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Abstract
Angiogenesis is an essential process for organ growth 
and repair. Thus, an imbalance in this process can lead 
to several diseases including malignancy. Angiogenesis 
is a critical step in vascular remodeling, tissue damage 

and wound healing besides being required for invasive 
tumor growth and metastasis. Because angiogenesis 
sets an important point in the control of tumor progres-
sion, its inhibition is considered a valuable therapeutic 
approach for tumor treatment. Chronic liver disease 
including hepatitis C virus (HCV) infection is one of the 
main cause for the development of hepatic angiogene-
sis and thereby plays a critical role in the modulation of 
hepatic angiogenesis that finally leads to hepatocellular 
carcinoma progression and invasion. Thus, understand-
ing of the molecular mechanisms of HCV-mediated he-
patic angiogenesis will help design a therapeutic proto-
col for the intervention of HCV-mediated angiogenesis 
and subsequently its outcome. In this review, we will 
focus on the molecular mechanisms of HCV-mediated 
hepatic angiogenesis and the related signaling path-
ways that can be target for current and under develop-
ment therapeutic approaches.
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Core tip: This editorial elaborate the molecular mecha-
nisms of hepatitis C virus (HCV)-mediated angiogenesis 
and its mechanisms, and the potential of angiogenic 
pathways as target for hepatocellular carcinoma ther-
apy. We summarized the current knowledge of HCV-
mediated angiogenesis and the possible therapeutic 
strategies. 
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INTRODUCTION
Hepatocellular carcinoma (HCC) is considered one of  
the most common cancers worldwide. Therefore, the lim-
ited treatment options and poor prognosis of  HCC pa-
tients emphasize the importance of  the development of  
a new therapeutic strategy. Chronic liver diseases includ-
ing hepatitis C virus (HCV) infection are the major risk 
factors for developing HCC[1,2]. Although the molecular 
mechanisms that link HCV infections to the development 
and progression of  HCC are not entirely characterized, 
increasing evidence indicates the involvement of  hepatic 
angiogenesis in the modulation of  HCV viral proteins-
induced HCC malignancy[3-5]. Therefore, targeting the 
angiogenic signaling pathways is thought to be a relevant 
therapeutic strategy for tumor treatment. Accordingly, 
understanding the mechanistic role of  HCV infection in 
the modulation of  the imbalance of  hepatic angiogenesis 
may help to develop novel therapeutic options for HCC 
treatment.

ANGIOGENESIS
Angiogenesis is a dynamic, hypoxia stimulated and 
growth factor-dependent process that is responsible for 
the formation of  new vascular structures from preexist-
ing vessels[6,7]. Angiogenesis occurs in several organs in 
response to a pathophysiological alteration, and thereby 
is one of  the most thoroughly studied pathophysiological 
phenomena. Besides its role in promotion of  the etio-
pathogenesis of  several diseases, angiogenesis is consid-
ered a potential therapeutic target for tumor treatment[8,9].

Hypoxia and inflammation are the main inducers of  
angiogenesis in liver and other organs[10-13]. Under hypoxia 
conditions angiogenesis is regulated through a mecha-
nism mediated by hypoxia inducing factor (HIF)[14,15], 
where as its induction during the course of  inflammation 
is regulated through a mechanism mediated by angiogenic 
cytokines and growth factors[11,16]. Thus, the formation of  
new functional vessels from preexisting vessels is medi-
ated by tightly regulated mechanism, in which HIF plays 
a central role[17,18].

Although neo-angiogenesis is common for most 
chronic inflammatory and fibrogenic disorders, the pro-
cesses of  hepatic angiogenesis differ from homologous 
processes in other organs or tissues. This may be due to 
the unique phenotypic profile as well as to the functional 
role of  both activated hepatic stellate cells and other liver 
myofibroblasts[19,20].

