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Abstract

Although the discrete Fourier transform played an enabling role in the development of modern 

NMR spectroscopy, it suffers from a well-known difficulty providing high-resolution spectra from 

short data records. In multidimensional NMR experiments, so-called indirect time dimensions are 

sampled parametrically, with each instance of evolution times along the indirect dimensions 

sampled via separate one-dimensional experiments. The time required to conduct 

multidimensional experiments is directly proportional to the number of indirect evolution times 

sampled. Despite remarkable advances in resolution with increasing magnetic field strength, 

multiple dimensions remain essential for resolving individual resonances in NMR spectra of 

biological macromolecues. Conventional Fourier-based methods of spectrum analysis limit the 

resolution that can be practically achieved in the indirect dimensions. Nonuniform or sparse data 

collection strategies, together with suitable non-Fourier methods of spectrum analysis, enable 

high-resolution multidimensional spectra to be obtained. Although some of these approaches were 

first employed in NMR more than two decades ago, it is only relatively recently that they have 

been widely adopted. Here we describe the current practice of sparse sampling methods and 

prospects for further development of the approach to improve resolution and sensitivity and 

shorten experiment time in multidimensional NMR. While sparse sampling is particularly 

promising for multidimensional NMR, the basic principles could apply to other forms of 

multidimensional spectroscopy.

Introduction

Since the introduction of Fourier Transform NMR by Richard Ernst and Weston Anderson1, 

NMR spectra have mainly been determined by measuring the response of the spin system to 

a broad-band RF pulse. The response (the free induction decay, FID) is measured at regular 

intervals, and the spectrum is obtained by computing the discrete Fourier transform (DFT). 

To correctly determine frequencies, the sampling interval must be at least as short as the 
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reciprocal of the spectral width spanned by frequency components in the signal, the famous 

Nyquist condition. Conversely, the resolution of the spectrum is related to the longest time 

sampled. Together, the twin requirements of sufficiently rapid uniform sampling and long 

evolution times means that high resolution spectra require large data sets.

The problem becomes more acute with multidimensional experiments that are based on the 

concept first introduced by Jean Jeener2. Jeener proposed the introduction of additional time 

domains through parametric sampling, for example by repeating a two-pulse experiment 

while incrementing a time delay separating the pulses. The time domains that are sampled 

parametrically are referred to as indirect dimensions, whereas the real-time evolution of the 

signal is said to occur in the direct or acquisition dimension. Three- and four-dimensional 

NMR experiments have become routine, and indeed indispensible for resolving individual 

resonances of biological macromolecules. A problem attending these experiments, however, 

is that conventional methods of spectrum analysis employing the DFT mandate 

impractically lengthy experiments in order to obtain high frequency resolution in the indirect 

dimensions.

An approach employing linear prediction (LP) to improve the resolution attainable from 

short data records emerged in the 1980s3. LP extrapolation posits that the time domain data 

for a given evolution time can be described as a linear combination of past values. 

Coefficients fit to the measured interval are used to extrapolate the data beyond the 

measured interval. The assumption underlying LP extrapolation is equivalent to assuming 

the data can be described as a sum of exponentially decaying sinusoids. While LP 

extrapolation represents a significant advance, it is prone to generation of false peaks when 

applied to noisy data, and can lead to frequency bias when applied too aggressively or to 

signals that deviate from exponential decay4. Like the DFT, LP extrapolation requires data 

sampled at uniform intervals.

The development of non-Fourier methods of spectrum analysis that do not require data 

sampled at uniform intervals has enabled an alternative approach to the problem of high 

resolution from short data records5. Using nonuniform sampling (NUS), these methods 

permit the collection of data at long evolution times – required for high resolution – while 

avoiding the requirement of measuring every intervening time separated by multiples of the 

Nyquist interval. NUS methods are not a panacea, however, because they introduce 

sampling artifacts or “sampling noise”. Some methods of spectrum analysis and various 

post-processing schemes are able to diminish the artifacts, but limits on the ability to 

eliminate sampling artifacts are ultimately imposed by the presence of signal noise.

