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SUMMARY

In conventional multi-probe fluorescence microscopy, narrow bandwidth filters on detectors are 

used to avoid bleed-through artifacts between probes. The limited bandwidth reduces the signal-

to-noise ratio (SNR) of the detection, often severely compromising one or more channels. Herein, 

we describe a process of using independent component analysis (ICA) to discriminate the position 

of different probes using only a dichroic mirror to differentiate the signals directed to the 

detectors. ICA was particularly effective in samples where the spatial overlap between the probes 

is minimal, a very common case in cellular microscopy. This imaging scheme collects nearly all of 

the emitted light, significantly improving the image SNR. In this study, we focused on the 

detection of two fluorescence probes used in vivo, NAD(P)H and ANEPPS. The optimal dichroic 

mirror cutoff frequency was determined with simulations using the probes spectral emissions. A 

quality factor, defined as the cross-channel contrast-to-noise ratio, was optimized to maximize 

signals while maintaining spatial discrimination between the probes after ICA post-processing. 

Simulations indicate that a ~3 fold increase in SNR using the ICA approach can be achieved over 

the conventional narrow-band filtering approach without loss of spatial discrimination. We 

confirmed this predicted performance from experimental imaging of NAD(P)H and ANEPPS in 

mouse skeletal muscle,in vivo. For many multi-probe studies, the increased sensitivity of this “full 

bandwidth” approach will lead to improved image quality and/or reduced excitation power 

requirements.

INTRODUCTION

Simultaneous monitoring of different fluorescence probes is an important tool in 

fluorescence microscopy. Spatial discrimination of different probes can be resolved based 

on the frequency of excitation or emission (Zimmermann et al., 2003) as well as the 

fluorescence lifetime of the probes (Gratton et al., 2003, Neher & Neher, 2004). The most 

popular, and easiest, method of resolving probes is to use discriminating characteristics of 

the emission spectra. This is usually accomplished by combinations of dichroic mirrors and 
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band-pass filters to only detect light from one of the probes per photo-detection system. 

However, this approach generally reduces the photon efficiency of detection since many 

frequencies of light are discarded in the regions where the spectral energy of the emissions 

overlap and the efficiencies of each filter reduce the overall efficiency of detection. Given 

the limited Stokes shifts of many of the probes used in fluorescence microscopy, elimination 

of the spectral overlap regions can lead to significant reductions in signal to noise ratio 

(SNR). To compensate for this loss, the excitation power must be increased which can cause 

dye bleaching and/or photo-damage. As a result, optimizing SNR is often a major challenge 

in fluorescence imaging. Another solution is to collect the entire emission spectrum and de-

convolve the individual spectra using a variety of approaches (Zimmermann et al., 2003, 

Zimmermann, 2005, Neher & Neher, 2004, Neher et al., 2009, Keshava & Mustard, 2002). 

In theory, all of the light emitted could be used for this spectral de-convolution. However, 

the photon detection efficiency of any spectrally resolved detection system is very low 

compared to that of single detector systems thereby compromising SNR. This loss of SNR 

with spectrally resolved systems is due to the intrinsic loss of light in gratings, prisms or 

filters used to separate the frequencies of light for independent detection. Thus, an ideal 

system would permit the collection of all the emitted light in an efficient manner while 

minimally compromising the ability to resolve the spatial distribution of the probes.

To improve the SNR of multi-fluorescence probe analysis, we looked for methods where 

most of the light could be collected with minimal frequency encoding. Previous quantitative 

studies had suggested that minimal frequency encoding can still be effective in 

discriminating probe however; the region of spectral overlap could compromise 

performance with a minimal channels detection scheme (Neher & Neher, 2004). For the 

discrimination of two probes, the most efficient and minimally frequency encoding detection 

method is obtained with a single dichroic mirror where the light losses are minimal. The 

cutoff wavelength of the dichroic mirror can be optimized to discriminate the two probes if 

their emission spectra are known. In surveying methods to process this simply encoded data, 

we found that Independent Component Analysis (ICA) statistical approaches are very 

effective in unmixing the frequency encoded signals provided there is minimal spatial co-

localization between the probes (Hyvarinen, 2013). We emphasize that this approach does 

not require prior knowledge of the probes emission spectra, although this information is 

used in designing the cutoff wavelength of the dichroic mirror. This is different from the 

linear spectral unmixing (LSU) method commonly used in microscopy which requires 

accurate a priori knowledge of the emission spectra (Zimmermann et al., 2014). This is a 

significant limitation of LSU since the probes emission spectra may differ in isolation from 

in-situ through quenching by other molecules and tissue inner filter effects. Recording the 

spectra in-situ in the microscope bypasses this issue but faces the difficulty of recording 

high SNR emission spectra due to the low photon efficiency of spectrally resolved systems 

and the spectrum can change during perturbations to the system.

