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Abstract

Introduction—Metastatic brain tumours remain an intractable clinical problem despite notable 

advances in the treatment of the primary cancers. It is estimated that 30–40% of breast and lung 

cancer patients will develop brain metastases. Typically, brain lesions are not diagnosed until 

patients exhibit neurological symptoms because there are currently no tests that can predict which 

patients will be afflicted. Brain metastases are resistant to current chemotherapies, and despite 

surgical resection and radiotherapy, the prognosis for these patients remains very poor with an 

average survival of only 6–9 months. Cancer is ultimately a genetic disease, involving patient 

genetics and aberrant tumour genomics; therefore the pursuit of an explanation for why or how 

brain metastases occur requires investigation of the associated somatic mutations.

In this article, we review the current literature surrounding the molecular and genome-based 

mechanistic evidence to indicate driver oncogenes that hold potential biomarkers for risk, or 

therapeutic targets for treatment of brain metastases.

Conclusion—Patients afflicted with metastatic brain tumours are in dire need of more effective 

therapies, and clinicians need predictive laboratory tests to identify patients at risk of developing 

metastatic brain tumours. The as yet unrealized comprehensive analysis of metastatic brain tumour 

genomics is necessary to meet these needs. Moreover, without improved understanding of the 

genomic aberrations that drive metastatic brain tumours, development of biomarkers and 

molecularly targeted therapies will remain stalled and patient outcomes will continue to be dismal.

Introduction

Incidence and current therapeutic options

There are approximately 200,000 newly diagnosed cases of brain metastases annually in the 

United States, 10-fold greater than primary brain cancer1,2. Current estimates indicate that 

up to 40% of patients with a systemic primary cancer will develop a metastatic brain tumour 

(MBT)3. A majority of brain metastases come from lung cancer (50–60%); secondarily from 

breast cancer (20–30%); third melanoma (5–10%) and various cancers, including 

gastrointestinal, oesophageal, prostate and ovarian that combined contribute 5–10%3–14 
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(summarized in Figure 1). Improved treatments for primary cancers are allowing patients to 

live longer, leading to increased incidence of MBTs4,15,16.

Brain metastases are among the most feared complications for cancer patients because of 

diminished quality of life and a lack of effective chemotherapies. There are no predictive 

biomarkers to identify patients at risk to develop brain metastasis, and the healthcare system 

cannot bear the burden to screen all cancer patients for early detection of MBTs. Metastatic 

lesions are discovered when a patient presents with neurological symptoms; then, if left 

untreated, median survival is 1 month. The standard course of treatment for patients with 

controlled systemic disease is microsurgical resection plus radiation (whole-brain radiation 

therapy and/or stereotactic radio-surgery), extending median survival to 9–10 months17,18. 

Patients receiving radiation alone have a median survival of 4–6 months17,18. 

Chemotherapeutic agents are not effective, partly attributed to their limited ability to 

penetrate the blood–brain barrier (BBB)19,20. Although new therapies are in development to 

penetrate the BBB21,22, recent evidence also suggests that the BBB may not be intact in 

patients with brain tumours. Promising preliminary studies indicate that molecularly targeted 

therapies (small-molecule kinase inhibitors against activated oncogenes) can cross the 

BBB23,24 and correlate with modest improved outcomes25–28. Selected independent case 

studies report marked tumour regression and sustained response29–31.

The vast majority of MBTs develop from primary lung and breast cancers. The frequency at 

which lung and breast cancer patients develop brain metastases is approximately 25% and 

approximately 30%, respectively, but differs more specifically according to the histology or 

molecular subtypes of the systemic disease (described in detail in Figures 2 and 3)9,32–40. 

Stephen Paget first posited that the non random pattern of metastasis linked to specific 

primary cancers was not due to chance and that formation of metastatic tumours depends on 

interactions between the microenvironment of the metastatic site and the metastatic cancer 

cells41–43. Herein, we focus our review on this broadly accepted concept and what is known 

about the stages of metastasis as they relate to the understanding that cancer is ultimately a 

genetic disease with pathological phenotypes driven by oncogenic, somatic mutations.

