two types of memory occurs
with the disruption of PV cell function (Murray et al.
2011; Carlén et al. 2012). NMDA receptor ablation in PV
cells also impairs object recognition memory (Korotkova
et al. 2010). Therefore, we investigated the performance
of WT and PV-M1KO mice in several learning paradigms.
In a T-maze spontaneous alternation task, which is a test
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of working memory, there was no significant difference
in alternation rates between PV-M1KO mice and WT
mice (F(1,52) = 0.99; P = 0.32; Fig. 14A and B). However,
there was a significant interaction in time (F(1,52) = 10.24;
P = 0.0023). A Tukey’s post hoc multiple comparisons test
revealed that 1 s and 30 s intratrial periods were different
within PV-M1KO (P = 0.04) but not within WT mice

(P = 0.29), suggestive that PV-M1KO mice exhibited a
mild delay-dependent working memory deficit. Therefore,
our results are consistent with the involvement of M1

mAChR activation of PV cells in normal working memory.
In the NOR task, a two-way ANOVA on WT and

PV-M1KO groups indicated a significant interaction in
object time (P = 0.0018). WT mice spent more time with
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Figure 11. hM3Dq-induced changes in the cellular excitability of hippocampal CA1 PV cells
A and B, live IR Dodt contrast and 590 nm fluorescent image of a hM3Dq-mCherry expressing PV cell in the
hippocampal CA1 stratum pyramidale. The mCherry signal was pseudocoloured green to distinguish between the
633 nm biocytin signal in (C). C, morphologically identified PV basket cell as revealed by (red) biocytin labelling of
the cell in (A), with white labelling indicated by white arrows showing hM3Dq-mCherry in somatodendritic regions
only. D, whole cell voltage responses to the introduction of a 1 s long +200 pA current step from −60 mV in a
representative PV cell under (blue) control and (red) 500 nM CNO conditions. E, expanded region in (D) displaying
muscarinic acetylcholine receptor-induced changes in afterhyperpolarization during offset of the 200 pA current
step. Population data from hM3Dq-expressing PV cells summarizing the time course of (F) change in action
potential frequency (normalized to the average action potential frequency in a 1 min region before wash-in of
muscarine), (H) ADF, (J) relative change in Ihold from (blue) control to (red; at time 0) CNO conditions. ∗Times
where significant differences (P < 0.05) were detected between muscarine activation of PV cell WT (grey, n = 8)
and CNO activation of hM3Dq-mCherry expressing PV cells in PV-CRE mice (coloured, n = 7) in (E–G) (multiple
t test). G, I and K, bar graph showing no significant difference between muscarine-induced and CNO-induced
effects on intrinsic excitability, ADF and Ihold (Mann–Whitney test). ADF, afterdeflection; CNO, clozapine N-oxide;
PV, parvalbumin; WT, wild-type.
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the novel (14.4 ± 2.4 s) than familiar object (6.8 ± 1.5 s,
P = 0.0173; Fig. 14C and E). In contrast, time spent with
novel (14.6 ± 3.2 s) and familiar objects (9.2 ± 2.1 s) was
not significantly different in PV-M1KO mice (P = 0.093,
n = 13; Fig. 14D and E). Consistent with these results,
WT (0.69 ± 0.04, P = 0.0011, n = 12) but not PV-M1KO
(0.56 ± 0.07, P = 0.43, n = 13) mice exhibited a DR
that was significantly above the theoretical mean of 0.5.
Therefore, our results reveal that M1 mAChRs on PV cells
are important in recognition memory.

Finally, we assessed spatial reference memory in the
MWM (Vorhees & Williams, 2006). Both WT (n = 12;
Fig. 14F, G and J) and PV-M1KO mice (n = 13; Fig. 14H–J)

exhibited a significant reduction in latency to locate the
platform on day 3 compared to day 1 (P < 0.05; Fig. 14J),
indicating that spatial learning was intact. Furthermore,
the two groups did not differ in latencies to locate the
platform within each day of training (P > 0.05; Fig. 14J) or
during the probe trial (P = 0.60, U23 = 68; Mann–Whitney
test).