The goal of this study is to evaluate the ability of ICA statistical methods to discriminate the 

location of two spatially distinct but spectrally overlapping fluorescent probes in tissue when 

imaged with a single optimized dichroic mirror (relative to the probes under study).The 

proposed approach is compared to the most commonly used conventional filter design, 
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which excludes regions of spectral overlap between fluorophores. One of the major 

assumptions of this approach, that permitted the spatial discrimination of two probes with 

overlapping emission spectra, is that the probes do not significantly topologically overlap. 

This limits the application of this approach to conditions and probes where signals are 

spatially isolated relative to the resolution of the imaging experiment. We evaluated this 

procedure using mathematical simulations and with a specific application, in vivo. We 

selected the in vivo condition as our demonstration case since this preparation is 

significantly limited by SNR due to low probe concentration, limited ability to signal 

average and requires low excitation powers to prevent photo-damage (Lucotte & Balaban, 

2014). This ICA based approach provided near optimal SNR characteristics by collecting 

almost all of the light, only limited by the efficiency of the dichroic mirror, while 

maintaining excellent spatial discrimination between the different probes.

MATERIALS AND METHODS

Animal Preparation

Spectral image datasets were scanned on 3–12 month old C57BL/6 mice according to an 

approved protocol reviewed by the NHLBI Animal Care and Use Committee. Mice were 

prepared for imaging as described recently (Glancy et al., 2013). Briefly, animals were 

intubated and anaesthetized through a ventilator with 2% isoflurane and 30% oxygen. The 

mouse was restrained on a temperature-controlled platform and fitted onto the microscope 

stage. Fur on the lower hind-limb was removed with a depilatory agent and the Tibialis 

anterior muscle was exposed by resecting the skin and gently abrading the top two layers of 

the myofascial collagen sheath. The exposed muscle was coupled to the microscope 

objective with an optical coupling gel (0.3% carbomer, 300 mM sorbitol, pH 7.4) with a 

refractive index similar to that of water. Di-8-ANEPPS (ANEPPS) was used as a vasculature 

dye and injected into the heparinized jugular vein until the fluorescent signal was sufficient 

to begin imaging. In the mouse studies, the two probes evaluated were the intrinsic 

mitochondrial NAD(P)H signal, likely originating from NAD(P)H resident in Complex1 

(Blinova et al., 2008), and the ANEPPS signal in the vascular space. These probes meet the 

criteria for this approach since they have different spectral emission properties along with 

the fact that they do not spatially overlap in the tissue. These probes are useful combination 

to evaluate tissue metabolism, vascular structure and motion tracking, in vivo (Bakalar et al., 

2012). For demonstration purposes a third dye, STYO-24 green, with an emission in the 

green between ANEPPS and NADH was infused. This probe was used to specifically label 

nuclei as previously described from our laboratory (Jobsis et al., 2007). As SYTO green 

emission is dependent on DNA binding, it was uniquely localized to the nuclei and 

appropriate for the ICA analysis.

Imaging Parameters

A Leica TCS SP5 II upright resonant scanning multi-photon microscope with a Nikon 25×, 

1.1 NA water immersion objective was used throughout the entire experiment. The objective 

correction collar was optimized to compensate for the spherical aberrations induced by the 

small index mismatch between tissue and the optical coupling gel. This spherical aberration 

correction significantly improved the image quality and SNR. A Ti:sapphire laser (Spectra 
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Physics, Mai tai) was tuned to 720 nm for two-photon excitation in the UV. All in vivo 

skeletal muscle images were captured at 0.68 µm isotropic resolution with 16 line averages. 

For each image, 512×512 pixels were collected with non-descanned detectors and an8 kHz 

resonant line scanning mirror.

