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Abstract
We have developed GaitTrack, a phone application to detect health

status while the smartphone is carried normally. GaitTrack software

monitors walking patterns, using only accelerometers embedded in

phones to record spatiotemporal motion, without the need for sen-

sors external to the phone. Our software transforms smartphones

into health monitors, using eight parameters of phone motion

transformed into body motion by the gait model. GaitTrack is de-

signed to detect health status while the smartphone is carried during

normal activities, namely, free-living walking. The current method

for assessing free-living walking is medical accelerometers, so we

present evidence that mobile phones running our software are more

accurate. We then show our gait model is more accurate than

medical pedometers for counting steps of patients with chronic

disease. Our gait model was evaluated in a pilot study involving 30

patients with chronic lung disease. The six-minute walk test (6MWT)

is a major assessment for chronic heart and lung disease, including

congestive heart failure and especially chronic obstructive pulmo-

nary disease (COPD), affecting millions of persons. The 6MWT

consists of walking back and forth along a measured distance for

6 minutes. The gait model using linear regression performed with

94.13% accuracy in measuring walk distance, compared with the

established standard of direct observation. We also evaluated a dif-

ferent statistical model using the same gait parameters to predict

health status through lung function. This gait model has high ac-

curacy when applied to demographic cohorts, for example, 89.22%

accuracy testing the cohort of 12 female patients with ages 50–64

years.
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Introduction

T
here is no current method to conduct measurements on

patients with chronic disease at population scale. Mobile

phones have the potential, but only if they can be shown to

support medical validity. They are nearly ubiquitous in the

United States, with the Pew Internet Project showing 91% ownership1

in May 2013, including 56% with smartphones. These numbers are

higher in younger persons,2 but even seniors over 65 years of age

have 76% penetration of cell phones.

Mobility itself can be used to continuously monitor movement and

predict health status for responsive treatment.3 For ambulatory pa-

tients, movement implies walking. Because normal gait is the indi-

vidual’s walking pattern, deviation in gait from normal baseline can

indicate change in health status. Harrison’s Principles of Internal

Medicine states, ‘‘Watching a patient walk is the most important part

of the neurological examination.’’4 Normal gait requires that many

systems, including strength, sensation, and coordination, function in

an integrated fashion. There are many diagnostic gait features, but

the simplest validated measure of personal mobility is gait speed.5

Gait speed has been highlighted as the ‘‘sixth vital sign,’’6 with lon-

gitudinal studies demonstrating strong correlation between gait

speed and patient mortality.7

Walk tests are widely used as standard assessment for chronic

conditions of the heart and lung, such as congestive heart failure8

and especially chronic obstructive pulmonary disease (COPD).9 A

walk test is performed over a fixed time or distance, so that the speed

can be easily computed. The most common walk test is the six-minute

walk test (6MWT),10 in which patients walk back and forth at their

normal speed in a measured hallway for 6 minutes. Low 6MWT dis-

tances have been associated with poor clinical outcomes, such as

mortality, in patients with COPD.11

In this study we used mobile phones, which are inexpensive and

widely available, rather than specialized medical devices. We show

that embedded phone sensors are sufficient to monitor patients with

chronic disease during walking and other activities in daily living.

Our early software directly computed body motion using kinesiology

models,12 such as step counts and step frequency. Our GaitTrack

software transforms spatial motion of the phone into body motion of

the person, with parameters for spatial motion used to compute speed

to medically validate against walk tests. Our models move beyond

gait speed to gait analysis, using other parameters that capture body

motion from physical activities. Our gait model is the start of mon-

itoring health status for patients with chronic disease, including

COPD and also asthma.13
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Subjects and Methods
SUBJECTS TESTED