The combination of non-Fourier methods and NUS applied to multidimensional NMR is 

beginning to enable high frequency resolution along indirect dimensions, within practical 

constraints on measuring time. The methods are likely to become routine for experiments in 

three or more dimensions simply as a means to improve the efficiency of very expensive 

high-field spectrometers. Additional improvement in data collection strategies and spectral 

estimation methods promises to expand the applicability of multidimensional NMR to more 

challenging systems by improving sensitivity and resolution, and shortening experiment 

time.
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Evolution

The provenance of NUS in multidimensional NMR can be traced back 30 years. 

Bodenhausen and Ernst introduced a means of avoiding the sampling constraints associated 

with uniform parametric sampling of two indirect dimensions of three-dimensional 

experiments, by coupling the two indirect evolution times6. By incrementing the evolution 

times in concert, sampling occurs along a radial vector in t1-t2, with a slope given by the 

ratio of the increments applied along each dimension. This effectively creates an aggregate 

evolution time t = t1 + α*t2 that is sampled uniformly, and thus the DFT can be applied to 

determine the frequency spectrum. According to the projection-cross-section theorem, the 

resulting spectrum is the projection of the full t1-t2 spectrum onto a vector with angle 

tan−1(α) in the f1-f2 plane. Bodenhausen and Ernst referred to this as an “accordion” 

experiment. Although they did not propose reconstruction of the full f1-f2 spectrum from 

multiple projections, they did discuss the use of multiple projections for characterizing the 

corresponding f1-f2 spectrum, and thus the accordion experiment is the precursor to more 

recent radial sampling methods (discussed below). Because the coupling of evolution times 

effectively combines dimensions, the accordion experiment is an example of a reduced 

dimensionality (RD) experiment7.

The 3D accordion experiment has much lower sampling requirements than conventional 3D 

approaches because it avoids sampling the uniform grid of indirect time (t1,t2) values that 

must be sampled in order to utilize the DFT to compute the spectrum along both t1 and t2. A 

more general approach is to eschew regular sampling altogether and employ non-Fourier 

reconstruction techniques that are capable of utilizing nonuniformly sampled data. Laue and 

colleagues were the first to adopt this approach in multidimensional NMR, by using 

maximum entropy (MaxEnt) reconstruction to compute the frequency spectrum from NUS 

data8. While the combination of NUS and MaxEnt reconstruction provided high resolution 

spectra with dramatic reductions in experiment time compared to conventional uniform 

sampling, the approach initially was not widely adopted, no doubt because neither MaxEnt 

reconstruction nor NUS was highly intuitive. Nevertheless a small cadre of investigators 

continued to explore novel NUS schemes in conjunction with MaxEnt reconstruction 

throughout the 1990’s9,10. A broader appreciation for NUS was stimulated by a series of 

papers by Kupče and Freeman, in which they utilized back-projection reconstruction (BPR) 

from a series of experiments employing radial sampling in t1-t2 to reconstruct the fully-

dimensional f1-f2-f3 spectrum11–15. While the radial data sampling employed by the 

accordion and BPR is also employed by other approaches (see below), it was the use of 

back-projection (by analogy to computerized tomography) that demonstrated the connection 

with the 3D spectrum conventionally obtained by uniform sampling and DFT. Despite some 

drawbacks to radial sampling (discussed below), the BPR approach was important because it 

provided a powerful heuristic for more general NUS approaches. More recently, however, 

the promulgation of non-Fourier methods capable of treating NUS data and significant 

advances in computer speed have led to a renewed interest in the design of more efficient 

NUS schemes.
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Beyond Fourier

An important aspect of NUS is the use of non-Fourier methods of spectrum analysis that 

properly account for “missing” data. Although the DFT can be applied to NUS data that is 

collected on-grid, the resulting spectrum is the one that would be obtained if the missing 

data values had the value zero. Thus applying the DFT to NUS data is not, strictly speaking, 

the DFT of NUS data, it is instead the DFT of zero-augmented NUS data, and the distinction 

is important. The orthogonality of the Fourier basis functions (the complex exponentials) 

breaks down when the complete grid is not sampled, and frequencies in the spectrum thus 

interfere, giving rise to aliases (sampling artifacts). To paraphrase the French director of a 

modern silent film, zero is very different from nothing16.