REGULATION OF ANGIOGENESIS
The regulation of  angiogenesis is mediated by a mecha-
nism regulated through the balance between the an-
giogenic growth factors and their inhibitors. These an-
giogenic growth factors can be released from different 
cell types including endothelial cells (ECs), monocytes, 
platelets, and smooth muscle as well as tumor cells[21]. 
Under normal physiological condition, the inhibitors of  

neovascularization is in excess in solid organs, and there-
by can overcome the reservoir of  growth factors that 
are essential for the initiation of  the angiogenic process, 
a mechanism for the inhibition of  neovascularization 
in solid organs[22-24]. Whereas, in tumors, the release of  
growth factors are in excess. Accordingly, the excess of  
the resleased growth factors has the ability to overcome 
the inhibitor of  angiogenesis, and thereby contributes to 
the promotion of  tumor progression. Thus, the initiation 
of  the angiogenic process is an important mechanism for 
tumor development and progression. A model for the 
regulation of  angiogenesis by hepatocyte growth factor 
via mechanism mediated by either vascular endothelial 
growth factor (VEGF) or thrombospondin 1 is shown 
(Figure 1)

MOLECULAR MECHANISMS OF HCV-
INDUCED ANGIOGENESIS
The role of  HCV infection in the regulation of  hepatic 
angiogenesis is reported in several studies[5,25]. Also, the 
microvessel density in liver biopsies of  patients with 
HCV chronic infection is significantly high when com-
pared to those of  patients with hepatitis B virus (HBV) 
infection[26]. Accordingly, in vitro analysis of  HCV posi-
tive sera were found to stimulate the migration and the 
proliferation of  human ECs[27]. These enhanced migra-
tion and proliferation of  ECs are attributed to the HCV-
induced production of  VEGF[27]. There are two different 
types of  microvascular structures in the liver including 
the large vessels that are mainly covered by a continuous 
endothelium, and the sinusoids that are lined by a fenes-
trated endothelium[28]. Sinusoidal capillarization identi-
fied by CD34-positive ECs that mainly reported in most 
HCCs[29,30]. Moreover, CD34-positive ECs have also been 
observed in the sinusoid of  both higher-grade and lower-
grade dysplastic nodules[31,32], as well as in HCV-associat-
ed HCC[33]. Also, the elevation of  CD34 in response to 
the stimulation of  ECs together with the detection of  
CD34 in liver biopsies of  HCV infected patients provide 
evidence for the mechanistic role of  HCV infection in 
the regulation of  hepatic angiogenesis[5]. Although the 
direct relation between HCV infection and angiogenesis 
has been reported in vitro and in vivo, little is known about 
the molecular mechanisms, which are responsible for the 
modulation of  HCV-promoted hepatic angiogenesis. 

Accordingly, the infection of  the liver derived cell 
line Huh7 with HCV subgenomic replicon was found 
to stabilize HIF-1α under normoxic conditions[34], an 
evidence for the involvement of  HCV viral proteins in 
the regulation of  HIF-1α, an essential factor for the 
regulation of  angiogenesis. Further analysis of  HCV 
proteins (structural or non-structural proteins) using sev-
eral molecular biological techniques in combination with 
inhibitory experiments demonstrated that the oxidative 
stress, signal transducer and activator of  transcription 3, 
nuclear transcription factor NF-κB, mitogen activated 
protein kinase (MAPK), phosphatidylinositol 3-kinases 
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(PI3-kinases) play an essential role in the stabilization of  
HIF-1α[5,25]. Also, the role of  HCV nonstructural pro-
teins NS3 and NS4A-induced reactive oxygen species[35,36] 
seems to be essential for the stabilization of  HIF-1α, that 
in turn, leads to the upregulation of  VEGF and other 
angiogenic factors[5,37]. Also, the elevation of  VEGF se-
cretion in patient’s sera, in subgenomic replicon, and in 
HCV core-expressing Huh7 reveals an important role for 
HCV infection in the promotion of  hepatic angiogen-
esis[5]. Moreover, HCV-induced VEGF, and subsequently 
the activation of  endothelial have been reported to be 
regulated via mechanism mediated by multiple pathways 
including c-Jun-N-terminal kinase, p38 and extracellular 
regulated kinase (ERK)[5].