At the University of Illinois Hospital & Health System in Chicago,

we conducted measurements on 30 patients who had chronic lung

disease (COPD, asthma, or both). The study was approved by the

University of Illinois at Chicago Institutional Review Board under

protocol number 2011-0625. The patients first complete a pulmonary

function test giving predicted percentage forced expiratory volume in

1 second (FEV1%). Then they perform a 6MWT as per the American

Thoracic Society standards,10 while their heart rate and blood oxygen

level are monitored using a Nonin (Plymouth, MN) Onyx2� pulse oxi-

meter. During walk tests, patients carry a Samsung (Seoul, Korea) Galaxy

Ace smartphone in their pants pocket or in a provided fanny pack, while

walking at a comfortable pace back and forth on a 50-foot (approxi-

mately 15-m) walkway for 6minutes. Our GaitTrack software records

sensor data from the phone’s accelerometer to compute gait parameters,

and the actual distance walked is recorded by the research team.

For our prototype phone application, we implemented an inter-

active monitor to conduct a 6MWT on a midrange Android� (Goo-

gle, Mountain View, CA) smartphone, the Samsung Galaxy Ace. As

shown in Figure 1, the program runs for 6 minutes, giving voice

and vibrating instruction and recording sensor data at 60 Hz, while

continuously reading heart rate and blood oxygen level via a Blue-

tooth� (Bluetooth SIG, Kirkland, WA)-connected pulse oximeter.

The software computes strides taken during the test from the accel-

erometer sensor and stride length from the laps of the walkway.

Computed results and sensor data are securely transmitted to our

server for further analysis.

SMARTPHONES VERSUS MEDICAL ACCELEROMETERS
Most research with mobile sensors has utilized specialized devices

to measure gait for personal diagnosis.14 Such medical accelerome-

ters are devices fixed to the person for clinical evaluation, by mea-

suring motion about the hip. Devices strapped to the L3 stable point

in the small of the back15 have been used to evaluate severity of

COPD16,17 and congestive heart failure.18

Phones support multiple tasks, which limits the attainable mea-

surement frequency, as opposed to medical devices, which use the

same accelerometer technology but are dedicated. Our testing has

shown accelerometer data collected during walking contain pri-

marily noise above 5 Hz, with the majority of usable signal between 3

and 5 Hz. Dedicated devices such as the ActiGraph GT3X� (Pensa-

cola, FL) activity monitor,19 a standard medical device for free-living

measurement of physical activity, use a low-pass filter to eliminate

signals above 10 Hz altogether.20 To maintain medical-grade quality,

we require monitor software to attain a 10 Hz sampling frequency of

raw accelerometer readings.

In our phone software, we overcome sampling limitations in the

firmware, thus transforming mobile phones into monitoring devices.

Because the phone is a shared device, the raw sensor sampling rate

varies over time, depending on processor load. Signal analysis re-

quires a continuously sampled dataset with a fixed sampling rate. To

lock the signal rate, we sample at the maximum attainable frequency

and then use averaging and extrapolation to fill in missing values.

Although this outputs a good signal comparable to the dedicated

device, it also requires processing power on the phone.

Table 1 shows the attainable sampling frequency of the ActiGraph

GT3X monitor compared with the Samsung Galaxy Ace, the last-

generation midrange smartphone used in our experiments reported

here. For comparison, we include the current generation high-end

Motorola (Schaumburg, IL) Droid Mini smartphone, being used in our

current experiments. Note that the frequency for the ActiGraph is

unchanged at all times, but the frequency of the Galaxy Ace is de-

pendent on the load on the phone. Our prototype running on the

Fig. 1. Screen dump from the GaitTrack phone application used to
assess chronic obstructive pulmonary disease (COPD) with a six-
minute walk test. Sensor data are continuously recorded during the
timer countdown. Voice prompts, as per the American Thoracic So-
ciety instructions, are given at each minute’s mark. The smartphone
connects via Bluetooth to a Nonin Onyx2 pulse oximeter with heart
rate and oxygen saturation continuously displayed for medical alerts.

