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Abstract
In addition to complications relating to the liver, pa-
tients with cirrhosis and portal hypertension develop 
extrahepatic functional disturbances of multiple organ 
systems. This can be considered a multiple organ fail-
ure that involves the heart, lungs, kidneys, the immune 
systems, and other organ systems. Progressive fibrosis 
of the liver and subsequent metabolic impairment leads 
to a systemic and splanchnic arteriolar vasodilatation. 
This affects both the haemodynamic and functional 
homeostasis of many organs and largely determines 
the course of the disease. With the progression of the 
disease, the circulation becomes hyperdynamic with 
cardiac, pulmonary as well as renal consequences for 
dysfunction and reduced survival. Infections and a 
changed cardiac function known as cirrhotic cardio-
myopathy may be involved in further aggravation of 
other complications such as renal failure precipitating 
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the hepatorenal syndrome. Patients with end-stage 
liver disease and related complications as for example 
the hepatopulmonary syndrome can only radically be 
treated by liver transplantation. As a bridge to this 
treatment, knowledge on the mechanisms of the patho-
physiology of complications is essential for the choice 
of vasoactive drugs, antibiotics, drugs with specific ef-
fects on fibrogenesis and inflammation, and drugs that 
target specific receptors. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Patients with cirrhosis develop extrahepatic 
functional disturbances as a multiple organ failure that 
involves the heart, lungs, kidneys, the immune systems, 
and other organ systems. Fibrosis of the liver leads to 
a systemic vasodilatation that affects both the homeo-
stasis of many organ systems. The circulation becomes 
hyperdynamic, which is often further aggravated by 
infections. Changes in organ function involve the heart 
as a cirrhotic cardiomyopathy, the kidneys such as the 
hepatorenal syndrome and the lungs with development 
of a hepatopulmonary syndrome. Liver transplantation 
is often the only radical treatment and as a bridge to 
this treatment, knowledge on the mechanisms of the 
pathophysiology of complications is essential. 
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INTRODUCTION
Patients with chronic liver failure typically present with 
symptoms relating to the diseased liver. In particular 
patients with cirrhosis show clinical, biochemical, and 
pathophysiological signs of  structural and functional 
changes. Among these are alterations of  the synthetic, 
excretory, and metabolic capacity, immunologic and regu-
latory function of  hepatocytes, Kupffer cells, sinusoidal 
endothelial cells (SEC), biliary cells, and hepatic stellate 
cells (HSC). Impaired synthetic capacity of  the hepato-
cytes leads to coagulopathy and to low circulating albu-
min level and often to jaundice related to compromised 
excretion of  bilirubin and defects in conjugation[1]. When 
cirrhosis progresses the amount of  fibrosis increases 
with development of  regeneration nodules in the liver, 
which lead to portal hypertension[2]. Activation of  the 
HSC by bioactive substances contributes to the elevated 
portal pressure[3]. One of  the most important complica-
tions with relations to portal hypertension is bleeding 
from gastro-esophageal varices[4]. The combination of  
impaired hepatic degradation and porto-systemic shunt-
ing of  vasodilators leads to a splanchnic and arterial vaso-
dilatation with reduced splanchnic vascular resistance[5-7]. 
Over time a hyperdynamic, multi-organ failure syndrome 
develops with increased cardiac output and heart rate and 
decreased central blood volume[8-11]. Together with portal 
hypertension this leads to formation and perpetuation of  
ascites[12]. The hyperdynamic syndrome affects a variety 
of  organ functions such as the lungs with development 
of  the hepatopulmonary syndrome (HPS) and the heart 
with upcome of  a cardiovascular dysfunction, including 
cirrhotic cardiomyopathy[13]. Due to the systemic and 
splanchnic vasodilatation, vasoactive systems like the 
sympatho-adrenergic, renin-angiotension-aldosterone, 
and the vasopressin system become activated[14]. This me-
diates vasoconstriction within the kidney with increased 
risk of  development of  hepatorenal syndrome (HRS)[15,16]. 
Translocation of  bacteria from the gut to lymph nodes 
leads to complicating infections in relation to variceal 
bleeding and infected ascitic fluid as spontaneous bacte-
rial peritonitis (SBP)[17,18]. Impaired phagocytic activity in 
cells belonging to the reticulo-endothelial system such as 
the Kuppfer cells may facilitate infections, which further 
aggravates the circulatory dysfunction[19,20]. 

During the last decade it has become clear that 
chronic liver failure is not only limited to a decreased liver 
function, but also involves impairment of  most other 
organs in the body as part of  a multi-organ syndrome 
particularly relating to haemodynamic and homoeostatic 
disturbances. This review imparts to highlight contempo-
rary mechanisms of  extrahepatic haemodynamic compli-
cations to chronic liver failure in patients with cirrhosis 
and portal hypertension.

PATHOPHYSIOLOGY OF THE LIVER 
Structural and functional changes in cirrhosis
The microscopic human liver architecture is arranged in 

lobules with cords of  liver cells radiated to a central vein. 
The portal tract consists of  a triad containing a portal 
vein branch, a hepatic arteriole, and a bile duct[1]. Thus, 
the liver lobule is quantitatively formed by hepatocytes 
and cholangiocytes. In addition to these two primary epi-
thelial cell populations the liver hosts SEC, Kupffer cells, 
and HSC, see Figure 1[21-23]. 

The hepatocytes accounts for approximately 80% of  
the total liver cell mass[24]. The hepatocytes have essential 
physiological functions, such as regulation of  carbohy-
drate and lipid metabolism, clearance and inactivation 
of  drugs, ethanol, toxins and various hormones and 
vasoactive substances. A very important function of  the 
hepatocytes is the synthesis of  plasma proteins, including 
albumin, C-reactive protein, fibrinogen, complement, and 
coagulation factors. In patients with acute and chronic 
liver injury hepatocyte apoptosis plays a major role for 
the impaired metabolic function[25]. When the liver is 
exposed for toxic substances such as drugs, alcohol, and 
hepatitis B or C virus, fibrogenesis increases and initiates 
the cirrhotic process with development of  regeneration 
nodules with impairment of  hepatocyte function[26,27]. 
The impaired metabolic function results in compromised 
degradation of  various vasoactive substances, which is 
particularly important for the understanding of  the sys-
temic and splanchnic haemodynamic changes[28]. Atrial 
natriuretic peptide is cleared in the liver with extraction 
ratios of  22%-75%[29]. The hepatic extraction of  gluca-
gon has been determined by infusion studies and ranges 
10%-20% and hepatic extraction ratios of  adrenaline and 
noradrenaline are very high and ranges 63% to 67%[28]. 
Renin, angiotensin Ⅱ, substance P, vasopressin, and al-
dosterone are other important other bioactive substances 
with haemodynamic implications that are degraded in the 
liver[28].