Taken together, consistent with findings in global M1 KO
mice (Miyakawa et al. 2001; Anagnostaras et al. 2003), and
mice in which PV function has been disrupted (Murray
et al. 2011), our results suggest that M1 mAChRs on PV
cells are important for working and recognition memory
but not reference memory.
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Figure 13. PV-M1KO mice exhibit no locomotor deficits in the open field maze
Representative track plots of a (A) WT, (B) heterozygous and (C) PV-M1KO mouse during the first 5 min in the open
field maze. (D) line crossings, (E) rearings, (F) speed and (G) time immobile over the course of 60 min, binned in
5 min averages ± S.E.M. for (black rectangles) WT (n = 12) and (red circles) homozygous PV-M1KO (n = 13) mice.
No significant difference between mouse lines was observed at any of the time intervals (P > 0.05, Mann–Whitney
test). M1KO, M1 muscarinic acetylcholine receptor knockout; PV, parvalbumin; WT, wild-type.
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Discussion

In the present study, we eliminated M1 mAChRs from
PV interneurons using transgenic technology and gained
insights into the role of M1 mAChRs on PV cells in the
regulation of cellular excitability in vitro and in vivo.

Cholinergic modulation of parvalbumin interneuron
subtypes through M1 muscarinic acetylcholine
receptors

Unlike previous studies that utilize PV-CRE mice to
investigate PV circuit function and behaviour (Fuchs
et al. 2007; Sohal et al. 2009; Chen et al. 2010; Murray
et al. 2011), we anatomically identified specific PV inter-
neuron subtypes that expressed CRE recombinase. Using

PV-Rosa mice, we found that CRE-expressing cells in
CA1 were comprised mainly of PV BCs and PV BiSs
(Fig. 2), consistent with known PV interneuron subtypes
(Freund & Buzsáki, 1996; Klausberger & Somogyi, 2008).
FS PV interneurons are often associated with perisomatic
inhibition, attributable to the enrichment of PV cells in SP.
However, by expressing EYFP at a high level in PV cells,
we discovered that BiSs were also a prevalent PV cell type
in CA1 SP. Therefore, in addition to PV BCs that provide
perisomatic inhibition, PV BiSs probably play a major
role in HC PV circuitry and corresponding modulation
of HC function (Tukker et al. 2007). Despite this under-
reported abundance of PV BiSs, IPSCs evoked from PV
cells rise rapidly (20–80% rise time <0.5 ms, Fig. 12),
suggesting that IPSCs originating from BiSs and BCs
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Figure 14. Performance of PV-M1KO mice in
T-maze, novel object recognition and Morris
water maze tasks
A, examples of correct and incorrect choices in the
spontaneous alternation T-maze. B, in a T-maze
spontaneous alternation task there was no
significant difference in alternation rates between
PV-M1KO mice and WT mice (F(1,52) = 0.99;
P = 0.32). However, there was a significant
interaction in time (F(1,52) = 10.24; P = 0.0023).
Representative track plots of a (C) WT mouse and
(D) PV-M1KO mouse during the 5 min test novel
object recognition task. E, as a population, WT
(n = 12) but not PV-M1KO (n = 13) mice spent
significantly more time with the novel than
familiar object (object time: F(1,23) = 12.44,
P = 0.0018, two-way ANOVA, Bonferroni multiple
comparisons test). Representative track plots are
shown for a WT mouse on (F) training day 1 and
(G) training day 3 in Morris water maze; (H) and (I)
are corresponding plots for a PV-M1KO mouse. J,
population data indicate that both WT (P < 0.05,
n = 12) and PV-M1KO (P > 0.05, n = 13) mice
exhibited a significant reduction in latency to
escape between days 1 and 3 (time effect:
F(2,69) = 6.64, P = 0.0023, two-way ANOVA,
Bonferroni multiple comparisons test). No
significant differences were found on days 1–3
between WT and PV-M1KO mice (genotype
effect: F(1,69) = 1.15, P = 0.29, two-way ANOVA,
Bonferroni multiple comparisons test). M1KO, M1