In conventional imaging, the NAD(P)H channel employs two dichroic mirrors with cutoff 

wavelengths at 510 nm and 409 nm (Semrock, FF510-Di02 and FF409-Di03, respectively), 

and a 50 nm wide band-pass filter centered at 460 nm (Chroma Technology, ET460/50M). 

The vasculature dye ANEPPS channel consists of two dichroic mirrors with cutoff 

wavelengths at 510 nm and 560 nm (SemrockFF510-Di02 and FF560-Di01, respectively) 

and a 70 nm wide band-pass filter centered at 605 nm (Chroma Technology, ET605/70M).In 

all experiments a primary dichroic mirror with a 670 nm cutoff wavelength (Leica, RSP670) 

was used to separate the excitation light from the emission light and a short-pass filter with a 

680 nm cutoff wavelength (Leica, SP680)was employed to prevent the excitation light from 

reaching the detectors The 409 nm and 560 nm dichroic mirrors used in the conventional 

detection scheme are part of a 4 channels detection system which was not present when our 

single optimized 545 dichroic mirror was in place. The 409 nm and 560nm mirrors only 

attenuated light by ~3% within the channels detection bandwidth of the bandpass filters and 

no correction was applied to compensate for this loss. The NAD(P)H and ANEPPS channels 

are displayed in green and red, respectively, in all images.

In the three probe case the light reflected off of the 560 nm dichroic was used to detect the 

SYTO Green 24 emission. When indicated, a bandpass filter was applied before reaching the 

detector with a net bandwidth of 510–500nm to increase the specificity of this channel. 

Again, experiments were performed using the dichroic mirrors alone or with the bandpass 

filters to evaluate the effect of the ICA analysis. For continuity, the STYO Green signal is 

displayed in blue.

Emission Spectra Acquisition

A reference set of the emission characteristics of the NAD(P)H and ANEPPS probes, in 

vivo, was collected to aid in the evaluation of the dichroic mirror cutoff wavelength effects 

in a well-defined system. The emission spectra of each probe in mouse skeletal muscle in 

vivo were recorded in the microscope from 385 nm to 680 nm with a step-size of 10nm 

using 2-photon excitation at 720nm and detected with the Leica SP5 prism-based internal 

spectral detection system. This dataset is referred to as the reference spectral data set. It is 

important to note that this dataset is not fundamental to the ICA process, but is only used to 

determine the sensitivity of the process to the dichroic mirror cutoff wavelength for these 

probes.

THEORY

Emission Spectra Discrimination

The general problem of using simple band-pass filters to discriminate different probes is 

outlined in Figure 1. In Figure 1a, two filter windows W1 and W2 are presented to collect 

the peak fluorescence bands of NAD(P)H and ANEPPS. Using this simple approach to 

optimize the signal collected results in overlap between the W1 and W2 windows resulting in 
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imperfect discrimination of the signals. A common solution to this problem is to separate the 

collection windows further to reduce the overlap (Figure 1b) but this reduces the collection 

efficiency of the emitted photons and often still leaves overlap in the spectral densities. The 

intent of this study is to collect as much light as possible with a dichroic mirror segmenting 

the emission light into two broad emission bands (Figure 1c) including most of the emitted 

light, thereby optimizing the SNR, and using statistical unmixing methods to appropriately 

redistribute the different probe signals back to their respective channels.

Independent Component Analysis

Independent component analysis (ICA) is a method for separating individual components 

from observed multidimensional data that are statistically independent from each other 

(Hyvarinen, 2013). Thus, ICA is an ideal method for determining the location of probes with 

minimal frequency information as long as the probes’ positions in the data do not 

significantly overlap. That is, spatial overlap can occur, and will be included in the final 

result, as long as the overlapped image features are not statistically significant within the 

entire image.

In general, the mixed signals, or the observations, as an example shown in Figure 1 can be 

expressed in forms:

(1)

where the variables a, b, c, and d represent the mixing weights of the source signals from 

each channel.

Equation (1) can be rewritten in matrix form as follows:

(2)

To obtain the inputs or the source signals, ICA statistical methods estimate the mixing 

matrix or the unmixing matrix (i.e., the inverse of the mixing matrix) from the observations. 