A host of non-Fourier methods has been developed that properly treat the missing data 

(rather than assuming the value zero). These include nonparametric regularization methods 

(e.g. maximum entropy or minimum l1-norm), parametric methods that model the signal 

(e.g. maximum likelihood (MLM17, Bayesian18, and “CLEAN”19), decomposition methods 

that exploit symmetry properties (e.g. multiway decomposition, MWD), and methods 

specific for radially-sampled data (e.g. G-matrix Fourier transform (GFT20) BPR, and polar 

FT21).While these methods differ significantly in their approach, typically they yield very 

similar results when used with the same NUS data, indicating that the most important 

determinant of spectral quality using NUS is the sampling scheme employed, and not the 

method of spectrum analysis.

Tower of Babel

The decades-long gestation of NUS methods in multidimensional NMR is in part 

responsible for a surfeit of different terminology, which can obscure similarities among, and 

occasionally the equivalence of, various approaches. This applies both to sampling schemes 

as well as methods used to obtain spectral estimates from NUS data. The connection among 

accordion, reduced dimensionality, back projection, and GFT methods, which all utilize 

radial sampling, was slow to be recognized. Iterative ad hoc approaches involving 

thresholding (iterative soft threshholding, IST22, spectroscopy by integration of frequency 

and time domain information (SIFT23) have been shown to be closely related to more formal 

regularization methods22, and a host of different approaches that assume the signal can be 

modeled as a sum of exponentially decaying sinusoids (MLM, Bayesian, CLEAN, filter 

diagonalization method (FDM24), linear prediction – singular value decomposition 

(LPSVD25), while adopting very different approaches to fitting the model parameters, yield 

very similar results. The recent introduction of “compressed sensing” (CS26–29) is viewed in 

some quarters as a novel approach, but amounts to NUS with l1-norm regularization, and 

thus has a history that precedes the new terminology. Also confusing is the widely-used term 

“nonuniform DFT” (nuDFT), which lacks many important properties of the DFT. “Sparse 

recovery” is another common synonym for NUS.

Fundamentals of NUS

The aim of NUS is to approximate the spectrum that would be obtained using uniform 

sampling while collecting substantially fewer samples. The relationship between the DFT of 
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zero-augmented NUS data and the DFT spectrum for uniformly sampled data has a 

particularly simple form when NUS is restricted to a regular or Cartesian grid (Figure 1). If 

there exists a real-valued sampling function with the property that when it multiplies a 

uniformly sampled data vector, element-wise (the Hadamard product), the result is the zero-

augmented NUS data matrix, then the DFT of the zero-augmented NUS data is the 

convolution of the DFT spectrum of the uniformly sampled data with the DFT of the 

sampling function. The sampling function has the value 1 for times that are sampled and 

zero for times that are not sampled. The DFT of the sampling function is variously called the 

point-spread function (PSF), the impulse response, or the sampling spectrum.

Computing the DFT of zero-augmented NUS data results in a spectrum that reflects 

coherences in the sampling scheme as well as those in the signal. In contrast, non-Fourier 

spectral reconstruction methods attempt to diminish sampling artifacts in the reconstructed 

spectrum. Their ability to suppress sampling artifacts is invariably limited by the presence of 

noise. While they reduce the magnitude of sampling artifacts, the artifacts nevertheless 

appear at the same locations as found in the zero-augmented DFT spectrum.

Point spread function

The PSF provides insight into the locations and magnitudes of sampling artifacts that result 

from NUS, and it can have an arbitrary number of dimensions, corresponding to the number 

of dimensions in which NUS is applied. The PSF typically consists of a main central 

component at zero frequency, with smaller non-zero frequency components. Because the 

PSF enters into the zero-augmented DFT spectrum through convolution, each non-zero 

frequency component in the PSF will give rise to a sampling artifact for each frequency 

component in the signal, with positions relative to the true signal components that are the 

same as the relationship of the satellite peaks to the zero-frequency peak in the PSF. The 

amplitudes of the sampling artifacts will be proportional to the amplitude of the signal 

component and the relative height of the satellite peaks in the PSF. Thus the largest 

sampling artifacts will arise from the largest-amplitude components of the signal spectrum. 