muscarinic acetylcholine receptor knockout; PV,
parvalbumin; WT, wild-type.
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undergo a similar degree of dendritic filtering (Maccaferri
et al. 2000). Therefore, loss of M1 mAChRs from BiSs and
BCs (and to a lesser extent axo-axonic cells) may contribute
to the behavioural differences observed in PV-M1KO mice.

The activation of M1 mAChRs on HC PV cells increases
firing frequency (Figs 6 and 8), increases holding current
at −60 mV and transforms the AHP to an ADP (Fig. 8). A
similar increase in excitability is observed in PFC HC cells
but does not feature a prominent depolarizing component
(Fig. 5). In PV-M1KO mice, excitatory effects of muscarine
(Figs 6 and 8) and M1 mAChR expression (Fig. 9)
are almost eliminated in HC PV cells. Under control
conditions, HC PV cells from PV-M1KO mice exhibited a
larger AHP (Fig. 8F) than in WT mice, similar to PV BCs
from global M1 KO mice (Cea-del Rio et al. 2010). PV cells
from PV-M1KO mice also exhibited a reduced number of
PV cells that fired spontaneously (Fig. 6Dc) and altered the
dynamic AP frequency range (Fig. 8J). As PV cells express
Kv7.2 and Kv7.3 channels (Cooper et al. 2001; Geiger
et al. 2006), M1 mAChR activation probably inhibits a
Kv7/KCNQ/M current (Lawrence et al. 2006b, c; but see
Rouse et al. 2000). Also consistent with that observed in
global M1 KO mice (Cea-del Rio et al. 2010), M1 mAChR
activation induced an inward current in PV cells from WT
but not PV-M1KO mice (Fig. 8H). Therefore, M1 mAChR
modulation of PV BC and BiS cells probably involves the
inhibition of Kv7/KCNQ/M and AHP conductances and
the activation of a cationic conductance (Lawrence et al.
2006c). It is possible that M-current inhibition is offset by
a cationic conductance to yield no net change in cellular
conductance (Fig. 8G). Interestingly, the activation of M3

mAChRs (hM3Dq-mCherry) in PV cells induced similar
functional responses to that observed with endogenous
M1 mAChRs (Fig. 11), suggesting that M1 and hM3Dq
receptors must be similar enough in localization and
probably couple to the same effectors. In contrast, in CCK
BCs, M3 and M1 mAChRs are not interchangeable because
the elimination of M1 or M3 mAChRs are associated
distinct mAChR-induced effects on excitability (Cea-del
Rio et al. 2010).

M1 mAChRs are also expressed on PV cells in cortical
regions (Disney & Aoki, 2008) and undergo muscarinic
modulation (Pafundo et al. 2013 but see Kawaguchi, 1997).
Although mAChR modulation of the intrinsic excitability
of PV cells appears to be a common cellular mechanism,
our study is in accordance with previous studies that HC
PV cells exhibit a more prominent mAChR-mediated ADP
(Cea-del Rio et al. 2010) and postsynaptic depolarization
(Cea-del Rio et al. 2010; Chiang et al. 2010; Szabó et al.
2010) than cortical PV cells (Kawaguchi, 1997; Gulledge
et al. 2007; Pafundo et al. 2013). Such differences in
the level of direct mAChR-induced depolarizing drive
suggest that HC PV cells are less reliant on glutamatergic
synaptic drive than PFC PV cells to become engaged
during network oscillations (Pafundo et al. 2013). Finally,