Although the several studies dealing with mechanistic 
role of  HCV infection in the context of  angiogenesis 
are limited, the induction of  several angiogenic factors 
by HCV proteins has been demonstrated[5,38,39]. For ex-
ample, elevation of  Ang-2 in the sera of  HCV-infected 
patients[39,40], as well as the upregulation of  MMP-2 in re-
sponse to expression of  HCV viral proteins[41-43]. Further-
more, the enhancement of  MMP-9 by HCV core protein 
is also reported[42,44-46]. Moreover, the overexpression of  

cyclooxygenase (COX)-2 in response to the expression 
of  HCV core or NS5A in hepatocytes has been demon-
strated in several studies[47-49]. The mechanism, by which 
HCV induces COX-2 has been investigated, and thought 
to be regulated via a mechanism mediated by HCV-
induced oxidative stress[50]. 

The findings mentioned above are supported by a 
set of  clinical investigations. For example, patients with 
HCV chronic infection revealed significant elevation of  
intrahepatic COX-2, MMP-2 and MMP-9[44]. These in-
trahepatic COX-2, MMP-2, and 9 along with VEGF and 
Ang-2 are thought to play an important role in the stimu-
lation of  angiogenesis in the context of  HCV-associated 
HCC. A proposed model for the possible mechanisms 
demonstrating the pathways, which are involved in the 
modulation of  HCV-induced hepatic angiogenesis is out-
lined in Figure 2. 

ANGIOGENESIS AS THERAPEUTIC 
TARGET FOR HCC TREATMENT
The inhibition of  angiogenesis is thought to be a rel-
evant therapeutic strategy for HCC treatment. Despite 
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Figure 1  Representative model for tumor angiogenesis induced by hepatocytes growth factor/Scater factor-Met signaling. Intrinsically hepatocytes growth 
factor/Scater factor (HGF/SF) activates Met receptor on the surface of host endothelial cells leading to cell proliferation and migration. Extrinsically, HGF/SF-Met sig-
naling turns on the angiogenic switch by simultaneous upregulation of pro-angiogenic vascular endothelial growth factors (VEGF) expression and down regulation of 
thrombospondin 1 (TSP-1) expression from the tumor cells. 
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tor is not sufficient to abrogate or even to block tumor 
development and progression. Thus, the combination of  
inhibitors of  different angiogenic pathways may be more 
efficient. 

Tumor angiogenesis has received more attention as 
a potential target for therapeutic intervention. Although 
many of  the research studies have focused on the in-
hibition of  vascular endothelial growth factor receptor 
(VEGFR) or its ligand, VEGF[58,59], the VEGF/VEGFR 
axis, an important mediator of  tumor angiogenesis, is only 
one of  several angiogenic pathways that are essential for 
initiation and progression of  angiogenesis[60-62]. Thus, re-
cent evidence suggests that Src may be a mediator for the 
expression of  multiple pro-angiogenic molecules[63,64]. Src 
is membrane-associated non-receptor protein tyrosine ki-
nases, and is overexpressed and/or aberrantly activated in 
a variety of  human tumors[65], therefore targeting of  this 
pathway may be a relevant strategy for HCC treatment. 