Table 1. Frequency Capabilities of Phone Hardware

DEVICE
FREQUENCY
WHEN IDLE

FREQUENCY WHEN
PLAYING MUSIC

Motorola Droid Mini 0–200 Hz 0–150 Hz

Samsung Galaxy Ace 0–120 Hz 0–80 Hz

ActiGraph GT3X 20–100 Hz N/A

Even with load, phones can match dedicated devices. Both phones easily

measure 10 Hz, the threshold of human walking. The Galaxy Ace is a last-

generation midrange smartphone, used in the walk tests discussed. The Droid

Mini is a current high-end smartphone, used in our current walk tests. The

ActiGraph GT3X is an established standard monitoring device for medical

evaluation of physical activity.

N/A, not applicable.
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Galaxy Ace and Droid Mini easily runs at 60 Hz, which is better

sampling than our 10 Hz target minimum.

SMARTPHONES VERSUS MEDICAL PEDOMETERS
Accurately measuring distance is deceptively difficult using raw

accelerometer data. Minute errors in acceleration cause compound-

ing errors in distance unsuitable for medical measurement. Current

commercial devices circumvent this problem by counting steps and

multiplying by patient-entered stride length, which is fixed. Ped-

ometers also have a fixed threshold for step frequency, the de-

fined cadence, which undercounts patients with chronic disease

who shuffle with lower cadence. Medical pedometers require manual

stride length, so measurements for chronic disease have high error in

step identification and stride length estimation.21 Data analysis for

cell phones can compensate for this error with personalized models,

as shown in treadmill experiments with healthy subjects.22

To compute gait speed, we need to know distance from the walktest

walkway and also cadence. With a proper algorithm,23 we can use

phone sensors to accurately measure step count. We evaluated phone

accuracy compared with an Omron (Kyoto, Japan) HJ-720ITC pe-

dometer used in COPD studies.24 The Omron pedometer uses an ac-

celerometer to measure a raw acceleration curve and detect peaks or

zero crossings to count steps.25 More precise step detection algo-

rithms utilize postprocessing that tolerates noise more than only

detecting peaks.

Our distance model requires accurate step counts and stride

length estimation. We assessed the step counting of the GaitTrack

phone application against the ActiGraph GT3X and the Omron HJ-

720ITC, a reliable step counter for medical tasks26 when placed in

the pants pocket.27 We performed a series of 500-step walk tests

with four subjects carrying the phone, the ActiGraph, and the

Omron in their pants pockets. As shown in Table 2, the error rate

of the GaitTrack software on phone is 0.94%, whereas the error of

the Omron is 5.20%, and the error of the ActiGraph is 11.08%.

This demonstrates phone sensors are comparable to commercial

medical pedometers in counting steps, with proper processing

during walk tests.

GAIT MODEL FROM GAIT PARAMETERS
The Kyoto University group evaluated validity of Android

smartphone sensors for gait analysis, as reported in this journal.28

Their experiments tested 30 subjects who were college students,

whereas our experiments tested 30 patients who had chronic lung

disease (COPD or asthma). Their subjects walked a 25-m straight

walkway, with the middle 20 m recorded. This distance is too short to

measure gait variance for our patients; the 6MWT is an order of

magnitude longer to assess changes from shortness of breath. As

discussed below, our patients essentially walk 20 m in each of 12

segments of 30 seconds analyzed during testing.

Following previous researchers in gait kinesiology,15 the Kyoto

University group chose four gait parameters to compute spatial

motion from raw phone acceleration: peak frequency, root mean

square, autocorrelation coefficient, and coefficient of variance. They

later used these to detect abnormal gait in testing patients with

rheumatoid arthritis,29 again walking only 20 m.

For continuous monitoring of older patients, especially those with

chronic disease, other types of physical activity besides walking are

recorded by phone sensors. So the gait model must additionally in-

clude parameters to distinguish between walking and non-walking.

Our gait model includes four additional parameters, related specifi-

cally to body motion, adapted from a foundational study on activity

recognition by the Dartmouth University group.30 These four others

are mean of acceleration, standard deviation of acceleration, mean

crossing rate, and the Shannon entropy of acceleration spectrum in

frequency domain. We utilize the Fisher linear kernel for gait pa-

rameters to construct an eps-support vector regression model.31 See

the summary of eight spatiotemporal gait parameters in Table 3 for

the complete input to the gait model.