Discussion

Stages in the metastatic process

Metastatic biological processes, including the role of microenvironment and the ability of 

cancer cells to transverse the BBB, have been extensively reviewed in great detail 

elsewhere44–46. Briefly, the stages of metastasis comprise, in temporal order of occurrence, 

local invasion, survival in the circulation, intravasation, extravasation, micrometastasis 

formation and metastatic colonization. Invasion depends upon an epithelial to mesenchymal 

transition (EMT) where epithelial cell traits are suppressed and mesenchyme cell traits are 

activated, losing cell polarity and cell–cell adhesion. Underlying EMT is a gene expression 

program regulated by epigenetic changes across the genome and aberrant expression of key 

transcription factors and micro-RNAs45,47,48. New evidence describes further complexity, 

where a reversal of the EMT process is required for colonized metastatic cells to 

proliferate49,50. This potential phenotypic plasticity is consistent with epigenetic principles 

inherent to the hierarchically organized cancer stem cell model, where cancer stem cells 
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undergo irreversible epigenetic changes to produce phenotypically diverse cancer cells51. 

Additional work does suggest that with the EMT process, cancer cells also acquire stem cell-

like traits52. The resulting ‘cancer stem cells’ represent a minor subset of cells within a 

tumour. They maintain the capability for unlimited self-renewal, have the ability to seed new 

tumours and are a potential cell type from the primary tumour that initiates a metastatic 

lesion52.

Relatively large numbers of circulating tumour cells can be detected in the blood of 

carcinoma patients, including those who do not clinically develop distant metastases53. Of 

those numbers of circulating cells, approximately 80% undergo extravasation. However, 

once implanted at distant sites, fewer than 3% of cancer cells survive to form 

micrometastases and fewer than 0.1% persist to metastatic macro-colonization54,55. Macro-

colonization is described as the rate-limiting step in metastatic tumour formation45. A 

related mechanistic hypothesis, consistent with the clinical observation of long latency 

periods for distant relapse following initial diagnosis56, posits that during the latent period, 

cancer cells, and likely also the surrounding microenvironment57, undergo gradual evolution 

to acquire molecular aberrations advantageous for metastatic colonization either because 

micrometastatic cell growth and death are equal or by discontinuous growth and periods of 

quiescence45,58. However, for brain metastasis from lung and breast cancers, the latency 

period is relatively short. The median latency from breast cancer diagnosis to MBTs is 34 

months (with HER2 positive developing more quickly) and lung cancer-derived MBTs are 

detected within months of the initial diagnosis9,59–61. This suggests a different course for 

MBTs in which only a subset of cells (possibly stem cells) in the primary tumour has the 

molecular prerequisites for all metastatic stages. Alternative to a stem cell hypothesis, 

selection pressures within progressing primary tumours give rise to clonal evolution of 

tumour cells with acquired genetic variations and increased malignant or metastatic 

potential51,62. In line with this hypothesis, metastatic potential and inherent resistance 

against selective pressures are coincident with heightened genetic instability63.

The unique environment of the brain compared to other organs presents an optimum 

environment for metastatic progenitor cells arising from particular tissues, fitting with the 

nonrandom pattern of metastasis. While tropism and anatomical limitations are also thought 

to be pre-determinants, strong evidence suggests that the dominant influence is the nature of 

compatibility between the primary cell of origin and the site of metastatic colonization. et al. 

established this with a rodent xenograft model of human metastatic melanoma in which the 

same number of micrometastases was identified in the parenchyma of lung and kidney 

tissues embedded side by side; but metastatic tumours only developed in the lung fragment 

and not in the kidney fragment43.

Details of the biology of brain metastases are still emerging, but it appears that multiple 

widely expressed mechanisms in cancer cells are able to support intravasation, survival in 

circulation, extravasation and micrometastasis. However, a more select oncogenic 

mechanism drives colonization and growth. Putatative oncogenic drivers of brain metastasis 

and whether they exist in the primary tumour or are acquired in disseminated cells are 

further addressed below.
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Oncogenes and tumour suppressors

Decades of research have contributed to the understanding that carcinogenesis is governed 

by the activation of oncogenes and inactivation of tumour suppressor genes. Oncogenes are 

activated by various mechanisms including gain-of-function sequence mutations, 

overexpression due to genomic amplification or deregulated epigenetics and genomic 

rearrangements64,65. Tumour suppressors, factors that otherwise slow normal cell growth 

processes or promote tissue differentiation, are inactivated by genomic lesions resulting in 

loss-of-function. Thus, within the tumour genome, the causes for initiation and progression 

of the disease can be found. Important clinical advances in primary cancer treatments are 

attributed to molecularly targeted treatments tailored to target activated oncogenes, e.g. 

HER2, EGFR, MET and BRAF64. Their aberrant presentation in the primary tumour 

genome presents a biomarker to indicate the efficacy of the targeted treatment. Moreover, 

oncogenic factors often possess kinase or ligand-binding function that present ‘druggable’ 

protein motifs66. The benefits of targeted treatments over traditional chemotherapy are clear, 

resulting in greater efficacy and less debilitating side effects67–69.