of  there has been poor efficacy with treatment using 
single-agents as anti-angiogenic approaches in advanced 
solid cancers[51,52], many molecular-targeted drugs have 
been proofed for their reliability in HCC treatment[53,54]. 
Although the multi-tyrosine kinase inhibitor sorafenib 
demonstrated an overall survival benefit for patients 
with HCC, the efficacy of  anti-angiogenic agents, includ-
ing sorafenib in HCC is limited[55]. This may due to that 
most of  anti-angiogenic agents including sorafenib, can 
only target newly formed blood vessels rather than the 
matured one. As a consequence the vascular remodeling 
can substitute the eliminated newly formed vessels[56,57]. 
Apart from their ability to block the cell cycle of  tumor 
cells, most anti-angiogenic agents fail to induce tumor 
death, a further limitation for their anti-tumor efficacy. 
Hence, the design of  an anti-angiogenic approach for 
HCC treatment must be taken into account that targeting 
a unique signaling pathway by a small-molecule inhibi-
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Figure 2  Model for hepatitis C virus-mediated hepatic angiogenesis. During the infection with hepatitis C virus (HCV), normal angiogenesis process can be 
malignant through the deregulation of genes involved in the angiogenic pathway by viral proteins such as core and non-structural protein NS3. HCV infection can 
enhance angiogenic process via multiple pathways. One of these pathways is initiated by HCV core or NS3 via NF-κB and, cyclooxygenase (COX-2) leading to the 
activation of vascular endothelial growth factor (VEGF)/PI3K/AKT/mTOR axis. The other pathway is initiated by core and NS3-induced iNOS/NO axis leading to angio-
genesis. Further pathway is initiated by HCV-induced suppression of p53-p21 axis leading to the induction of E2F1 that subsequently mediates the activation of ASK1-
JNK/p38 that results in the induction of TGF-β leading to the activation of extracellular regulated kinase (ERK) pathway. ERK pathway together with c-Jun-N-terminal 
kinase (JNK), p38 will be able to trigger the expression of VEGF and subsequently to the promotion of hepatic angiogenesis.
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Although some studies focused mainly on the ability of  
Src family kinase inhibitor that is acting directly on tumor 
cells through a mechanism mediated by the reduction of  
pro-angiogenic factors[66], the anti-angiogenic effect of  Src 
family kinase inhibitors was found to be more efficient in 
vivo[61,67,68]. Thus, the inhibition of  Src family kinase activity 
by highly potent and selective small-molecule inhibitor(s) 
may be a relevant therapeutic strategy for the treatment of  
human solid tumors. 

Moreover, the ERK/MAP kinase also known as 
RAF/MEK/ERK pathway is a ubiquitous signal trans-
duction pathway that is involved in the regulation of  
crucial cellular functions such as angiogenesis is thought 
to be a promising target for anti-angiogenic agents[69-71]. 
The activation of  this pathway through the overexpres-

sion or activation of  its components contributes to the 
regulation of  angiogenesis that, in turn, leads to tumor 
progression and metastasis[5,71]. The ERK/MAPK path-
way is a downstream pathway of  various growth factors 
such as insulin growth factor receptor, endothelial growth 
factor (EGFR), VEGFR, and platelet-derived growth fac-
tor receptor (PDGFR), consequently the ERK/MAPK 
pathway is thought to be a valid therapeutic target for the 
treatment of  HCC[72-76]. 

Furthermore, constitutive activation of  the PI3K/
AKT/mTOR signaling pathway has been established as 
determinant of  cell growth and survival in solid tumors 
including HCC[77]. The activation of  PI3K/AKT/mTOR 
signaling pathway can be mediated by the enhanced ac-
tivation of  tyrosine kinases receptors such as those of  
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Figure 3  Outline of the targeted therapies, which are currently available or under development for the treatment of hepatocellular carcinoma, and the 
molecular targets on which they are believed to act upon. AKT: A protein kinase family of genes involved in regulation of cell survival, Bcl-2-associated agonist of 
cell death promoter (BAD), Bcl-2-associated death promoter; Disheveled (DSH) protein, downstream effector Disheveled; EGF: Epidermal growth factor; EGFR: EGF 
receptor; ERK: Extracellular signal-regulated kinase; Frizzled: A family of G-protein coupled receptor proteins that serve as receptors in the WNT/β-catenin signaling 
pathway; once activated: Frizzled leads to activation of Disheveled in the cytoplasm; GSK-3β: Glycogen synthase kinase 3β; HER2/neu: Human epidermal growth 
factor receptor 2, a cell membrane surface-bound receptor tyrosine kinase that is involved in the signal transduction pathways leading to cell growth and differentia-
tion; MEK: Kinases that phosphorylate mitogen activated protein (MAP) kinase (MAPK); mTOR: Mammalian target of rapamycin; PDGFR: Platelet-derived growth fac-
tor receptor; PI3K: Phosphatidylinositol-3-kinase; PTEN: Phosphatase and tensin homolog, regulates cell-survival pathway; RAF: A MAP kinase kinase kinase (MAP3K) 
that functions in the MAPK/ERK signal transduction pathway; a serine/threonine-specific kinase; RAS: Prototypical member of the RAS superfamily of proteins; activa-
tion of RAS signaling causes cell growth, differentiation and survival; the dysregulation of RAS signaling can lead to oncogenesis and cancer.
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IGF and EGF[78]. The expression of  both EGF and IGF 
receptors is upregulated in HCC and cirrhotic liver[79]. 
Accordingly, PI3K/AKT/mTOR signaling pathway may 
be a potential target for the development of  therapeutic 
approaches for HCC treatment. Also, WNT/β-catenin 
pathway is considered a promised therapeutic target 
of  HCC treatment, based on its potential role in the 
regulation of  major and early carcinogenic processes of  
HCC[80].