PREDICTING WALK DISTANCE
The parameters in the gait model are recorded from phone sen-

sors and used in our model to compute predictions for walk dis-

tance.32 Our monitor combines classical methods25 and machine

learning solutions using the simple equation:

Distance ¼ Stride length · Strides:

Table 2. Phone Software Versus Medical Devices

DEVICE ERROR RATE

GaitTrack phone application 0.94%

Omron HJ-720ITC 5.20%

ActiGraph GT3X 11.08%

The GaitTrack phone software is more accurate than a standard medical

pedometer (from Omron) and a standard activity monitor (from ActiGraph) for

step counts during free-living walking with healthy subjects.

Table 3. Gait Model Parameters

GAIT PARAMETER ABBREVIATION

Average raw acceleration MeanAcc

Standard deviation of raw acceleration StdAcc

Mean crossing rate MCR

Shannon entropy ENT

Peak frequency PF

Root mean square RMS

Autocorrelation coefficient AC

Coefficient of variance CV

Listing of the gait parameters used for gait model in the statistical machine

learning algorithm, recorded from spatiotemporal phone motion and trans-

formed into body motion for gait analysis.

HEALTH MONITORS BY GAIT ANALYSIS WITH MOBILE PHONES
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To eliminate false-positive step identification during non-walking

activities, our computation incorporates ‘‘activity recognition’’ to

record only during walking. Activity recognition via phone sensors

has been studied with small numbers of healthy subjects, with reli-

able methods to classify different types of movements.33,34 Elim-

inating non-walking activity increases step counting accuracy over

commercial pedometers, reducing overcounting.

Once we have the number of steps, stride length must be estimated

to obtain distance. Two approaches are commonly used, called de-

mographic and mechanical. The demographic approach uses a pre-

measured stride length table with adjustments for height, weight, age,

and sex. Patients from each demographic are measured, and an ap-

propriate average stride length is assigned to each category. This

method fails to account for variation within cohorts. The mechanical

approach uses the inherent structure of walking by applying a lower

body model, often a simple triangle, to transform sensor motion during

walking to stride length. However, real body movement during

walking does not fit these models accurately, and small compounding

errors result in large distance errors, even over short testing periods.

We therefore build a regression model to determine the stride

length using the eight spatiotemporal parameters from Table 3 and

the four demographic parameters listed: age, sex, height, and weight.

Once stride length is estimated, we multiply by the identified step

count to obtain an estimate of distance walked.

PREDICTING HEALTH STATUS
Although our trial contained 30 patients, only 25 patients gave

both a successful 6-minute walk distance (6MWD) and predicted

FEV1% (adjusted by demographics). Because only 3 of these patients

were male, we chose the 22 females for more in-depth analysis.

We did additional exploratory analysis to evaluate whether we can

predict the Global Initiative for Chronic Obstructive Lung Disease

(GOLD) status35 using this dataset. GOLD status is measured by simple

ranges of predicted FEV1% values: GOLD1 ( ‡ 80%), GOLD2 (50–79%),

GOLD3 (30–49%), and GOLD4 ( £ 29%). This is an international stan-

dard for health status of chronic lung and other disease, based on

spirometer measurement.

Once periods of confirmed walking are identified, we use a support

vector machine as the classification method to compute health status.

The same eight spatiotemporal gait parameters are used for this different

statistical model, plus computed cadence. The output label to training

set is the GOLD status of each patient, calculated by FEV1% measure.

To make a continuous model, we must calculate spatiotemporal

gait parameters over discrete periods of time. Using 10-fold cross-

validation, we evaluated different lengths of time, shown in Figure 2,

selecting 30 seconds as the optimal length of walking period for

prediction accuracy.