Kupffer cells are liver macrophages and constitute 
80% of  all tissue macrophages of  the reticuloendothelial 
system on the body and about 15% of  the liver cells[24]. 
The Kupffer cells are important for the immune function 
of  the liver and act as antigen presenting cells of  bacteria, 
endotoxins, liopolysaccharide (LPS) and other antigens 
together with natural killer (NK) cells[30,31]. In addition, 
the Kupffer cells play an important role in the expression 
of  proinflammatory cytokines such as tumour necro-
sis factor-α (TNF-α), interleukin-1 (IL-1) and IL-6[32]. 
Furthermore, they play important roles in clearance of  
endotoxins, and in the defence of  microbial infections 
and contribute to the production of  the vasodilator nitric 
oxide[33]. 

HSC are located in the space of  Disse and they are in 
close contact with hepatocytes and SEC, Figure 1. They 
are rich of  vitamin A, which relates to their function as 
hepatic storage of  retinyl esters[34]. The HSCs are further-
more actively involved in fibrogenesis and metabolism. 
They are involved in matrix degradation and tissue inhibi-
tor of  metalloproteinase-1 (TIMP-1) has been shown to 
be a survival factor for HSC, and inhibition of  the ac-
tions of  TIMP-1 may be a target for antifibrogenic treat-
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ment[35,36]. HSC has important contractile properties with 
relation to the development of  portal hypertension[37]. 
Thus, vasoactive agents, such as endothelin-1 (ET-1), an-
giotensin-2, and trombin induces contraction[35,37]. From 
this point of  view the contraction of  HSC constitutes a 
reversible and dynamic component of  the increase in the 
hepatic flow and regulation of  the portal pressure[3]. This 
function is intimately associated with a counter regula-
tion by nitric oxide and carbon monoxide, which induce 
relaxation of  HSC and thereby ultimately reduces portal 
pressure[35,36]. The SECs possess highly specialised physi-
ological functions as they serve as a source of  several 
bioactive substances[38]. The cells are involved in regula-
tion and production of  proinflammatory cytokines and 
haemodynamically important vasoactive peptides and 
substances, including nitric oxide, ETs, prostanoids, and 
prostaglandins[39,40]. 

It can be concluded, that various cell types of  the 
liver are deeply involved in the haemodynamic changes 
and extrahepatic complications. Thus, impaired hepato-
cyte degradation of  vasoactive substances, production of  
vasodilators in the HSC and SEC, and impaired immune 
and clearance function of  Kuppfer cells inducing produc-
tion of  proinflammatory cytokines and substances are of  
importance for the development of  portal hypertension 
and directly involved in the pathophysiology of  extrahe-
patic hemodynamic complications. Increased portal pres-
sure leads to portosystemic shunts, and thereby increases 
the amount of  vasodilators and other compounds that 
bypass the liver metabolism and degradation. 

Fibrogenesis
The histological hallmark of  chronic liver failure is 
development and perpetuation of  fibrosis in the liver. 

Sustained fibrogenesis leads to cirrhosis, which is charac-
terized by distortion of  the liver parenchyma and reduc-
tion of  vascular architecture. The fibrogenetic process is 
like a wound-healing response to injuries and a balance 
between formation and degradation of  fibrotic tissue[35]. 
This process can be activated by injuries caused by for 
example viral hepatitis, alcohol intake, and autoimmune 
disorders. These stimuli primarily activate HSC into 
myofibroblasts-like cells with contractile, proliferative, 
and fibrogenic capacities and it is the primary cell type 
responsible for deposition of  extracellular matrix in the 
liver[34]. The HSCs are located in the subendothelial space 
between the hepatocytes, Kupffer cells, and SECs so they 
mutually interact through numerous cellular processes 
extending across the space of  Disse, see Figure 1[37]. 
Paracrine and autocrine activation of  HSCs by tumour 
growth factor-β1, which is considered the most potent 
fibrogenic cytokine, initiates the fibrotic process in the 
liver[35]. In addition, the HSCs cover various physiological 
functions, including activation of  the immune response, 
secretion of  cytokines, and angiogenesis[34]. The activa-
tion of  the HSC into myofibroblasts consists of  an 
initiation phase and a perpetuation, followed by a resolu-
tion phase. Resolution of  fibrosis refers to sequences of  
events such as apoptosis, senescence, or quiescence[27]. 
The inflammatory response plays an important role in 
fibrogenesis since inflammation always precedes fibro-
sis and immune activation induces fibrosis by bacterial 
LPSs[41]. Kupffer cells also activate HSC by increased 
NF-κB activity and secretion of  pro-inflammatory cyto-
kines, including TNF-α and monocyte chemoattractant 
protein[22,42]. Finally, NK cells have an anti-fibrotic effect 
by killing activated HSC. The contractile HSC contrib-
utes to the regulation of  the sinusoidal blood flow and to 
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Figure 1  Fibrogenesis after liver injury. Hepatic stellate cells are activated into myofibroblasts that deposit scar matrix in the Space of Disse.
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portal pressure and degree of  porto-systemic shunting 
increases and thereby the risk of  bleeding from oesopha-
geal varices[4,50,51]. This risk is further increased following a 
meal that augment the hepatic inflow[52]. Inversely, chang-
es in splanchnic haemodynamics may affect function of  
other organs and the existence of  a hepatorenal reflex 
has been debated for years. Experimental and clinical 
studies have provided support for a direct link between 
the liver and the kidneys[53,54]. In human cirrhosis, reduced 
renal blood flow following an increase in portal pressure 
and a concurrent increase in renal venous ET-1 suport 
this assumption[55,56]. There are now both clinical and ex-
perimental evidence of  a hepatic blood flow-dependent 
hepatorenal reflex and this is a primary pathophysiologi-
cal mechanism for renal dysfunction in liver disease[57]. 
This reflex is activated by adenosine in the space of  Mall 
and is regulated by hepatic blood flow[54] (Figure 2). 