Ligands that bind to the EGFR, such as EGF, play 
a central role both in tumor angiogenesis and prolifera-
tion, via mechanism mediated by the activation of  RAF/
MEK/ERK and PI3/AKT/mTOR pathways[81]. Thus, 
based on their efficacy in the treatment of  most solid 
tumors, targeting of  EGF/EGFR signaling pathway may 
be beneficial for HCC treatment[82]. As a result, variable 
therapeutic targets have been developed based on the 
reliability of  this pathway as a relevant therapeutic target 
for tumor treatment. Thus, the current agents targeting 
EGFR in HCC includes erlotinib, lapatinip and gefitinib, 
as well as the monoclonal antibody cetuximab[83]. 

Based on the fact that the activation of  IGF signal-
ing pathway induced potent proliferative effects in he-
patocytes and thereby promotes the development and 
progression of  HCC, the targeting of  this signaling path-
way offers a relevant therapeutic intervention for HCC 
treatment. Thus, the inactivation of  IGF-1R can induce 
growth inhibition, apoptosis or cell cycle arrest[84,85]. Also, 
the blockade of  IGF-1R consequently leads to inhibition 
of  its downstream signaling pathways in solid tumors[86]. 
Therefore, the development of  a small-molecule inhibi-
tor for IGF-1R may be relevant for HCC treatment. The 
targeted therapies currently available or those under the 
development for HCC treatment together with their pos-
sible molecular targets are outlined (Figure 3).

CONCLUSION 
Hepatic angiogenesis sets an important point in the con-
trol of  HCC progression, its inhibition is considered a 
valuable therapeutic approach for HCC treatment. In 
recent years, several studies focused on the investigation 
of  cellular signaling mechanisms underlying HCC de-
velopment, progression and invasion. In addition to the 
genetic alterations, chronic liver diseases including HCV 
infection clearly has a major role in the development and 
progression of  HCC. Because chronic HCV infection is 
implicated in the modulation of  abnormalities in several 
critical molecular signaling pathways, the attention of  
clinicians and researchers has focused on the mechanistic 
role of  HCV infection in the regulation of  HCC-associ-
ated signaling pathways. These pathways include both ex-
tra and intracellular-mediated mechanisms, which among 
them are the MAPK, PI3K/mTOR, WNT/β-catenin 
and IGF, and growth factor associated angiogenic signal-
ing. Although a direct link between HCV infection and 
angiogenesis has been suggested in several studies, it is 
not clear, which factors actually drive the angiogenesis 

during the course of  HCV infection. Further analysis is 
needed to address, in detail, the molecular mechanisms of  
HCV-induced hepatic angiogenesis. The investigation of  
these mechanisms may help to improve current therapies 
and in the design of  an efficient alternative approach for 
HCC treatment. Thus, targeting signaling pathways that 
are directly involved in the regulation of  hepatic angio-
genesis may be a powerful strategy for HCC treatment.
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