Results
WALK DISTANCE

Accelerometer data were collected from 30 patients (mean [SD]

age, 53 [11] years; 53% with COPD; 10% male). Mean [SD] predicted

FEV1% was 68% [23%]. GaitTrack’s 6MWD estimates (mean [SD],

285 m [85 m]) were similar to directly observed estimates

(mean [SD], 284 m [90 m]). Mean (95% confidence interval) differ-

ence (GaitTrack-observed 6MWD) was 0.3 m ( - 73 m to 72 m). The

absolute mean (95% confidence interval) percentage difference

(jGaitTrack-observedj/observed) was 9%.

The accuracy of the model was analyzed by constructing a Bland–

Altman plot, shown in Figure 3, comparing predicted walk distance

with observed walk distance. The 95% confidence interval, which

Fig. 2. Prediction accuracy of Global Initiative for Chronic
Obstructive Lung Disease (GOLD) status for different walk peri-
ods. For the continuous model, the spatiotemporal gait
parameters are calculated over discrete periods of time. Thirty
seconds of walking is selected as the optimal walk period to
balance prediction accuracy with practicality.

Fig. 3. Bland–Altman plot of six-minute walk distance (6MWD)
prediction. This demonstrates the accuracy of the gait model as
there is only 1 outlier among 30 patients using a 95% confidence
interval (42 m). Inspecting this patient’s data, we discovered an
equipment failure and omitted this data point from our analysis.

JUEN ET AL.
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was – 42 m, produced one patient outlier. This was then omitted in

our analysis, significantly reducing the error rate. This outlier was

due to equipment failure in early testing.

We evaluated the remaining 29 patients with chronic lung disease,

usingourgaitmodel. Themodelperformedwith5.87%error, as shown in

Table 4. The model is evaluated by 10-fold cross-validation. We ran-

domize the order of the dataset of the 30-second walking samples. Then

we divide the dataset into 10 parts. For each fold, we evaluate the model

by selectingonepart as a test set and the remainingnine parts as training.

This results in all patients contributing equally to the model training.

HEALTH STATUS
The support vector machine model using the gait parameters was

used to predict FEV1% (and hence GOLD) for the 22 female COPD

patients, whose demographics are shown in Table 5. The results of

this model are shown in Table 6, where the unified prediction for all

females provided 71.73% accuracy, whereas the cohort prediction of

females between the ages of 50 and 64 years provided 89.22% ac-

curacy. The gait model is the same in both cases, but the more specific

training set provides higher accuracy. As noted, only female patients

had enough samples to analyze, and the only cohort with at least 10

patients was the female middle-age group. Accuracy for particular

status was also higher within this cohort; for example, the subcohort

with mild COPD was 99% correctly predicted.

Discussion
DISTANCE ESTIMATION

To estimate walk distance, we combine gait model parameters with

basic demographic information to estimate stride length. Our linear

regression model uses the eight gait parameters combined with four

demographic features: age and sex, height and weight. This gait

model for 29 chronic patients achieved an average error rate of 5.87%

in walk test distance prediction, as shown in Table 4.

This is more accurate than the error inherent in the walk test itself,

due to varying length of walkways. Although not directly compa-

rable, walkway error gives an indication of acceptable scale. The

difference in walk test distance is about 12% error rate, comparing

the American Thoracic Society standard 30-m walkway with our

15-m walkway. This is true in healthy seniors36 and COPD patients,37

because of slowdown during turns. Similar rates occur in estimating

walking speed with mobile devices.38

STATUS ESTIMATION
As noted, for sufficient data to predict the GOLD stages from gait

parameters, we chose female gender as our cohort group, giving 22

patients who completed the 6MWT and measured FEV1%. Our soft-

ware implements preprocessing that removes all periods of non-

walking for gait analysis.

Table 4. Measured Versus Predicted Walk Distance

DISTANCE VALUE

Predicted distance (m) 275.8 (78.1)

Measured distance (m) 276.2 (76.9)

Correlation 0.9618

p value < 0.001

Absolute error rate (%) 5.87% (4.82%)

Patient recordings from walk tests are used to train the model, with 10-fold

cross-validation on the 30-second walking samples across all patients. Numbers

in parentheses are standard deviations. Walk distance is measured by human

observer as established standard, then compared to predicted distance using

software computation from gait model, based on gait parameters.