The liver receives blood from both the hepatic artery 
and the portal vein. From a homeostatic point of  view 
this is unique, since it secures a constant blood flow to 
the liver through a hepatic arterial buffer system[58]. Ac-
cording to the hepatic arterial buffer hypothesis a reduc-
tion in portal blood flow will cause a local accumulation 
of  adenosine not washed away from the space of  Mall 
surrounding the hepatic arterial resistance vessels and this 
will lead to local vasodilatation[54,59]. The metabolic ho-
meostatic mechanisms maintain constant oxygen delivery, 
whereas the myogenic homeostatic mechanisms maintain 
a constant intravascular pressure[60]. 

Local regulatory mechanisms
A number of  hormones with vasoactive effects such as 
gastrin, vasoactive intestinal polypeptide, cholecystokinin, 
secretin, and glucagon are implicated in the fine-tuning 
of  the splanchnic haemodynamics of  the liver[11,61]. As 
previously mentioned, SECs and HSCs are intimately in-
volved in the regulation of  the sinusoidal blood flow and 
potent vasodilators such as nitric oxide, ET-1, and trom-
boxan-A2 play a role in the vasodilation/vasoconstriction 
balance and the dynamic component of  the increase in 
portal pressure in cirrhosis[40,62-65].

In conclusion, several homeostatic mechanism are in-
volved in maintaining blood flow and metabolism in the 
normal liver. During development of  cirrhosis and portal 
hypertension these mechanisms may not be adequate to 
meet the requirements of  the body and liver failure, met-
abolic insufficiency, and portal hypertension may develop.

ROLE OF INFLAMMATION, BACTERIAL 
TRANSLOCATION, AND INFECTION IN 
CIRRHOSIS
Patients with cirrhosis are more susceptible to bacterial 
infections and in particular SBP, urinary tract and pulmo-
nary infections, and Clostridium difficile infections[66,67]. 
The reduced ability to effective clearance of  bacteria 
primarily relates to impaired cellular immune function 

angiogenesis in the cirrhotic liver[37]. Thereby, the HSCs 
contribute to regulate intrahepatic blood flow and portal 
pressure. Together with SECs that excert a paracrine ef-
fect through nitric oxide synthesis, the HSC represent an 
important dynamic component of  the sinusoidal haemo-
dynamic resistance in cirrhosis. 

It can be concluded that the HSCs are the major fi-
brogenetic cells type in the injured liver and its numerous 
functions have disclosed important targets for effective 
antifibrotic therapies[36,43]. 

REGULATION OF SPLANCHNIC AND 
HEPATIC BLOOD FLOW
Homeostasis of  the hepatic blood flow is essential since 
the liver plays a major role in the clearance of  waste prod-
ucts, drugs, and hormones. The liver receives 25% of  the 
total resting cardiac output through the the hepatic artery 
and portal vein, the latter being responsible for 75% of  
the total hepatic blood flow[44]. The hepatic blood flow 
equals the ratio of  the hepatic venous pressure gradient 
and post-sinusoidal resistance. In case of  portal hyper-
tension, a substantial portal systemic collateral circulation 
develops together with an increased mesenterial inflow[45]. 
The hepatic blood flow can be measured by the indocya-
nine green clearance (ICG) method applying the Fick-
principle by measurements of  ICG-concentrations in the 
liver vein and in a peripheral artery[46]. 

To maintain metabolic homeostasis, the hepatic blood 
flow must be adjustable to full fill changing metabolic de-
mands. For example increased regional oxygen consump-
tion is followed by proportional increased blood flow 
to the splanchnic area[44]. However, the liver per se is not 
able to control the portal inflow and it is the splanchnic 
organs that drain into the portal vein that primarily de-
termine changes in portal venous blood flow. Therefore, 
different regulatory mechanisms are essential to maintain 
haemodynamic and metabolic homeostasis.

Extrinsic regulatory mechanisms
The splanchnic blood flow increases normally after 
a meal[47]. The mechanisms are largely unknown but 
splanchnic blood vessels are richly innervated by sympa-
thetic nerves from the prevertebral sympathetic ganglia 
and an increase in sympathetic nervous outflow is partly 
responsible for the initial increase in cardiac output to-
gether with mediators such as glucose and long-chain 
fatty acids[48]. The extrinsic neural control of  intestinal 
blood flow is predominantly through sympathetic vaso-
constriction mediated by alfa adrenoceptors. Sympathetic 
activity reduces intestinal blood flow by increasing the 
vascular resistance of  the arterioles and veins, and this is 
among the major effects on beta-blocking agents on he-
patic blood flow and portal pressure[4,14,49]. 

In normal conditions, the vascular compliance of  the 
liver is sufficient to maintain pressure homeostasis, but in 
cirrhotic patients with increased systemic vascular com-
pliance and reduced hepatic and portal compliance, the 

15502 November 14, 2014|Volume 20|Issue 42|WJG|www.wjgnet.com

Møller S et al . Extrahepatic complications to chronic liver disease



of  macrophages and monocytes, depressed neutrophil 
phagocytic and intracellular killing and deficiencies in the 
complement system[68-70]. Together with increased intes-
tinal permeability and gut bacterial overgrowth this im-
mune dysfunction facilitates transition of  bacteria from 
the gastrointestinal tract to mesenterial lymph nodes, 
see Figure 3[18,70]. Bacterial translocation of  especially 
Escherichia coli from the gut plays a significant role for 
the development of  spontaneous infections, in particu-
lar SBP[71]. Presence of  bacteria or bacterial products in 
splanchnic lymph nodes, ascitic fluid, or in the circulation 
significantly challenges the homeostatic haemodynamic 
balance and the hyperdynamic circulatory state. Bacte-
rial translocation activates monocytes and lymphocytes 
and increase the circulating levels of  pro-inflammatory 
cytokines such as TNF-α and IL-6 as a “cytokine storm” 
and subsequent activation of  nitric oxide[18,72]. This in-
flammatory response further augments the circulatory 
dysfunction and aggravates the vasodilatory state[73]. Sev-
eral surrogate markers of  bacterial translocation has been 
proposed. Lipopolysaccharide binding protein is synthe-
sised in the liver in response to bacteria and increased 
levels in cirrhotic patients correlate to the activation of  
different vasoactive systems, pro-inflammatory cytokines 
and nitric oxide[74]. Findings of  bacterial DNA may re-
flect presence of  bacterial components in body fluids and 
plasma, and preliminary studies have been promising[75], 
but the assessment is associated with significant technical 
challenges[76]. In patients with cirrhosis, infection of  the 
ascitic fluid as in SBP is frequent, and it is an important 

risk factor for the development of  circulatory and renal 
dysfunction[71,77,78]. Some patients may develop a systemic 
inflammatory response syndrome with fever, increased 
heart rate, respiratory failure and activated immune sys-
tem[79] and sepsis in case of  a confirmed bacterial etiol-
ogy[73]. Severe bacterial infections and in particular SBP 
are main causes for the development of  HRS as about 
33% of  patients with SBP develop HRS[80,81].