The success of driver oncogene-targeted therapies against specific primary cancers can also 

be attributed to the fact that oncogene-directed signalling promotes the many phenotypes 

that define the pathobiology of cancer cells including unrestricted growth, immune system 

evasion, metabolic transformation, invasive potential and cancer cell tumourigenicity (local 

and metastatic)70,71. This wide array of biological impacts suggests that somatic genome 

mutations effecting activated oncogenes and inactivated tumour suppressors are likely 

causally implicated in all stages of MBT development.

Genomic mutation landscape of metastatic brain tumours

Early studies indicate that molecularly targeted therapies in the form of small-molecule 

kinase inhibitors and monoclonal antibodies against activated oncogenes can elicit a 

response in the treatment of metastatic tumours and potentially reduce the rates of metastatic 

recurrence25–30,72,73. On the other hand, increased incidence of MBTs in patients with 

controlled primary cancer and peripheral metastasis has also been attributed to the 

inefficiency of targeted drug transfer across the BBB16. Although further investigation is 

required, each of these data indicates that an oncogene mechanistically linked to the primary 

cancer is also implicated in driving the incidence of MBTs. This scenario may apply to the 

mutated expression of BRAF oncogene in metastases from melanoma27, aberrant levels of 

HER2 oncogene in breast cancer brain metastases30 and mutated EGFR oncogene in lung 

cancer brain metastases28.

The potential importance of BRAF, HER2 and EGFR for brain metastasis was identified 

based on knowledge of their driver oncogene status and frequency of mutation in the related 

primary cancer. Their specific oncogenic role and frequency of mutation in MBTs remain to 

be ascertained. Additionally, it is unclear if for a given oncogene certain types of activating 

mutations are more often represented in brain metastases, as early evidence suggests74,75. 

Studying these unknowns will explain why brain metastases develop in cases where 

systemic disease is treated with targeted therapies and why treating MBTs has had only 

modest effects and no impact on therapy options. An important starting point is 
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comprehensive genomic characterization of MBTs compared to their primary cancers, 

particularly the well-characterized molecular breast and lung cancers subtypes. Despite the 

large number of patients afflicted, the characterization of significant cancer-linked genomic 

copy number aberrations, rearrangements and sequence mutations in MBTs is only in its 

infancy.

Gene coding mutations—Most studies to date that have examined somatic DNA coding 

mutations in MBTs have been biased towards the activating mutations in oncogenes or 

tumour suppressors previously associated with the primary cancer. A limited study that 

included DNA from 10 melanoma metastases measured a panel of BRAF, NRAS, AKT, 

PIK3CA and KIT activating mutations using a highly sensitive primer extension, and mass 

spectrometry approach showed that BRAF activating mutations were the most frequent and 

secondarily NRAS, similar to primary melanoma76. A later study using Sanger sequencing 

identified BRAF and NRAS mutations in both primary melanoma and matched brain 

metastases from 44 patients at 80% consistency77. Another study measured mutations in 19 

oncogenes, including BRAF, KRAS, NRAS and PIK3CA, by high-resolution DNA melting 

analysis of specimens from matched brain metastases and primary colorectal cancer. The 

study recapitulated that KRAS mutations were a more common event in colorectal cancer 

and that 9 of 10 matched brain metastases were 100% concordant with mutations observed 

in the primary cancer78. A breast cancer study that analysed 39 matched pairs of primary 

breast cancers and brain metastases using primer extension mass spectrometry investigated 

mutations in EGFR, HRAS, KRAS, NRAS and PIK3CA79. NRAS and PIK3CA mutations 

were identified independently in samples from two patients, in both the primary and 

metastatic specimens. An EGFR mutation was identified in breast cancer from a single 

patient, but not in the matched metastasis79.

From studies of Japanese populations, the frequencies of EGFR mutations in MBTs from 

non-small cell lung cancer (NSCLC) are similar to those reported for the primary tumour in 

the same population80,81. Results from studies investigating EGFR mutations in NSCLC-

derived MBTs from Caucasian patients indicate that the mutation frequency in EGFR is 

≤2%82–84, markedly less frequent than the estimated 10% in NSCLC primary tumours85. 