This process is called signal unmixing or signal separation. Assuming the unmixing matrix 

exists (det(Mixing Matrix)=ad−bc≠0) and the source signals are non-Gaussian, the solution 

with statistically independent component is unique. However, ICA does not have closed-

form solutions, and an ordinary ICA method consists of two parts—an objective function 

(contrast function) and an optimization method. Because of the central limit theorem, the 

linear combination of two non-Gaussian distributed independent random variables is closer 

to a Gaussian distribution than either of the two random variables. Thus the ICA objective 

function typically measures the non-Gaussianity of the unmixed signals. The algorithm used 

in this study is based on the measure of entropy, various other metrics have also been 

proposed (Hyvarinen & Oja, 2000). From information theory it can be shown that the 

entropy H(ygauss) of a Gaussian distributed random variable ygauss is maximized. The 
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negentropy metric J(y) of a random variable y, related to the entropy by J(y) = H(ygauss) − 

H(y), is therefore minimized and equal to zero for a Gaussian distributed random variable. 

The joint maximization of the negentropy of the unmixed variables therefore converges to 

new variables that are statistically as independent as possible. The fast ICA algorithm 

(Hyvarinen, 1999) used in this study maximizes an approximation of the negentropy 

(Hyvarinen, 1998) that is computationally more efficient than its exact definition, with an 

iterative optimization method based on the Newton method. The Fast ICA algorithm was 

applied estimating all independent components at the same time using a symmetric de-

correlation approach; the one-by-on hierarchical decorrelation (deflation) was slower and 

did not improve the outcome. The contrast function used was the common cubic function 

(g(y)=y3) other contrast functions (including g(y)= y2 or y exp(−y2/2) or tanh(y)) provided 

no advantages over the cubic form. It is important to note that the Fast ICA algorithm used 

here does not include an image noise model and therefore assumes noise-free images. 

Consequently a Poisson noise removal procedure (Le et al., 2013) was applied to the raw 

images to attenuate the photon shot noise prior to ICA processing. The ICA routine used 

here is available as a Image J Plug in at our laboratory web page (to be added in proof).

Dichroic Mirror Cutoff Wavelength Optimization

It was evident that the cutoff wavelength of the dichroic mirror would influence the ability 

of ICA to unmix the two fluorescence signals. We devised an analysis scheme to optimize 

the cutoff frequency for the muscle NAD(P)H and vascular ANEPPS signals. This was 

conducted not only to find the optima but to evaluate how critical the cutoff wavelength was 

in successfully applying the ICA approach. We reasoned that the bandwidth of the “optimal” 

cutoff frequency would reveal how critical the dichroic cutoff frequency was to the ICA 

process as well as how robust the process might be to slight alterations on the spectral 

characteristics of the probes or characteristic of the dichroic mirror. This optimization 

process is illustrated in Figure 2 using the 10 nm resolved in vivo emission spectra as the 

reference spectral data set. To accomplish this task, we manually defined regions of interest 

(ROI) that consisted exclusively of NAD(P)H and ANEPPS. As shown in Figure 2, these 

ROI masks confirmed that ANEPPS was restricted to the vessels while NAD(P)H was 

selectively located in the muscle cells. The merit figure used in this optimization is the 

cross-channel contrast to noise ratio (XCNR), which will be defined shortly, between the 

probes ROI’s.

To evaluate the effect of different dichroic cutoffs, multiple image stacks were created from 

the spectral reference dataset using the following equation:

(3)

Here (↓1 and (↓2 define the lower and upper wavelengths limits of the bandwidth for each 

virtual channel image, respectively. To assure an adequate signal level, the simulated 

bandwidth of either channel was maintained at least 50 nm wide between the 400 nm and 

680nm. The cutoff wavelength of the dichroic filter was then simulated from 450nm to 

650nm within the sampled spectral window.
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Prior to the ICA unmixing, each image was processed by a Poison noise removal procedure 

(Le et al., 2013) to obtain a denoised image for all different bandwidths. The pseudo-noise 

image was formed by subtraction of the raw image from the de-noised image. The standard 

deviation was calculated from the pseudo-noise image masked by corresponding predefined 

ROI. The resulting denoised images were then processed with the ICA algorithm for signal 

unmixing.