Bacterial translocation may be affected by measures 
that ameliorate bacterial overgrowth, intestinal permeabil-
ity, and immunity, Figure 3. Thus, anti-, pre,- and probiot-
ics and drugs that reduce the gastro-intestinal transit time 
may be of  benefit[82,83]. Beta-blockers may also reduce the 
gastrointestinal transit time and reduce bacterial over-
growth, and results of  a recent metaanalysis suggest that 
beta-blockers may even prevent SBP[84].

In conclusion, bacterial infections are important com-
plications in cirrhosis. The mechanisms are complex and 
bacterial translocation lead through activation of  pro-
inflammatory mediators to a homeostatic imbalance that 
may precipitate renal and circulatory failure and lead to a 
multiorgan failure syndrome.

SYSTEMIC CIRCULATION 
The circulatory homeostasis is largely intact in patients 
with early cirrhosis and portal hypertension. But with the 
progression of  the disease over the portal hypertensive, 
preascitic to the decompensated, portal hypertensive, as-
citic stage, there is an overall direct relation between the 
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Figure 2  Space of Mall is a small space of fluid surrounding a hepatic arteriole, a portal venule and a bile ductule. Adenosine is secreted into the space of 
Mall. A reduction in portal blood flow increases adenosine levels and leads to hepatic arteriolar vasodilataion and activation of sensory nerves after[54].
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severity of  cirrhosis e.g., reflected by the Child or MELD 
scores and the degree of  hyperdynamic circulation[85-89]. 

The pathophysiological origin for a variety of  extrahe-
patic complications is a splanchnic and systemic arteriolar 
vasodilatation that precedes renal sodium and water reten-
tion and plasma volume expansion[90]. According to the 
“peripheral arterial vasodilation hypothesis”[91], primary 
splanchnic arteriolar vasodilation leads to reduction of  
the overall systemic vascular resistance and in advanced 
disease, to avid arterial underfilling with low arterial 
blood pressure. A modification of  this, “the forward 
theory of  ascites formation” combines arterial underfill-
ing with a forward increase in hepatosplanchnic capillary 
pressure and filtration with increased lymph formation[90]. 
A reduced effective blood volume, which is that part of  
the blood volume where volume and baroreceptors are 
located, leads to activation of  vasoconstrictor systems 
and secondary sodium-water retention[90-93]. A number 
of  potent intrinsic vasodilators are implicated in this and 
summarised in Table 1. Particular focus has been given 
to nitric oxide, calcitonin gene-related peptide, and adre-
nomedullin. Other substances with vasodilating proper-
ties which have been implicated are natriuretic peptides, 
TNF-α, IL-6, substance P, vascular endothelial growth 
factor, and cannabinoids[65,94-102]. The delicate homeostatic 
balance between primary vasodilatating and counterregu-
latory vasoconstriction is significantly deviated towards a 
sustained systemic vasodilatation, in spite of  highly acti-
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Figure 3  Illustration of bacterial translocation from the gastrointestinal lumen through the epithelial layers and capillaries to the lymphalic vessels.

Table 1  Vasodilating and vasoconstricting forces involved in 
disturbed haemodynamics in cirrhosis (Alphabetic order)

Vasodilator systems
   Adenosine
   Adrenomedullin
   Atrial natriuretic peptide 
   Bradykinin
   Brain natriuretic peptide
   Calcitonin gene-related peptide 
   Carbon monoxide
   Endocannabinoids
   Endothelin-3 
   Endotoxin
   Enkephalins
   Glucagon
   Histamine
   Hydrogen sulphide
   Interleukins
   Natriuretic peptide of type C 
   Nitric oxide
   Prostacyclin (PGI2)
   Substance P
   Tumour necrosis factor-α
   Vasoactive intestinal polypeptide
Vasoconstrictor systems
   Angiotensin Ⅱ
   Adrenaline and noradrenaline
   Endothelin-1 
   Neuropeptide Y
   Renin-angiotensin-aldosterone system
   Sympathetic nervous system
   Vasopressin
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vation of  all vasoconstrictor systems. This is most likely 
related to a combination of  changes in receptor affinity, 
down regulation of  receptors and several post-receptor 
defects but future research should further disclose the 
pathophysiology[13,103].

In general, an increase in cardiac output can be at-
tributed to an increase in venous return, heart rate, and 
myocardial contractility, all of  which are controlled by 
the autonomic nervous system. Arteriolar dilatation, the 
presence of  arteriovenous communications, expanded 
blood volume, and enhanced sympathetic nervous activ-
ity may further raise the cardiac output; most of  these 
pathophysiological mechanisms may operate in advanced 
cirrhosis[6,11,14]. In early cirrhosis, the presence of  a hy-
perdynamic circulation is often not apparent. But with 
the progression of  the liver disease, there is an overall 
association to the degree of  hyperdynamic circulation. 
Studies on circulatory changes with posture suggest 
that the patients are mostly hyperdynamic in the supine 
position[104-107]. Blood and plasma volumes are expanded 
in advanced cirrhosis but the distribution between cen-
tral and non-central vascular areas is imbalanced[108-111]. 
Thus, by different techniques it has been established 
that the central and arterial blood volume is most often 
decreased, whereas the non-central blood volume, in 

particular the splanchnic blood volume is increased in 
animals and patients with cirrhosis[6,109,112,113]. The effec-
tive arterial blood volume and the central circulation 
time (i.e., central blood volume relative to cardiac output) 
are substantially reduced and bear a significant relation 
to poorer survival in advanced cirrhosis[114]. The haemo-
dynamic changes pertaining to specific vascular beds are 
shown in Table 2.