The effective dynamic range (the ratio between the magnitude of the largest and smallest 

signal components) of the zero-augmented DFT spectrum can be directly estimated from the 

ratio between the amplitude of the zero-frequency component and the amplitude of the 

largest non-zero-frequency component (the peak-to-sidelobe ratio, discussed below) in the 

PSF.

How long?

The principal rationale for NUS is the ability to sample at long evolution times, necessary 

for high resolution, while reducing the overall amount of sampling associated with 

conventional uniform sampling. Using the DFT, resolving spectral features to the natural 

linewidth requires sampling at evolution times of πT2 or longer. Of course methods such as 

linear prediction extrapolation have long been used to approximate the data beyond the 

measured interval without introducing truncation artifacts associated with zero-filling. 

Methods of spectrum analysis that yield resolution smaller than 1/tmax (tmax is the longest 

evolution time sampled) are said to provide “super-resolution”. Sampling beyond πT2 is of 

little benefit unless one employs a parametric method that models the signal (such as MLM, 
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Bayesian, and FDM methods) or takes steps to deconvolve the natural lineshape. Sampling 

beyond 1.26T2 results in diminishing returns on sensitivity30. When combined with methods 

of spectrum analysis capable of super-resolution, sampling to 1.26T2 usually provides more 

than ample resolution to resolve spectral components to the level of the natural linewidth, 

and thus represents a reasonable compromise between sensitivity and resolution for 

decaying signals. For experiments in which the evolution period is constant-time or semi-

constant-time, the signal decay is determined mainly by field inhomogeneity (RF and B0), 

and so practical limits on tmax are imposed by the inhomogeneity or length of the constant 

time period, rather than T2.

In general, NUS that involves sampling a subset of the Cartesian Nyquist matrix yield lower 

sensitivity than the full uniformly-sampled dataset. However if constructed properly, the 

sensitivity per unit measurement time is usually higher. The sensitivity of a sampling 

scheme relative to collecting the full matrix can be estimated based on prior knowledge of 

the signal decay rate. For an exponentially decaying signal, the relative sensitivity of a 

scheme with sampling function K spanning a two-dimensional grid with size n1 by n2 is 

given by

(1)

where the elements of p are given by

(2)

and R2(1) and R2(2) are the signal envelope decay rates, and SW1 and SW2 are the spectral 

widths in the two dimensions. Eq. (2) readily generalizes to other signal envelopes.

Artifacts: Bandwidth and aliasing

NUS introduces sampling artifacts, regardless of the method used to estimate the spectrum. 

Some spectral estimation methods are better than others at reducing the artifacts, but 

completely eliminating them is difficult, if not impossible, because of the presence of noise. 

In order to design an efficient sample schedule that minimizes artifacts, it helps to 

understand how features of a sample schedule translate into the PSF.

The Nyquist sampling theorem, defining the bandwidth in relation to the (uniform) sampling 

interval, does not hold for NUS; there is no well-defined bandwidth for NUS. NUS artifacts 

are thus a form of aliasing. They can be diminished by decreasing the greatest common 

divisor (GCD) of the sampled times, as pointed out by Bretthorst31. The GCD need not 

correspond to the spacing of the underlying grid. Introducing irregularity is one way to 

ensure that the GCD is equivalent to the grid spacing, and this helps to explain the 

usefulness of randomness for reducing artifacts from nonuniform sampling schemes32. The 

incorporation of randomness can suppress artifacts in otherwise regular sampling schemes, 

such as radial sampling. Another way to increase the effective bandwidth is to sample from 

Mobli et al. Page 6

Phys Chem Chem Phys. Author manuscript; available in PMC 2014 November 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



an oversampled grid. When employed with NUS, oversampling has the effect of shifting 

sampling artifacts out of the original spectral window33.

Sampling strategies

Broadly, NUS strategies are described as on-grid or off-grid (Fig. 2). On-grid sampling 

schemes employ uniform sampling intervals along a given time dimension, and thus amount 

to selecting a subset from a regular or Cartesian multidimensional grid of sampling intervals. 