Table 5. Demographic Information of Female
Chronic Obstructive Pulmonary Disease Patients

GOLD1
(‡ 80

FEV1%)

GOLD2
(50–79
FEV1%)

MORE
SEVERE

(< 50 FEV1%)a

Number of patients 6 9 7

Mean age (years) 57.3 (7.6) 62.3 (7.1) 59.5

Average height (cm) 154.3 (18.6) 163.5 (3.2) 171.3 (8.2)

Average weight (kg) 78.8 (17.1) 86.4 (30.8) 74.3 (19.9)

Average 6WMD (m) 306.3 (38.1) 208.7 (67.5) 232.8 (65.2)

Our experiment covered 30 patients with chronic obstructive pulmonary

disease and/or chronic asthma. Of these, 25 patients reported both a 6-minute

walk distance and percentage forced expiratory volume in 1 second (FEV1%).

Although gender is a significant factor, we could only analyze the female

demographic because we had 22 females and only 3 males. Data are mean or

average (standard deviation) values.
aBecause individuals with a Global Initiative for Chronic Obstructive Lung

Disease (GOLD) rating of 3 and 4 have difficulty walking, these were combined

into a ‘‘more severe’’ category.

Table 6. Support Vector Machine Classification Results
with Demographic Cohorts

UNIFIED
PREDICTION

(N = 22 PATIENTS)

COHORT (50–64
YEARS) PREDICTION
(N = 12 PATIENTS)

ACTUAL
STATUS GOLD1 GOLD2

MORE
SEVERE GOLD1 GOLD2

MORE
SEVERE

GOLD1 78.54% 19.51% 1.95% 99.24% 0 0.76%

GOLD2 16.96% 65.18% 17.85% 0 87.63% 12.37%

More severe 2.96% 23.47% 73.57% 1.23% 11.6% 87.16%

The unified prediction contains all female test subjects across all age ranges

and yields 71.73% accuracy. The cohort prediction focuses on subjects in the

50–64-year age range and yields 89.22% accuracy. Demographics can be used

to improve model accuracy. More patients must be analyzed to expand the

range of demographics covered by our models, to improve the trained model

for predicting health status.

GOLD, Global Initiative for Chronic Obstructive Lung Disease.
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We expect that demographic information can be used to increase

the accuracy of the model. Our smaller dataset from Table 5 contains

demographics of one gender group (female) and two age groups

(50–64 years and 65–80 years). We constructed a support vector

machine model using the gait parameters with all 22 patients and

another model using only the 12 patients between the ages of 50 and

64 years. As Table 6 shows, the overall classification accuracy of the

younger cohort group is 89.22% compared with 71.73% for the

entire group. Thus, clustering patients by age increases the accuracy

of the model.

It is especially noteworthy that the model using the eight gait

parameters closely predicts GOLD status, whereas the raw walk dis-

tance of the patients does not. Note that in Table 5, the average walk

distance for the GOLD2 patients was actually lower than the walk

distance for the more severe GOLD3 and GOLD4 patients. Therefore,

our gait parameters appear to more accurately track a patient’s GOLD

health status than timed walk tests.

FUTURE WORK
A gait model trained with more subjects would enable us to cal-

culate more precise estimates. Ongoing effort is focused on recruiting

120 patients for walk tests. Our previous work32 showed that 12 sub-

jects (6 healthy and 6 with COPD) could be clearly distinguished as

COPD and non-COPD, independent of demographics for age and sex.

The current work indicates that demographic cohorts can be used to

predict GOLD status from gait parameters, given a sufficient number of

patients in the cohort. If a cohort of 10 patients is needed for each

demographic, then 120 patients may suffice to train a recognizer for

GOLD levels (10 · 4 · 3). The resulting gait model will be more robust,

possibly enabling detection of transitions between status levels, where

point of care treatment can improve the quality of healthcare.

Continuous monitors of health status by gait analysis with mobile

phones may prove of significant benefit to health systems in the future.
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