In the decompensated state, plasma volume expan-
sion is a prevailing feature and should be considered sec-
ondary to the activation of  neurohumoral mechanisms 
consequent on mainly splanchnic vasodilatation, low arte-
rial blood pressure, and reduced central and arterial blood 
volume. 

Evaluation of  systemic haemodynamic changes in 
clinical practice is complex. Even patients with early 
cirrhosis may exhibit a hyperdynamic circulatory state 
and a few patients with decompensated cirrhosis with 
considerable fluid retention may present a relatively nor-
mal circulation[86]. Recently, it has become apparent that 
patients with advanced disease and refractory ascites may 
have a suppressed cardiac output[115,116]. Moreover, phar-
macological treatment e.g., with β-blockers may attenuate 
a hyperdynamic circulatory state[86,117,118]. However, on 
a whole, there is a direct relationship between the state 
of  vasodilatation, the systemic circulatory derangement 
and the progression of  the liver disease, development of  
complications and prognosis.

CHANGES IN CARDIAC FUNCTION 
Subclinical impairment of  the function of  the cirrhotic 
heart has been known for 60 years[119]. However, it is only 
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Table 2  Circulatory changes in specific vascular beds in 
cirrhosis

Systemic circulation
   Plasma volume ↑
   Total blood volume ↑
   Non-central blood volume ↑ 
   Central and arterial blood volume ↓ (→)
   Cardiac output ↑
   Arterial blood pressure ↓ (→)
   Heart rate ↑
   Systemic vascular resistance ↓
   Arterial and total vascular compliance ↑ 
Heart
   Left atrial volume ↑
   Left ventricular volume → (↑)
   Right atrial volume → ↑ ↓
   Right ventricular volume → ↑ ↓
   Right atrial pressure → ↑
   Right ventricular end diastolic pressure →
   Pulmonary artery pressure → ↑
   Left ventricular end diastolic pressure →
Hepatic and splanchnic circulation
   Hepatic blood flow ↓ → (↑)
   Hepatic venous pressure gradient ↑
   Postsinusoidal resistance ↑
Renal circulation
   Renal blood flow ↓
   Glomerular filtration rate ↓ →
Pulmonary circulation
   Pulmonary blood flow ↑
   Pulmonary vascular resistance ↓ (↑)1

Cutaneous and skeletal muscle circulation
   Skeletal muscular blood flow ↑ → ↓
   Cutaneous blood flow ↑ → ↓

1Portopulmonary syndrome. ↑ → ↓ denote: Increased, unchanged, or de-
creased, respectively. Parenthesis denotes less frequent changes. 

Table 3  Characterization of cirrhotic cardiomyopathy

Definition
   A cardiac dysfunction in patients with cirrhosis characterised by 
   impaired contractile responsiveness to stress and/or altered diastolic 
   relaxation with electrophysiological abnormalities in the absence of 
   other known cardiac disease
Diagnostic criteria
   Systolic dysfunction
      Blunted increase in cardiac output with exercise, volume challenge 
      or pharmacological stimuli
      Resting EF < 55%
   Diastolic dysfunction
      E/A ratio < 1.0 (age-corrected)
      Prolonged deceleration time (> 200 ms)
      Prolonged isovolumetric relaxation time (> 80 ms)
Supportive criteria
   Electrophysiological abnormalities
   Abnormal chronotropic response
   Electromechanical uncoupling/dyssynchrony
   Prolonged Q-T interval
   Enlarged left atrium
   Increased myocardial mass
   Increased BNP and pro-BNP
   Increased troponin I

BNP: Brain natriuretic peptide; E/A: Early diastolic/atrial filling ratio; EF: 
Left ventricular ejection fraction.
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recently that the reduced function of  the heart has been 
associated with the development of  various complica-
tions of  cirrhosis. Results of  experimental and clinical 
studies have shown impaired myocardial contractility 
as well as electrophysiological abnormalities in cirrho-
sis, which have crystalized the clinical entity cirrhotic 
cardiomyopathy[13,120,121]. This term denotes a chronic 
cardiac dysfunction, characterised by blunted contractile 
responsiveness to stress and altered diastolic relaxation 
with electrophysiological abnormalities, such as prolon-
gation of  the Q-T interval, all occurring in the absence 
of  any other cardiac disease, Table 3[122,123]. This cardiac 
dysfunction may affect the prognosis of  the patients and 
aggravate the course during invasive procedures such as 
surgery, insertion of  a transjugular intrahepatic porto-
systemic shunt (TIPS), and liver transplantation[124-126]. 
The pathophysiological mechanisms include changes in 
the cardiomyocyte plasma membrane, attenuated func-
tion of  the beta-adrenergic pathway, and greater activity 
of  inhibitory systems[123,127]. Other studies have focused 
on negative inotropic effects of  nitric oxide, nitration of  
cardiac proteins, carbon monoxide, endogenous cannabi-
noids, bile acids, and endotoxins[128,129]. The mechanisms 
of  cirrhotic cardiomyopathy are summarised in Figure 4.

Systolic dysfunction
In patients with cirrhotic cardiomyopathy, cardiac failure 

may become manifest only under conditions of  haemo-
dynamic stress. Thus, the left ventricular end-diastolic 
pressure increases after exercise, but the expected in-
creases in cardiac stroke index and left ventricular ejec-
tion fraction (LVEF) are absent or subnormal, which in-
dicates an inadequate response of  the ventricular reserve 
to a rise in filling pressure[130]. A vasoconstrictor-induced 
increase of  30% in the left ventricular afterload results in 
a doubling in pulmonary capillary wedged-pressure, with 
no change in cardiac output[131]. This response may be 
useful in diagnosing cirrhotic cardiomyopathy. A similar 
pattern is seen after insertion of  TIPS, but the raised car-
diac pressures tend to normalise with time[132,133]. Some of  
these patients (12%) may develop manifest cardiac failure 
in association with the TIPS insertion[134]. A failure to 
increase cardiac output, despite increased ventricular fill-
ing pressure, indicates that normalisation of  the afterload 
impairs cardiac performance and unmasks left ventricular 
dysfunction[131].