Collecting all the samples of this grid corresponds to uniform or linear sampling, as 

employed by conventional Fourier-based approaches. The fraction of samples from the full 

grid employed by a NUS scheme is called the coverage. Radial sampling schemes, which 

sample along radial vectors in time emanating from the time origin, are usually described as 

being off-grid, but they can be approximated by on-grid schemes34. Bretthorst has pointed 

out that in practice all sampling schemes, including radial, are inherently on-grid because of 

the finite precision of timings used in NMR spectrometers31.

The most widely-used NUS strategies in multidimensional NMR employ radial sampling or 

some variant of random sampling (Fig. 1). Approaches that utilize radial sampling include 

BPR, reduced dimensionality (RD), GFT, high-resolution iterative frequency identification 

(HIFI, (35)), and automated projection spectroscopy (APSY, (36)). Among this group only 

BPR reconstructs the fully-dimensional spectrum, whereas methods such as APSY and HIFI 

analyze projected sub-spectra (which can be computed using conventional Fourier-based 

methods) and use knowledge of the projection angle (and the associated frequency shifts) to 

extract the true frequencies. Random methods, in contrast, typically utilize on-grid sampling 

and non-Fourier methods of spectrum analysis to reconstruct the fully-dimensional 

spectrum. An advantage of the later approach is the results are isomorphic with spectra 

obtained by conventional methods, and conventional tools can be used to analyze the 

spectra. APSY and HIFI utilize special analysis tools.

In the first general application of NUS in multidimensional NMR, Laue et al. used a biased 

random sampling scheme8. By analogy with matched filter apodization (which was first 

applied in NMR by Ernst, and maximizes the S/N of the uniformly-sampled DFT spectrum), 

Laue and colleagues reasoned that tailoring NUS so that the signal is sampled more 

frequently at short times, where the signal is strong, and less frequently when the signal is 

weak, would similarly improve S/N. They applied an exponential bias to match the decay 

rate of the signal envelope; we refer to this as envelope-matched sampling (EMS). 

Generalizations of the approach to sine-modulated signals, where the signal is small at the 

beginning, and constant-time experiments, where the signal envelope does not decay, were 

described by Schmieder et al.35, 36.

Hyberts and Wagner37 noted empirically that the distribution of the gaps in a sampling 

schedule are also important. Long gaps near the beginning or end of a sample schedule were 

particularly detrimental. They adapted an idea employed in computer graphics, Poisson gap 

sampling, to generate sampling schedules that avoid long gaps while ensuring the samples 

are randomly distributed. Similar distributions can be generated using other approaches, for 

example quasi-random (e.g. Sobolev38) sequences. In addition to being robust, Poisson gap 
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sampling schedules show less variation with the random deviate than other sampling 

schemes. A potential weakness of Poisson gap sampling, however, is that the minimum 

distance between samples must not be too small, otherwise aliasing can become significant.

Methods such as HIFI and APSY employ knowledge about chemical shift distributions in 

proteins to select radial vectors to minimize the likelihood of overlap in the projected cross-

section. The idea of using prior knowledge about expected frequencies can be applied to 

random sampling by extending the concept behind EMS to consider finer details of the 

signal39. For example, a signal containing two strong frequency components will exhibit 

beats in the time domain signal separated by the reciprocal of the frequency difference 

between the components. As the signal becomes more complex, with more frequency 

components, more beats will occur corresponding to frequency differences between the 

various components. If one knows a priori the expected frequencies of the signal 

components, one can predict the location of the beats (and nulls, or zero-crossings), and 

tailor sampling accordingly. The procedure is entirely analogous to EMS, except that the 

sampling density is matched to the fine detail of predicted time-domain data, not just the 

signal envelope. We refer to this approach as beat-matched sampling (BMS). Possible 

applications where the frequencies are known a priori include relaxation experiments or 

multidimensional experiments in which scout scans or complementary experiments provide 

knowledge of the frequencies. In practice, BMS sampling schedules appear similar to EMS 

(e.g. exponentially biased) schedules, however they tend not to be as robust, as small 

difference in noise level or small frequency shifts can have pronounced effects on the 

location of beats or nulls in the signal.