similarly to CCK BCs (Cea-del Rio et al. 2010) and
CCK Schaffer collateral-associated cells (Widmer et al.
2006; Cea-del Rio et al. 2011; Bell et al. 2013), a
mild mAChR-induced hyperpolarizing holding current
preceded depolarization in PFC PV BCs (Fig. 5I).
However, Ihold was not significantly different than control
conditions. Moreover, in contrast to CCK interneurons
(Cea-del Rio et al. 2010, 2011), AHPs of PFC PV BCs
were resistant to mAChR-induced modulation (Fig. 5H).
Therefore, PV interneurons may exhibit some overlapping
features of mAChR-induced modulation, but the specific
underlying mechanisms vary on a subtype-specific basis,
limiting the extent that mAChR-induced modulation of
PV cells can be generalized.

Do synaptically activated M1 muscarinic acetylcholine
receptors on parvalbumin interneurons contribute to
network dynamics?

Though many interneuron subtypes participate in
cholinergically dependent oscillations (Buzsáki, 2002),
the mechanisms by which ACh modulates the synchrony
of specific HC and PFC circuits remain poorly under-
stood. PV interneurons participate in theta oscillations
(Klausberger & Somogyi, 2008) and are thought to be
essential for the generation of gamma rhythms (Bartos
et al. 2007; Buzsáki & Wang, 2012). HC PV BCs receive four
to five times higher glutamatergic input than principal cells
(Gulyás et al. 1999; Glickfeld & Scanziani, 2006), providing
a mechanism for generating gamma activity through
glutamatergic excitation of PV interneurons (pyramidal
cell-interneuron gamma or PING; Bartos et al. 2007; Fuchs
et al. 2007). Evidence for a PING mechanism exists, for
example, in the CA3 HC, where perisomatically generated
IPSCs play a key role in the generation and maintenance of
cholinergically induced oscillations (Atallah & Scanziani,
2009; Oren et al. 2010). However, carbachol increases
the frequency of spontaneous inhibitory events in the
absence of glutamatergic transmission, implying that
HC interneurons are also directly excited by mAChR
activation (Pitler & Alger, 1992; Behrends & Bruggencate,
1993). Optogenetic approaches can also excite PV inter-
neurons directly to generate interneuron gamma (Cardin
et al. 2009; Sohal et al. 2009), providing a mechanism
by which the direct modulation of PV excitability in
vitro and in vivo can contribute to the generation of
neuronal rhythms. In this study, we find that mAChR
activation of HC CA1 PV cells produces an increase
in AP frequency regardless of whether glutamatergic
excitation is intact, and that the mAChR-induced increase
in AP frequency is eliminated in M1 mAChR-lacking
PV cells (Fig. 6D). This observation suggests that direct
M1-mediated depolarization of PV cells can enhance
inhibitory synaptic transmission and enhance oscillatory
power through the recruitment of PV cells. Consistent
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with the capacity of HC networks to be influenced
through the muscarinic depolarization of PV cells,
DREADD-induced stimulation solely of PV networks
produced an increase in the frequency and amplitude of
fast GABAergic IPSCs in CA1 pyramidal cells, which could
enhance oscillatory power in theta and gamma bands.
M1 mAChR-dependent modulation of PV cells could
enhance PING through direct depolarization-dependent
and depolarization-independent mechanisms. Future
work that examines how M1 mAChR modulation alters
the intrinsic resonance properties (Pike et al. 2000) and
glutamatergic excitation (Pafundo et al. 2013) of HC PV
cells would further elucidate this issue.