However, where a mutation was discovered in the metastasis, it was concordant with a 

mutation in the primary cancer. These results indicate that coding mutations in the 

investigated oncogenes are either equivalent or less represented in the MBT compared to the 

primary tumour, although the body of work is inadequate to draw any conclusions with 

certainty. However, evidence suggests that the incidence of mutations in tumour suppressor 

genes may increase in metastatic cancer86.

Whether or not an implicated driver oncogene is discovered in both the primary and 

metastatic cancer or solely in the brain metastasis is an important distinction that provides 

rationale for adapting targeted treatments, or developing predictive biomarkers for MBTs. 

Ding et al. directly investigated whether processes leading to macrometastases are driven by 

mutations that pre-exist in primary tumour cells or arise at the distant site using massively 

parallel DNA sequencing methods to analyse three related specimens: a primary triple 

negative basal-like breast cancer, the tumour derived from a mouse xenograft model and the 

matched MBT that developed within 8 months of primary diagnosis75. For coding 
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mutations, 48 of 50 validated somatic gene mutations were detected in DNA isolated from 

all three tumour samples, supporting the notion that coding mutations are consistent for 

primary and metastatic cancer. The mutation allele frequency for 26 of those was 

significantly increased in the metastases or xenograft specimens, and the allelic frequency of 

two mutations was decreased. The observed levels of enrichment and loss of enrichment 

(but still detectable) for specific coding mutations in the metastasis and xenograft specimens 

may indicate that a subset of primary tumour cells carrying the array of mutations in the 

primary, not just a single clone, were contributing75,87. Unlike coding mutations, copy 

number aberrations were gained in the metastasis and xenograft specimens, such that 19% 

and 39%, respectively, were unique compared to the primary cancer75. Comparable work 

also using massively parallel sequencing to investigate an oestrogen receptor alpha-positive 

breast tumour arrived at a differing conclusion. Here, the metastasis was detected 9 years 

after the initial diagnosis88. Of the 32 non-synonymous coding mutations detected in the 

metastatic cancer, 19 were absent in the primary tumour, 5 were prevalent in the primary 

tumour and 6 were present at lower allelic frequency levels than the primary tumour88. The 

list of mutated genes identified in these studies of individuals has little translational value 

because a substantial number of specimens are required to elucidate specific, recurring 

causally implicated gene mutations. However, these two studies intimate highly valuable 

insights surrounding the potential for sequence and structural mutations and the potential for 

varied mechanisms driving metastatic cancer associated with short versus long latency.

Somatic copy number variations—The observation made by Ding et al. that the 

incidence of copy number alterations is increased in metastasis and xenograft specimens75 

lends itself to the re-interpretation of other studies. For example, low-resolution arrayed, 

comparative genomic hybridization (aCGH) studies have highlighted recurring, broad copy 

number variation in primary cancers that develop brain metastases, positing that the specific 

loci represent risk markers of functional consequence89,90. Further validation is required as 

to whether the broad regions harbour true driver lesions, or if they represent greater genomic 

instability underlying other structural mutations with a role in metastasis. Nevertheless, 

studies do show significant frequencies of copy number aberrations in specific known 

cancer genes in brain metastases. Two studies of breast cancer brain metastasis suggest that 

gains in EGFR oncogene and loss of PTEN tumour suppressor are more frequent in 

metastases, one using aCGH methods and the other fluorescent in situ hybridization 

(FISH)91,92. Two additional studies reporting on FISH analysis of lung cancer brain 

metastases suggest a marginally higher frequency of EGFR copy number gain (by 

amplification or polysomy) in brain metastases compared to the matched primary 

cancer82,83.

Markedly high rates of brain metastases are observed for patients with HER2-amplified 

breast cancers93. Indications are that the frequency of HER2-positive status is increased in 

brain metastases over other peripheral metastases, although this may be confounded by the 

use of HER2-targeted treatments that may be more effective in the treatment of peripheral 

metastases and restricted in reaching brain tumours16,92. Additional work by Palmieri et al. 

that analysed HER2 expression in 124 specimens reinforces that the rate of HER2 

overexpression largely associated with gene amplification is 36% in brain metastases, a 
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≥10% increase over rates of amplification and overexpression reported in primary breast 

cancers94,95. The functional consequence of HER2 amplification and overexpression was 

demonstrated by this same group using a human cancer cell line model of forced HER2 

overexpression, which when introduced into mice yielded threefold greater numbers of brain 

macrometastases compared to the parent cell line xenografts95.

Whole-genome expression studies—The variety of possible structural and coding 

mutations and epigenetic deregulation establish the foundation for aberrant gene expression 

that is the biomolecular link from the aberrant genome to transformed cancer cell function. 