LVEF reflects systolic function, even though it is very 
much influenced by preload and afterload. It has been re-
ported to be normal at rest in some studies and reduced in 
one study of  a subgroup of  patients with ascites[130,131,135]. 
After exercise, LVEF increases less in cirrhotic patients 
than in controls[130,136,137]. The reduced functional capacity 
may be attributed to a combination of  blunted heart rate 
response to exercise, reduced myocardial reserve, and pro-
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found skeletal muscle wasting with impaired oxygen ex-
traction[138,139]. By modern techniques like tissue-Doppler 
and speckle tracking echocardiography, it is possible also 
to detect systolic and diastolic dysfunction at rest[140,141] .

Diastolic dysfunction
The clinical significance of  diastolic dysfunction and its 
importance in cirrhotic cardiomyopathy has been ques-
tioned, as overt cardiac failure is not a prominent feature 
of  cirrhosis. However, there are several reports of  unex-
pected death from heart failure following liver transplan-
tation, surgical portocaval shunts, and TIPS[134,142]. These 
procedures involve a rapid increase in cardiac preload. 
In a less compliant heart, the diastolic dysfunction could 
be enough to cause pulmonary oedema and heart failure. 
This is consistent with the findings of  an increase in 
pulmonary artery pressure, pre-load, and diastolic dys-
function after TIPS[132]. Diastolic dysfunction affecting 
left ventricular filling may progress to systolic dysfunc-
tion[123,143]. The pathological basis of  the increased stiff-
ness of  the left ventricle seems to be cardiac hypertro-
phy, patchy fibrosis, and subendothelial oedema[131,136,144]. 
Decreased E/A ratio and delayed early diastolic transmi-
tral filling with prolonged deceleration and isovolumetric 
relaxation times indicate diastolic dysfunction on the 
Doppler echocardiogram and corresponding characteris-
tics on the tissue-Doppler and speckle tracking echocar-
diography[131,140,141,145]. 

Q-T interval prolongation
In cirrhotic patients, the Q-T interval is prolonged and 
significantly related to the severity of  the liver disease, 
portal hypertension, portosystemic shunts, elevated brain 
type natriuretic peptide (BNP) and pro-BNP, elevated 
plasma noradrenaline, decreased heart rate variability, and 
reduced survival[122,124,146-149]. The prolongation of  the Q-T 
interval is partly reversible after liver transplantation and 
beta-blocker treatment[146,150]. Recently, it has been docu-
mented that gastrointestinal bleeding further prolongs 
the Q-T interval in cirrhosis and independently predicts 
bleeding-induced mortality[151]. The prolonged Q-T in-
terval in cirrhosis should be considered an element in 
the cirrhotic cardiomyopathy and may be of  potential 

use in the stratification and identification of  patients at 
risk[149,152].

Taken together, cirrhotic cardiomyopathy encom-
passes impaired contractility and diastolic relaxation, and 
electrophysiological abnormalities in particular prolonged 
Q-T interval. Independent of  aetiology of  cirrhosis, sys-
tolic dysfunction can be diagnosed at rest by for example 
tissue-Doppler imaging or demasked by physical or phar-
macological stress. Diastolic dysfunction can be detected 
by echocardiography or tissue-Doppler imaging. Cirrhotic 
cardiomyopathy may aggravate complications such as 
gastro-intestinal bleeding and development of  the HRS. 
Liver transplantation may revert the cardiac dysfunction 
but surgery and TIPS insertion may also aggravate the 
condition.

CHANGES IN PULMONARY FUNCTION
Pulmonary dysfunction involves diffusing abnormalities 
with development of  the HPS and portopulmonary hy-
pertension (PoPH) in some patients with cirrhosis. The 
circulatory and neuroendocrine derangements seem to 
play important roles in the hepatopulmonary dysfunction 
and these aspects should be taken into account in the 
management of  diffusing and oxygenation-related com-
plications of  cirrhosis. Below are the two main entities 
HPS and PoPH shortly considered and the pathophysi-
ological differences summarised in Table 4.

HPS
A condition with reduced diffusing capacity, abnormal 
ventilation/perfusion ratio and intrapulmonary vascular 
dilatations, and low arterial oxygen saturation in associa-
tion with liver disease and absence of  cardiopulmonary 
disease is termed HPS[153-156]. Arterial deoxygenation is 
reflected by a widened alveolar-arterial oxygen gradient 
(PA-aO2)[88,157]. The frequency of  HPS in patients with cir-
rhosis is variably reported from 5%-50% according to the 
type of  population with respect to aetiology, geography, 
etc [154,156,158-160]. The pathophysiological hallmark of  HPS, 
is dilatations of  capillaries near the alveolar areas, see Fig-
ure 5. Fallon et al[153] have recently reported increased pul-
monary vascular endothelial nitric oxide synthase (NOS) 
and increased production of  cholangiocyte ET-1 and 
increased expression of  ET-B receptors[161,162]. Recently, 
pulmonary angiogenesis have been implemented in the 
development of  this complicated pathophysiology[163].

From a practical point of  view HPS is defined by arte-
rial hypoxaemia [PaO2 < 70 mmHg (or 9.3 kPa)], an age-
adjusted increase in PA-aO2 > 15 mmHg (or 2.0 kPa) and 
presence of  intrapulmonary vasodilatations[154,162]. A large 
proportion of  patients with HPS present with insidious 
onset of  dyspnea, plathypnea (upon standing), orthodeoxia, 
clubbing, and cyanosis[164]. The diagnosis requires arterial 
blood gas measurements and calculation of  PA-aO2, Con-
trast-enhanced echocardiography (CEE) is today consid-
ered the most sensitive test and method of  choice in the 
diagnosis HPS[156], but also injection of  macroaggregated 
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Table 4  Diagnostic criteria for the hepatopulmonary syn-
drome and portopulmonary hypertension

HPS PoPH

Presence of liver disease Presence of liver disease and portal 
hypertension

PA-aO2 > 15 mmHg 
(> 2 kPa)

Mean pulmonary arterial pressure 
> 25 mmHg

Positive contrast enhanced 
echocardiography1

Pulmonary vascular resistance > 240 
dyn·s·cm-5 left atrial pressure < 15 mmHg

1Visualisation of microbubbles in the left heart chambers within three or 
more cardiac cycles implies definite intrapulmonary vascular dilatation. 
PA-aO2: Alveolar-arterial oxygen gradient; PoPH: Portopulmonary hyper-
tension; HPS: Hepatopulmonary syndrome.
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albumin with estimated the extra-pulmonary shunt frac-
tion > 6% indicates presence of  HPS[165]. Currently, the 
following criteria for HPS are: (1) Presence of  liver dis-
ease; (2) PA-aO2 ≥ 15 mmHg (2.0 kPa); and (3) a positive 
CEE (Table 4).