After the ICA process, the mean signal of the NAD(P)H and ANEPPSROI masks were 

computed for both the intended and unintended channels. Signal in the ROI of the 

unintended channel was termed cross-over signal. Thus, the goal of the optimization was to 

maximize the ROI signal of the appropriate channel with minimum cross-over to the other 

ROI.

SNR of each channel and crossover signals were computed using the mean signal and 

pseudo-noise standard deviations calculated in the previous steps. XCNR was defined as:

(4)

The process is repeated for all possible combinations of cutoff frequencies. In each process, 

the bandwidths of the spectral windows were adjusted ±5nm to compute the XCNR values 

for each channel in order to construct an XCNR map.

To obtain the best combination of XCNR map for both channels, a joint product (an 

element-wise multiplication) of the two maps was calculated as the final XCNR decision 

map (Figure 3).The effect of the dichroic mirror cutoff frequency on the XCNR can be 

evaluated using this approach to select an optimal value. For the probes understudy here, we 

selected a cutoff frequency of 545 nm.

It is important to note that we used the probes spectral information only to estimate the 

optimal cutoff frequency; this spectral information was not used in the ICA unmixing 

process. This analysis reveals that the precise cutoff frequency of the dichroic mirror is not 

critical and a broad range of frequencies between the emission optima of the probes will 

likely provide adequate results. This observation was the reason we did not perform the full 

simulation for the three probe example outlined below.

SNR Quantification

To compare ICA signal unmixing with conventional imaging using band-pass filters, the 

ROIs of muscle fibers (NAD(P)H) and vessels (ANEPPS) were segmented in both detector 

channels using image processing methods as described in (Glancy et al., 2013). SNR and 

scatter plots of each channel were calculated on the image pixels inside the corresponding 

ROI mask in both the ICA treated and conventional filter system on near identical regions in 

the same animal. It was not possible to record exactly identical 3D volumes in these live 

animals largely due to drift during the time required to change the filter systems.
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RESULTS

Figure 3 shows the results of the dichroic mirror cutoff frequency optimization for the final 

XCNR decision map of NAD(P)H and ANEPPS. The diagonal line in the map represents the 

cases where two spectral windows are adjacent that can be implemented by a single dichroic 

mirror cutoff with additional band-pass filters. The XCNR values in the upper diagonal map 

are null due to the overlap of two spectral windows. The XCNR maps of both NAD(P)H and 

ANEPPS show an improvement in signal when the spectral windows are extended (Figure 

3a and b). However, signal is significantly reduced in the opposing channel when the 

spectral window of one channel occupies most of the spectrum range. These extreme 

conditions are effectively excluded in the final decision map as shown in Figure 3c.

Furthermore, it is evident that a trend of XCNR improvement towards the diagonal line can 

be observed from the decision map. A center region of the map where the normalized 

XCNR values were greater than 90% was selected as the optimal cutoff frequency bands 

which are 540 nm – 570 nm for NAD(P)H and 525 nm – 560 nm for ANEPPS. The 

combination of these decision maps results in an optimal cutoff frequency in the 525nm – 

570nm range. This is a surprisingly broad optimum suggesting a range of dichroic mirrors 

could be used. Based on this simulation we selected a dichroic mirror with a 545 nm cutoff 

frequency (Figure 4).

The broad optima also suggested that the unmixing matrix is relatively insensitive to small 

changes in the emission characteristics of the probe, an important feature using probes inside 

cells. To test this notion, we shifted reference ANEPPS and NAD(P)H emission spectra, 

thereby changing the mixing matrix, but keeping the unmixing matrix determined from the 

native emission spectra unchanged. This simulation was performed to examine how changes 

in the spectral characteristics of these probes that could occur under a variety of in vivo 

conditions (Rothstein et al., 2005, Kao et al., 2001), would influence the ability of the 

“fixed” unmixing matrix to still successfully separate the signals based on the XCNR merit 

score. In these simulations we simulated worse case conditions for these probes by shifting 

the difference between the native spectra by 20nmin both directions (i.e. shifted NAD(P)H 

up 10 nm and ANEPPS down 10 nm or shifted NAD(P)H down 10nm and ANEPPS up 10 

nm). The XCNR values normalized for the three conditions studied are presented in Table 1. 