Whole-genome and transcriptome studies of primary cancers are used to identify genes or 

transcripts displaying significant cancer-specific expression and are especially useful to 

elucidate cancer cell-specific systems and pathwaylevel dysfunction. Additionally, 

diagnostics based on gene expression signatures have proven effective at predicting lymph 

node metastases and improving patient outcomes96. Limited recent gene expression data 

also suggest mechanisms underlying brain metastasis. A study from Da Silva et al. 

compared 15 matched primary triple negative, basal breast cancers and their matched brain 

metastatic cancers using microarrays that simultaneously analysed 512 cancer-linked genes. 

Twenty-seven genes differed significantly, notably HIF1A and HER3, which were markedly 

upregulated79. This suggests a role for the epidermal growth factor receptor family in even 

the triple negative breast cancer subtype. Also, the HIF1A transcription factor activates 

genes encoding glucose transporters and glycolytic pathway genes, and an important role for 

HIF1A is supported by independent work showing more frequent overexpression in patient 

brain metastases compared to primary breast cancer tissues and enhanced aerobic glycolysis 

in cells migrating to or implanted in the brain versus parent cells in mouse models of human 

cancer cell line xenografts97,98. Multiple lines of whole-genome investigation in cell lines 

and patient specimens by Bos et al. identified upregulated expression of an EGFR ligand 

HBEGF and cyclooxygenase PTGS2 and the ectopic expression of the brain-specific gene 

α2,6-sialyltransferase ST6GALNAC5 in breast cancer cells as factors contributing to their 

ability to cross the BBB99. Increased PTGS2 expression is also identified as an important 

factor in brain metastasizing melanoma100.

While the described studies highlight what is unique to the metastatic cancer and do not 

address when or how the features arise, multiple studies present evidence for many, 

potentially coexisting possibilities. Studies combining analysis of methylation and gene 

expression to elucidate recurring features in breast cancer specimens associated with the 

incidence of brain metastasis do suggest pre-existing features supportive of metastasis, 

particularly related to genes implicated in EMT101–103. Analysis of substantial numbers of 

primary and metastatic breast tumours using whole-genome expression assays was 

successful in identifying gene expression signatures preserved in both primary and 

metastatic cancers104,105, suggesting that the bulk of tumour cells in the primary lesion and 

the metastasis are similar. Work by Park et al. following a xenograft model of metastases 

presents specific evidence that metastatic breast cancer cells acquire expression patterns 

found in neuronal cells, thus indicating that an evolutionary process underlies MBT 

development106.
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Conclusion

Outlook for developing novel therapeutic strategies

The current lack of insight into brain metastases spawns many questions (depicted 

graphically in Figure 4), including whether or not the primary cancer drivers are also the 

drivers of the related MBT. Conversely, early data suggests that unique drivers may be 

responsible for MBT development, raising additional key questions. Does a new driver/s 

emerge with the gain of mutations at the metastatic site? Or alternatively, do cells derived 

from a minor subclone in the original tumour harbour lesions with the capacity to evade 

primary adjuvant therapy and seed the metastatic occurrence. Much research is still needed 

to fill the void and answer these critical questions.

Patients afflicted with MBTs are in dire need of more effective therapies, and clinicians need 

predictive laboratory tests to identify patients at risk of developing MBTs. The as yet 

unrealized comprehensive analysis of MBT genomics is necessary to meet these needs. 

Moreover, without improved understanding of the genomic aberrations that drive MBTs, 

development of biomarkers and molecularly targeted therapies will remain stalled and 

patient outcomes will continue to be dismal.

Abbreviations list

aCGH arrayed, comparative genomic hybridization

BBB blood–brain barrier

EMT epithelial to mesenchymal transition

FISH fluorescent in situ hybridization

MBT metastatic brain tumour

NSCLC non-small cell lung cancer
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Figure 1. 
Breakdown of brain metastatic tumors according to originating cancer.
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Figure 2. 
Frequency of occurrence for metastatic brain tumors according to breast cancer molecular 

subtype.
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Figure 3. 
Frequency of occurrence for metastatic brain tumors according to lung cancer subtype.
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Figure 4. 
Potential pathways from cancer cell somatic mutations to metastatic colonization and 

metastatic tumor growth. Upper arrows in sequence depict how disseminated cancer cells 

may acquire further metastatic growth promoting mutations. Middle and lower arrows depict 

how cells from a major or minor subclone fraction in the original tumor may harbor 

mutations thatspecifically support metastatic tumor growth.
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