At present there is no effective medical therapy for 
HPS. Insertion of  TIPS has been reported to be success-
ful, but it may result in increased pulmonary pressures 
and is therefore not recommended[166,167]. Since HPS is re-
versible after liver transplantation, it has become an indi-
cation for urgent liver transplantation and the long-term 
outcome after LT in HPS is increasingly favorable[168,169]. 

Portopulmonary hypertension 
PoPH is defined as a mean pulmonary artery pres-
sure > 25 mmHg and pulmonary vascular resistance 
>240 dyn•s•cm-5, and normal left atrial pressure (< 15 
mmHg), see Table 4[154,170,171]. The histological appearance 
of  pulmonary vessels is similar to that seen in primary 
pulmonary artery hypertension, and includes smooth 
muscle proliferation, hypertrophy, and fibrosis[154]. Vari-
ous pathophysiological aspects seem to be involved in 
the development of  portopulmonary hypertension, 
including vasoproliferation, genetics, and inflammation 
with increased pulmonary phagocytosis[154]. Of  particular 
interest is the activation of  potent local vasoconstrictor 
systems, like serotonin and the ET system. ET-1 is pro-
duced in the pulmonary endothelium and binding to ETA 
and ETB receptors on the pulmonary smooth muscle 
cells leads to vasoconstriction[172-175]. Symptoms are typi-
cally progressive and include fatigue, chest discomfort, 
exertional dyspnoea, oedema, and syncope[175,176]. The 
median survival in patients with PoPH is considered low, 
about six months[177] and lower than in patients with idio-
pathic pulmonary hypertension[171]. The diagnosis can be 

based on radiological, echocardiographic, lung functional, 
and haemodynamic findings. Pulmonary function tests 
often show reduced lung volumes, diffusing capacity, 
and forced vital capacities and widened PA-aO2

[178]. For 
purposes of  screening, Doppler-echocardiography can be 
used to estimate pulmonary pressures and right ventricular 
systolic pressure. Right ventricular systolic pressure thresh-
olds from > 30 to > 50 mmHg as cutt-off  limits are still 
discussed[156,179]. 

Different medical treatments that modify the circula-
tion have been applied. These include prostacyclin analogs 
such as epoprosterol[180], ET receptor antagonists such as 
bosentan[180,181], and phosphodiesterase-5 inhibitors such as 
sildenafil[182]. The effects of  these drugs are however mod-
est. TIPS and liver transplantation are not treatment op-
tions of  choice in these patients sice a mean pulmonary 
artery pressure > 35 mmHg is associated with increased 
mortality following liver transplantation[168,183,184]. 

In conclusion, a considerable number of  cirrhotic 
patients present with changes in pulmonary vascular re-
sistance, impaired ventilation, and hypoxaemia as part of  
HPS or PoPH. Although, the prevalence varies, the cir-
culatory and neuroendocrine derangements seem to play 
important roles in the clinical aggravation, hepatopulmo-
nary dysfunction, and circulatory reactivity of  these enti-
ties. Therefore these pathophysiological aspects should 
be taken into account in the clinical management of  the 
patient with cirrhosis and pulmonary dysfunction.

CHANGES IN RENAL FUNCTION
Acute kidney injury (AKI) is frequent in patients with 
cirrhosis and determines the prognosis in advanced cir-
rhosis. HRS denotes a functional and partly reversible 
impairment of  renal function. HRS is precipitated by 
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creased alveolar-arterial oxygen gradient owing to diffusion limitations and development of intrapulmonary right-to-left shunts leading to arterial hypoxaemia.
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factors that aggravate the effective hypovolaemia in de-
compensated cirrhosis, by lowering arterial pressure and 
cardiac output and enhance sympathetic nervous activity.

Acute kidney injury in cirrhosis
Acute renal failure is estimated to occur in approximately 
20% of  hospitalized patients with cirrhosis[185]. Several at-
tempts have been made to achieve agreement on a more 
precise definition of  AKI. AKI has been defined as an in-
crease in serum creatinine ≥ 133 µmol/L (≥ 1.5 mg/dL) 
or an increase > 50%, but initiatives from the Acute Kid-
ney Injury Network and others have defined AKI as an 
absolute increase in serum creatinine > 26.4 µmol/L (≥ 
0.3 mg/dL) (or a 50% increase over 48 h)[186]. Differential 
diagnosis of  AKI in cirrhosis is difficult as it ranges from 
pre-renal AKI (45%), intra-renal AKI including acute tu-
bular necrosis and glomerulonephritis (32%), HRS (23%), 
and seldom post-renal AKI (< 1%).

HRS
Approximately 20% of  the cirrhotic patients with ascites 
who are resistant to diuretics, progress to HRS[187]. HRS 
denotes a functional prerenal failure that is unresponsive 
to volume expansion in patients with chronic liver disease 
and ascites without significant morphological changes 
in renal histology, and with a largely normal tubular 
function (Table 5)[78,188]. The prognosis of  patients with 
a full-blown HRS is poor ranging from days to weeks 
and liver transplantation is the only radical treatment for 
the HRS[187,189]. Two types of  HRS have been defined 
depending on the rapidness and the extent of  the renal 
failure[78,190,191]. Type-1 HRS is an acute form with a rapid 
decrease in renal function and renal failure as an indepen-
dent predictive factor; type-2 HRS is a chronic form with 
a more stable renal dysfunction[191,192].