Other deterministic sampling schemes have been explored. Delsuc and colleagues employed 

triangular sampling in two time dimensions to capture the strongest part of a two-

dimensional signal40. Coggins and Zhou introduced the concept of concentric ring sampling 

(CRS), and showed that radial sampling is a special case of CRS41. They showed that the 

DFT could be adapted to CRS (and radial sampling) by changing to polar coordinates from 

Cartesian coordinates (essentially by introducing the Jacobian for the coordinate 

transformation as weighting factors). Optimized CRS that linearly increases the number of 

samples in a ring as the radius increases and incorporates randomness were shown to 

provide resolution comparable to uniform sampling for the same measurement time, but 

with fewer sampling artifacts than radial sampling.

Random phase detection

In most applications of NUS, quadrature detection (either States-Haberkorn-Ruben42 or 

time-proportional phase incrementation (TPPI43) is used to determine the sign of frequency 

of signal components. Either approach incurs a factor of two sampling burden, relative to 

single-phase detection, just to disambiguate the sign. However single-phase detection using 

uniform sampling in time but with random phase (random phase detection, RPD44) is able 

to resolve the frequency sign ambiguity without oversampling. This results in a factor of two 

reduction in the number of samples required, compared to quadrature or TPPI detection 

methods, for each indirect dimension of a multidimensional experiment. For experiments not 

employing quadrature or TPPI detection, it provides a factor of two increase in resolution for 
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each dimension. The relationship among the PSF, the uniformly sampled spectrum, and the 

zero-augmented DFT is more complicated than the depiction given in Fig. 1, because a 

separate real-valued sampling function is required for each quadrature component. 

Combination of conventional NUS approaches with RPD is feasible, and affords additional 

flexibility in the design of efficient NUS schemes.

Performance

While the efficacy of a particular sampling scheme depends on a host of factors, including 

the nature of the signal being sampled, the PSF provides a useful first-order tool for 

comparing sampling schedules. PSFs that exhibit the largest peak-to-sidelobe ratio (PSR, 

which can be measured peak-to-peak or peak-to-rms) will give rise to the smallest sampling 

artifacts. Figure 3 illustrates examples of several common two-dimensional NUS schemes, 

together with PSFs computed for varying levels of coverage (30%, 10%, and 5%) of the 

underlying uniform grid. Some of the schemes are off-grid schemes, but they are 

approximated here by mapping onto a uniform grid. (As noted previously, on-grid 

approximation of off-grid sampling schemes coupled with reconstruction methods such as 

MaxEnt gives results that are very similar of off-grid sampling.) For a given sampling 

scheme, the PSR increases with sampling coverage.

The PSF alone does not tell the whole story, because it does not address relative sensitivity. 

For example, while the random schedule has a PSF with very weak side-lobes, and gives rise 

to fewer artifacts than a radial sampling scheme for the same level of coverage, it has lower 

sensitivity for exponentially decaying sinusoids than a radial scheme (which concentrates 

more samples at short evolution times where the signal is strongest). NUS approaches 

always reduce sensitivity compared to uniform sampling that encompass the same maximum 

evolution times, both because sampling artifacts behave like additional noise, and because 

fewer samples are collected with NUS. Sensitivity per unit measurement time can be greater 

for NUS than with uniform sampling, however, when the sampling density is biased to 

capture more of the signal energy, e.g. at short evolution times for decaying signals.

A fair test of the relative performance of two NUS schemes is their application to the same 

sample, keeping the number of samples fixed (total measuring time). Figure 4 shows results 

using radial sampling (top row of Fig. 3) compared with EMS (bottom row of Fig. 3 in two 

indirect dimensions of a 3D HNCA experiment for the protein Ubiquitin. The sampling 

distributions are shown in the insets in Fig. 4. The results for increasing sample size 

corresponding to one, two, and three radial sampling vectors (left to right, top row) and the 

matching sample size using EMS (bottom row) vividly illustrate the general principle that 

less regular sampling strategies more efficiently suppress sampling artifacts (consistent with 

the PSFs shown in Fig. 3).