In addition to M1 mAChRs on PV cells, mAChRs
are expressed on non-PV interneurons, including
cannabinoid-sensitive CCK+ interneurons (Neu et al.
2007; Cea-del Rio et al. 2010; Nagode et al. 2011, 2014) and
SOM+ interneurons (Lawrence et al. 2006c). Moreover,
presynaptic mAChRs on PV GABAergic terminals (Hájos
et al. 1998) and glutamatergic terminals (Seeger et al.
2004; Levy et al. 2008; Dasari & Gulledge, 2011), nicotinic
ACh receptors on various types of interneurons (Bell
et al. 2011; Tang et al. 2011; Leão et al. 2012), and
indirect mechanisms, such as activity-dependent release
of endocannabinoids (Neu et al. 2007; Péterfi et al.
2012) and CCK (Földy et al. 2007), would impact the
generation and maintenance of cholinergically induced
oscillations. Finally, intrinsic mechanisms of short-term
plasticity will factor into circuit dynamics (Zucker &
Regehr, 2002; Daw et al. 2009; Szabó et al. 2010;
Pafundo et al. 2013). Though we do not doubt that
the underlying mechanisms of cholinergically induced
oscillations involve complex cellular and synaptic inter-
actions across many different HC interneuron subtypes,
we do find that activation of M1 mAChRs induces a
major depolarizing drive in HC PV interneurons, thereby
providing a postsynaptic mechanism for enhancing the
participation of HC PV cells in network activity. Under-
standing how synaptic ACh release regulates HC and PFC
circuit elements will probably require the inclusion of
mAChR-mediated mechanisms in computational network
models (Cutsuridis et al. 2010; Cutsuridis & Hasselmo,
2012).

M1 muscarinic acetylcholine receptor-mediated
modulation of parvalbumin circuits during
behavioural learning tasks

HC oscillations in theta and gamma bands are associated
with learning and memory (Montgomery & Buzsáki, 2007;
Duzel et al. 2010) and their interplay may create a neural
code for information storage and retrieval (Lisman &
Jensen, 2013). Increased ACh levels in the HC and PFC
also correlate with learning and memory (Fadda et al.
1996; Degroot & Parent, 2000; Hironaka et al. 2001; Pepeu

& Giovannini, 2004), and modulate the magnitude of HC
theta oscillations (Givens & Olton, 1990; Lee et al. 1994).
Gamma oscillations in vitro are enhanced by the activation
of M1 mAChRs (Spencer et al. 2010) and impaired in
M1 mAChR KO mice (Fisahn et al. 2002). While HC
PV interneurons in CA1 participate in theta and gamma
oscillations (Klausberger et al. 2003; Tukker et al. 2007),
blockade of HC M1 mAChRs (Ohno et al. 1994) or PV cell
function (Murray et al. 2011) impairs working memory.

Direct evidence that M1 mAChRs are the major post-
synaptic mAChR subtype on PV BCs (Cea-del Rio et al.
2011) led us to investigate whether cholinergic activation
of M1 mAChR on PV cells is important for learning tasks.
In the spontaneous alternation T-maze, PV-M1KO and
WT mice performed similarly at 1 s and 30 s intervals,
yet an interaction in time was noted for PV-M1KO mice
but not WT mice (Fig. 14B). This difference suggests that
that synaptically released ACh in vivo may activate M1

mAChRs on PV interneurons during working memory
tasks. As working memory is thought to involve the
cholinergic activation of both PFC and HC (Hasselmo
& Sarter, 2011), the loss of M1 mAChRs on PV cells
from either brain region may contribute to the deficit
observed in PV-M1KO mice. HC PV cells exhibit a larger
mAChR-induced depolarization than cortical PV cells
(Fig. 5H and I; Kawaguchi, 1997; Cea-del Rio et al. 2010;
Chiang et al. 2010; Pafundo et al. 2013), suggesting that
interneuron gamma is a more prominent mechanism
in HC than PFC. Gamma oscillations, a signature of
PV cell excitation, are detected during working memory
tasks (Montgomery & Buzsáki, 2007) and increase during
memory load (van Vugt et al. 2010). However, the
relationships between PV excitability, network oscillations
and working memory may be complex because reducing
glutamatergic excitation of PV cells impairs working
memory without reducing gamma (Korotkova et al. 2010)
or ripple (Rácz et al. 2009) oscillations.