The spectral shifts did not compromise the XCNR metric even when the emissions were 

moved closer by 20nm.As implied from these high XCNR values, the large spectral shifts 

had little or no effect on the reconstructed images. These results suggest that for moderate 

changes in the probes emission spectra in vivo it is not critical to repeat the ICA step and 

that unmixing can be directly performed with a previously calculated unmixing matrix. 

However, this demonstration is only relevant to the probes and conditions used here. 

Changes in spectral densities, or spectral shape, could have more profound effects with a 

fixed cutoff frequency in other systems.

In vivo Imaging

An imaging series in the mouse Tibialis Anterior muscle in vivo is presented in Figure 5 and 

Supplemental Figure 1 that shows both the raw signal in the ANEPPS and NAD(P)H 

channels as well as the combined images. Due to the large difference in SNR of the 
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methods, the images are presented normalized to the maximum image within a series 

(Figure 5) as well as optimized level for each frame in Supplemental Figure 1. The most 

revealing panel in Figure 5 and Supplemental Figure 1 is the NAD(P)H images in the middle 

row (Figure 5b, 5e, and 5h and corresponding images in Supplemental Figure 1). To avoid 

bleed over from ANEPPS directly, the conventional band-pass filter cuts off a significant 

fraction of the inherent NAD(P)H emission (Figure 5b and Supplemental Figure 1b). As 

shown in the conventional filter panel this strategy was successful with the elimination of 

the ANEPPS signal from the NAD(P)H channel. However, this was at the expense of 

NAD(P)H signal as revealed in the dichroic mirror image where the myocyte NAD(P)H 

signal is enhanced (Figure 5e and Supplemental Figure 1e). A consequence of this increase 

in collecting NAD(P)H signal with the simple dichroic is the bleed over of the ANEPPS 

signal as revealed by the inclusion of the vascular signals in this panel. However, as seen in 

the final panel, the ICA unmixing images generated an excellent discrimination of the 

myocytes NAD(P)H and vascular ANEPPS signals while maintaining the increased signal 

(Figure 5c, 5f, and 5i and corresponding images in Supplemental Figure 1).

A quantitative comparison of vessel and muscle fiber structures reveal there was a large 

increase of SNR measurements from 24 to 36 in the ANEPPS channel and 1.6 to 3.9 in the 

NAD(P)H channel for the raw dichroic data compared with the conventional filter data, not 

surprising with the removal of the bandwidth filters. With ICA remixing of the data to 

appropriate channels the improvement was even more pronounced increasing to 81 for the 

ANEPPS channel and 4.5 for the NAD(P)H channels. This represents an approximately 3 

fold increase in SNR using the dichroic mirror alone and ICA unmixing for this example 

which is in good agreement with our simulations discussed above. Furthermore, this 

improvement in SNR did not compromise the spatial discrimination of the ANEPPS and 

NAD(P)H probes as demonstrated in the Figures 5 and Supplemental Figure 1.

An addition study was conducted using a 3rd probe in the mouse muscle. SYTO Green 24 

was infused in addition to ANEPPS to selectively label the nuclei with a green emission 

signal. An example from this study is presented in Figure 6. The bottom panel presents the 

images collected with the selective bandwidth filters in place while the top series represents 

the same series collected without the selective bandwidth filters with ICA unmixing. Again, 

the only assumption here was that the probes were essentially independently distributed in 

the tissue, an excellent assumption with these probes. As revealed in the images the spatial 

discrimination of the probes remained very high in the ICA derived images while the SNR, 

reported on the images, increased between 3 to 2.2 fold, similar to what we observed in the 

two probe system and by simulation. These data demonstrate that the approach is applicable 

to multiple emission probes in a sample.

DISCUSSION

This study demonstrates that using only a dichroic mirror to efficiently frequency encode 

nearly all of the emitted light and ICA to unmix this data, the SNR of a multi-probe 

fluorescence imaging experiment can be significantly improved with no loss of spatial 

discrimination. This was demonstrated in both simulations and tissues in vivo where roughly 

3 fold SNR improvements were demonstrated for the probes studied. This improvement in 
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SNR can be used to decrease excitation power, probe concentration or signal averaging 

requirements. The SNR improvement realized here will naturally be dependent on many 

factors and could be higher or lower depending on the particular experimental setup and 

probes. Likely, probe combinations with more overlap of fluorescence emission resulting in 

more restrictive band-pass filtering for selective detection would benefit the most from this 

approach. This approach is likely beneficial to any low SNR multi-probe fluorescence 

imaging experiments, including in vivo imaging demonstrated here, where the major 

assumptions are valid.