Pathophysiology of HRS
 The major elements in the development of  HRS are the 
diseased liver, the circulatory dysfunction with vasodi-
latation and lowering of  the arterial blood pressure, the 
abnormal systemic neuro-humoral regulation with activa-
tion of  the sympathetic nervous system which alters re-
nal autoregulation, a cardiac dysfunction due to cirrhotic 
cardiomyopathy with a pre-terminal decline in cardiac 

output[40,193,194]. These aspects are summarised in Figure 6.
Low systemic vascular resistance, central hypovolae-

mia, reduced baroreflex sensitivity, and abnormal renal 
autoregulation play a pivotal role in the circulatory dys-
function[111,193,195]. In patients with increased sympathetic 
nervous activity, the autoregulation curve may be shifted 
towards the right side[193]. Because of  this, even minor 
reductions in arterial blood pressure may be harmful to 
renal perfusion. Thus, the renal blood flow decreases with 
the advancement of  the clinical stage of  liver dysfunc-
tion[196] and in these patients low arterial pressure relates 
to survival[11,85,197]. Cirrhotic cardiomyopathy has been 
described as a condition with impaired contractile re-
sponsiveness to stress and altered diastolic relaxation[123]. 
With the progression of  the disease, the reduction in the 
systemic vascular resistance becomes so severe that the 
hyperdynamic cirrhotic heart is unable further to increase 
the high cardiac output, which leads to an underfilling of  
the central vascular bed and effective central hypovolae-
mia[111,188,198]. There is now evidence from several stud-
ies of  a relation between the terminal decline in cardiac 
output and the progression of  the disease, development 
of  HRS, and survival[115,116]. We have therefore recently 
hypothesized a cardiorenal interaction in patients with 
advanced cirrhosis and renal dysfunction that refers to a 
condition where cardiac dysfunction in cirrhosis is a ma-
jor determinant of  the course of  patients who develop 
HRS[199] (Figure 7). 

Bacterial translocation from the gut plays a significant 
role for spontaneous infections and the circulatory dys-
function characterised by aggravation of  vasodilatation 
elicited by an inflammatory response with the production 
of  proinflammatory cytokines such as TNF-α and IL-6 as 
a “cytokine storm”[72]. SBP is frequent in patients with cir-
rhosis and is an important risk factor for the development 
of  circulatory dysfunction and HRS (Figure 3)[71,77,78].

The future in terms of  therapy will probably attack 
different aspects in the pathophysiological process. A 
multi-target strategy should seek efficiently to counteract 
the arterial vasodilatation, central hypovolaemia, and arte-
rial hypotension by administration of  potent vasocon-
strictors such as terlipressin combined with human serum 
albumin. Development of  orally long-acting systemic 
vasoconstrictors should be encouraged. All patients with 
HRS including those who respond to terlipressin and 
albumin should be properly prioritized on the waiting list 
for liver transplantation. 

CHANGES IN ADRENAL FUNCTION
Increased cortisol levels due to activation of  the hypo-
thalamus-pituitary-adrenal axis represent an important 
adaptive mechanism in critical illness, regulating inflam-
mation and cardiovascular response to the sympathetic 
nervous system. Circulating cytokines, such as TNF-α 
and IL-6, might impair pituitary responsiveness leading to 
inadequate cortisol secretion[200,201]. This has been termed 
relative adrenal insufficiency (RAI), which is associated 
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Table 5  New diagnostic criteria for the hepatorenal 
syndrome from the International Ascites Club (2013)[192]

Cirrhosis with ascites
Serum creatinine > 133 mmol/L (1.5 mg/dL)
No improvement of serum creatinine (decrease to a level of < 
133 mmol/L) after at least 2 d with diuretic withdrawal and volume 
expansion with albumin. 1 g/kg of body weight per day up to a 
maximum of 100 g/d
Absence of shock
No current treatment with nephrotoxic drugs
Absence of parenchymal kidney disease as indicated by proteinuria > 
500 mg/d, or microhaematuria, (> 50 red blood cells per high power 
field) and /or a normal renal ultrasonography
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with more pronounced hemodynamic instability, vaso-
pressor dependency and increased mortality in critically 
ill patients[202,203].

In addition, RAI has been reported in cirrhosis as 
part of  a hepato-adrenal syndrome with inhibition of  
ACTH and CRH due to high levels of  pro-inflammatory 
cytokines[203,204]. Since patients with adrenal insufficiency 
may exhibit similar characteristics in terms of  cardiac 
dysfunction, we recently hypothesized that adrenal in-
sufficiency may contribute to cirrhotic cardiomyopathy 

and to precipitate HRS[200]. The relation between cardiac 
dysfunction and development of  HRS should therefore 
be focus for treatment strategies that seek to improve 
cardiac function[116].

CONCLUDING SUMMARY
The recent years have considerably improved our knowl-
edge on the mechanisms of  disease processes in chronic 
liver disease. The cellular and humoral responses related 
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Figure 6  Pathophysiological mechanisms in the development of ascites and the hepatorenal syndrome. SNS: Sympathetic nervous system; RAAS: The renin-
angiotensin-aldosterone system; AII: Angiotensin II; ET-1: Endothelin-1; NO: Nitric oxide; PGs: Prostaglandins.
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to the fibrogenesis, inflammation, and bacterial trans-
location have been shown to be highly involved in the 
development of  portal, splanchnic, and systemic haemo-
dynamic complications to chronic liver disease. These 
extra-hepatic complications comprise changes in numer-
ous organ systems as a multi-organ failure syndrome. 
The arterial vasodilatation and the general increased 
vascular compliance are directly linked to the cardiac and 
circulatory changes and to pulmonary haemodynamics 
and function. In conditions such as HRS and PoPH a 
preferential reactive and counter-regulatory vasoconstric-
tion is prevailing. The function of  the heart in cirrhosis is 
disturbed, with a hyperdynamic circulation with increased 
cardiac output and heart rate. Cardiac performance and 
the systolic and diastolic functions are clearly impaired 
and may contribute to other complications such as HRS 
as part of  a cardio-renal syndrome.

Knowledge on the mechanisms of  development of  
complications is crucial with respect to choice of  vaso-
active drugs, drugs with specific effects on fibrogenesis 
and inflammation, and drugs that target specific recep-
tors. Although major unsolved questions remain, the 
circulatory and humoral derangements play important 
roles in the clinical aggravation of  renal complications, 
cardio-pulmonary dysfunction, and circulatory reactivity. 
This aspect is important to take into account in futures 
research programmes and in the clinical handling of  the 
cirrhotic patient. 
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