ACh release is increased in both HC and PFC during
recognition of novel objects (Acquas et al. 1996). We
observed an impairment in NOR in PV-M1KO mice
but not WT mice (Fig. 14E). Therefore, our results
imply that M1 mAChRs on both PFC and HC PV
interneurons are important for NOR. Recent evidence
places greater emphasis on the HC than PFC for
object recognition memory (Clark, 2013; Cohen et al.
2013). Finally, PV-M1KO mice performed normally in
the MWM (Fig. 14F–J), consistent with other studies
that demonstrate that the disruption of PV interneuron
function can lead to selective learning deficits without
disrupting reference memory (Fuchs et al. 2007; Korotkova
et al. 2010; Murray et al. 2011; Carlén et al. 2012). Inter-
estingly, in working memory tasks, a subset of PV-M1KO
mice exhibited a 0% correct choice, indicating that
they preferred the familiar arm. Similarly, in the NOR
task, PV-M1KO mice spent more time with the familiar
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object. Both of these observations indicate perseveration
and a comfort with the familiar, which may indicate
cognitive dysfunction suggestive of an autistic (Perry et al.
2001; Mukaetova-Ladinska et al. 2010) or schizophrenic
(Berman et al. 2007; Scarr & Dean, 2008; Scarr et al. 2013)
phenotype.

An impairment of PV-M1KO mice in working and/or
recognition memory suggests that direct cholinergic
excitation of local PV neurons, and cholinergically
induced oscillations in vivo, are critical for these
memory tasks. Spatial reference memory may be more
reliant on the distributed, collective action of many
different cell types, including the M3 mAChR pre-
ferring GABAergic septohippocampal neurons (Alreja
et al. 2000) and various non-PV HC targets (Buzsáki,
2002; Nagode et al. 2011, 2014), perhaps making direct
cholinergic modulation of local PV cells less critical to
spatial reference memory. Scopolamine administration
exacerbates memory deficits in M1 KO mice (Anagnostaras
et al. 2003), indicating that additional mAChR subtypes
are involved in cholinergically dependent HC learning
and memory tasks. M2 mAChR KO mice exhibit HC
learning deficits and have more pronounced disruption
of normal inhibitory transmission than excitatory trans-
mission (Seeger et al. 2004), possibly indicative of the
importance of presynaptic M2 mAChRs in the regulation
of GABA release from PV cell terminals (Hájos et al.
1998; Szabó et al. 2010). Therefore, postsynaptic M1

and presynaptic M2 mAChRs may be synergistically
activated on PV cells during cholinergically induced HC
oscillations in vivo, and their collective action could aid
in neuronal synchronization and lower the threshold for
long-term potentiation (Ovsepian et al. 2004). Future in
vivo single unit recordings from PV cells during different
behavioural tasks would further elucidate the relationships
between PV circuit function, oscillatory activity and
learning.

Implications for disease states

We have gained insights into the mechanisms by which
cholinergic modulation of PV cells contributes to HC
function. Inhibitory interneuron (Marı́n, 2012) and M1

mAChR dysfunction has been implicated in many disease
states, including Alzheimer’s disease (German et al. 2003;
Medeiros et al. 2011), schizophrenia (Berman et al. 2007;
Raedler et al. 2007) and epilepsy (Friedman et al. 2007).
Positive allosteric modulators of M1 mAChRs promote
gamma oscillations (Spencer et al. 2010), improve
HC-dependent learning (Ragozzino et al. 2012; Digby
et al. 2012) and have been suggested to be an effective
treatment strategy for schizophrenia (Scarr & Dean, 2008;
Scarr et al. 2013). Therefore, M1 mAChRs on PV cells may
be an important therapeutic target in the future.
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Péterfi Z, Urbán GM, Papp OI, Németh B, Monyer H, Szabo G,
Erdelyi F, Mackie K, Freund TF, Hájos N & Katona I (2012).
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