As implied by its name, independent component analysis statistically determines the 

solution that minimizes the spatial overlap of the signals, or maximizes their 

“independence”. This analysis thus works best if different probes do not spatially overlap in 

multi-channel images. However, as long as the probes’ distributions are mostly independent, 

small overlapping regions should not significantly affect the ICA analysis. If the probe 

overlap within pixels is significant, the reliability of this approach may then decrease. We 

recommend this approach to be used only in cases where the spatial overlap of different 

probes in the images is relatively small and does not significantly impact this statistical 

approach. If the impact of spatial overlap is questionable, pilot studies as we conducted here 

comparing conventional and the ICA unmixing approach can quickly evaluate whether this 

approach remains valid with different probe distributions. We recommend this empirical 

approach since the statistical tolerance of the overlap will depend on the nature of the 

spectral overlap of probes, ratio of signal intensity, the topology of any spatial overlap of the 

probes and probe spectral stability.

In this initial study, simulated and demonstrated the use of ICA in a two probe system. 

Based on these observations that the cutoff frequency of the dichroic mirrors was not a 

critical parameter in these analysis we also demonstrated the utility of the approach on a 3 

probe problem. The successful expansion of this approach to other probes and more 

numerous probes in a given experiment will depend on the emission characteristics and 

spatial distribution of the probes.

The determination of the optimal cutoff frequency in this study revealed rather broad 

frequency optima suggesting that the criticality of selecting the cutoff frequency in this 

approach was rather tolerable and we demonstrated that a given mixing matrix is also not 

significantly compromised by modest changes in the emission frequencies of the probes 

(Table 1). This later characteristic should make this method more robust in cellular 

applications where the spectral properties can be poorly defined. One factor that can affect 

to the decision map is the pseudo-noise estimation in the optimization process. The Poisson 

noise removal method was selected as the pseudo-noise extraction procedure because the 

reference spectra stack represents the photon energy of an image at different wavelengths 

that are contaminated by Poisson noise. Applying other de-noising algorithms may change 

the accuracy of pseudo-noise estimation that can shift the optimal range in the decision map. 

However, the broad frequency optimum as revealed in the current analysis suggests that 

small variations in the decision map may not significantly impact the performance of this 

approach.
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Real-time image acquisition and processing is an important and practical application for this 

approach due to the fact that the mixing of the raw signals in different channels generally 

results in poor discrimination of the probes in the raw images. These images are used to 

guide frame selection or even motion tracking which benefits from high spatial contrast and 

SNR (Bakalar et al., 2012). This issue is clearly seen in the raw channels from the raw 

dichroic mirror images in Supplemental Figure 1 which would be difficult to guide the 

investigator in selecting fields of view. Real-time unmixing requires a rapid signal 

separation procedure, in which the most time-consuming task is determining the mixing 

matrix. However, if the spectral properties of the probes are maintained, a mixing matrix can 

be determined in a separate study and applied subsequently to future studies without the 

need to collect additional emission spectra. Indeed, we have found the mixing matrix 

presented for NAD(P)H and ANEPPS is very stable even between microscope platforms and 

works on all the muscle preparations we have studied. The computational performance for 

unmixing using a preexisting unmixing matrix is approximately 100 image/sec for a 

512×512 pixel dimension2-channel dataset executing on an Intel Core i7 X990 3.46GHz 

CPU. The computational efficiency can be further improved by code optimization and 

parallel processing such as utilizing general-purpose graphics processing unit (GPGPU) and 

field programmable gate array (FPGA). With readily available computational resources, the 

proposed ICA approach should easily be implemented and applied to real-time or near real-

time imaging for multi-probe fluorescence microscopy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Table 1

Normalized XCNR values for shifting native emission spectra after ICA processing.

Emission Probe Native Spectra NAD(P)H shift +10nm
ANEPPS shift −10nm

NAD(P)H shift −10nm
ANEPPS shift +10nm

NAD(P)H 28 27 29

ANEPPS 63 59 64
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