An important characteristic of the non-Fourier methods of spectrum analysis that are used 

with NUS is that they are all nonlinear. The nonlinearities manifest to different degrees and 

in different ways, depending on the method. A general consequence of nonlinearity is 

signal-to-noise ratio (SNR) is no longer a reliable proxy for sensitivity45, and more robust 

measures of sensitivity such as weak peak detection and false peak rejection – sometimes 
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categorized as the false discovery rate – need to be employed. Sensitivity, after all, is the 

ability to distinguish signals from noise or artifact.

Similarly, resolution using NUS depends on a host of factors, including the method used to 

estimate the spectrum, but it correlates strongly with the average evolution time for the 

sampling scheme46.

Future prospects

The use of nonuniform sampling in all its guises is transforming the practice of 

multidimensional NMR, most importantly by lifting the sampling limited obstacle to 

obtaining high resolution along the indirect dimensions. Nonuniform sampling is also 

beginning to have tremendous impact in magnetic resonance imaging, where even small 

reductions in the time required to collect an image can have tremendous clinical impact. For 

all of the successes using NUS, our understanding of how to design optimal sampling 

schemes remains incomplete. A major limitation is that we lack a comprehensive theory able 

to predict the performance of a given NUS scheme a priori. This in turn is related to the 

absence of a consensus on performance metrics, i.e., measures of spectral quality. Further 

advances in NUS will be enabled by the development of robust, shared metrics. An 

additional hurdle has been the absence of a common set of test or reference data, which is 

necessary for critical comparison of competing approaches. Once shared metrics and 

reference data are established, we anticipate an acceleration of the pace of improvements in 

the design and application of NUS to multidimensional NMR spectroscopy. This 

development will help to expand the range of systems amenable to investigation by 

multidimensional NMR spectroscopy. As many multidimensional spectroscopic techniques 

first applied in NMR have migrated to other forms of spectroscopy (e.g. EPR47 and IR48), 

we anticipate that NUS similarly will find wider application.
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Figure 1. 
The role of the sampling function and PSF in NUS. The uniformly sampled data matrix is 

shown in A, with color used to indicate different data values. The sampling function (C) has 

the value 1 for sampled evolution times and 0 for those not sampled. The zero-augmented 

NUS data set (F) is the Hadamard product of the uniformly sampled data and the sampling 

function. In the matrices (C) and (F), entries with the value zero appear blank. The two-

dimensional DFT of A is the uniformly sampled spectrum (B). The two-dimensional DFT of 

the sampling function (C) is the PSF (D). The two-dimensional DFT (G) of the zero-

augmented NUS data (F) is equivalent to the convolution of the uniformly sampled spectrum 

with the PSF. Non-Fourier methods of spectrum analysis deconvolve the PSF to 

approximate (E) the spectrum that would have been obtained using uniform sampling, but 

from NUS data.
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Figure 2. 
Examples of off-grid (A) and on-grid (B) sampling schemes. Panel A depicts radial 

sampling, employed by accordion, RD, GFT, BPR, HIFI, and APSY experiments. Random 

sampling schemes are typically restricted to a subset of the uniform grid defined by the 

Nyquist sampling interval in each dimension.
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Figure 3. 
Examples of NUS sampling functions and PSFs in two nonuniformly sampled dimensions. 

Metrics reflecting the relative performance of these sampling schemes are given in Table 1. 

Purely random sampling (third row) yields the smallest sampling artifacts for a given level 

of coverage.
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Figure 4. 
Influence of coverage and sampling scheme on NUS HNCO spectra of ubiquitin. All six 

panels depict the f3 (1H) plane of the spectrum corresponding to 8.14 ppm. For each panel 

the sampling scheme in t1-t2 is depicted in the red inset at the upper right. Top panels (A, B, 

C) show the addition of 0°, 90° and 30° projections of the two jointly sampled indirect 

dimensions, reconstructed using BPR. Each projection contains 52 complex points, thus the 

total number of complex points sampled in panels A, B, and C is 52, 104, and 156, 

respectively. The lower panels show MaxEnt reconstructions using the same sampling 

coverage, but distributed differently: randomly along the 15N dimension (constant time) and 

with an exponentially decreasing sampling density corresponding to a 15 Hz decay rate in 

the 13C dimension. The MaxEnt reconstruction parameters were selected using an automated 

protocol49, 50.
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