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Abstract: To be a successful implantation, endometrial receptivity should be established. Forkhead box M1 (FoxM1) 
is described as a major oncogenic transcription factor in tumor initiation, promotion, and progression. FoxM1 regu-
lates the expression of lots of targeted genes important to cell differentiation, proliferation and apoptosis; cell-cycle 
progression; and tumor angiogenesis, migration, invasion, and metastasis. According to these functions, we believe 
that FoxM1 should also play an essential role in embryo implantation. To test our hypothesis, we observed the 
expression and distribution of FoxM1 during the early pregnancy of mouse. Then, we used Immunohistochemistry 
to examine the expression of FoxM1 induced by E2 and/or P4 in the ovariectomized mouse uterus and human 
endometrium cells. This study further investigated whether FoxM1 was an important factor in the implantation. Our 
results showed that FoxM1 expressed in the mouse uterus during early pregnancy (Day 1 to 5). The expression of 
FoxM1 gradually increased along pregnancy process; FoxM1 expression could be increased by E2. On the contrary, 
FoxM1 expression could be decreased by P4 and E2 plus P4. We also detected the proliferation of human endome-
trium cells. We found that E2 might promote cells proliferation, while P4 and E2 plus P4 inhibited cells proliferation; 
Inhibiting FoxM1 could interfere the embryo implantation of mouse. Amplification or inhibiting of FoxM1 in JAR cells 
can increase or decrease the adhesion rate to Rl95-2 and HEC-1A cells separately. Our data indicate that FoxM1 
might play an important role during the process of mouse embryo implantation.
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Introduction

Embryo implantation is a reciprocal interaction 
between an implantation-competent blastocyst 
and a receptive uterus [1]. It is a crucial step for 
the successful establishment of mammalian 
pregnancy. There is a limited time period, 
known as the “window of implantation”, when 
the uterus are receptive to the implanting 
embryo [2, 3]. By investigating single or limited 
numbers of genes, investigators have identified 
some of the molecules associated with recep-
tivity, including cytokines, growth factors, adhe-
sion molecules, and extracellular matrix com-
ponents during the preparation and develop-
ment of an appropriate endometrium for blas-
tocyst adhesion and implantation [4-7]. For 
example, in mice, this window of implantation is 
tightly regulated by E2 (estrogen), with low lev-
els being required for implantation to occur in 

uteri primed with P4 (progesterone); but slight 
E2 elevations above optimal levels render the 
uterus completely refractory to implantation 
[8]. Administration of minute doses of E2 during 
the per-implantation period causes pregnancy 
failure in mice [9]. Ovarian hyperstimulation 
causing increases in endogenous E2 can dis-
rupt implantation in mice [10] and is associated 
with higher instances of failed implantation in 
humans [11]. Supra-optimal estrogen levels 
can prematurely close the window of uterine 
receptivity [8], accelerate or retard transport of 
blastocysts through the fallopian tubes [12], 
and damage the developing blastocyst itself 
[13]. The ratio of E2 to P4 in maternal circula-
tion appears to be particularly important, with 
high E2: P4 ratios being detrimental to implan-
tation in both mice and humans [14, 15].

Forkhead box M1 (FoxM1), as a member of 
Forkhead family of transcription factors, shares 
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homology in Winged Helix/Forkhead box DNA-
binding domain [16]. It has been recognized 
that FoxM1 is involved in cell proliferation and 
apoptosis which regulates the developmental 
function of many organs in the body [17]. 
Several lines of evidence demonstrate that 
overexpression of FoxM1 occurs in a wide vari-
ety of human tumors frequently, including 
medulloblastoma [18], colorectal cancer [19], 
hepatocellular carcinoma [20], breast cancer 
[21], non-small cell lung cancer [22] and so on. 
Embryo implantation and cancer follow a simi-
lar progression and molecular mechanisms, 
such as epigenetic processes and dynamic 
regulation of cell migration and invasion [23]. 
So, given the similarity between the progress of 
tumor progression and embryo implantation, 
we presume that FoxM1 may be an indispens-
able factor in implantation. 

To investigate whether FoxM1 could be regu-
lated by E2 and P4, we used two human uterine 
epithelial cell lines as in vitro models: HEC-1A 
and RL95-2. HEC-1A was used as a model of 
non-receptive endometrium, and RL95-2 was 
used as a model of receptive endometrium [24-
27]. The cell lines were chosen based on earlier 
studies which have demonstrated that RL95-2 
cells have stronger adhesiveness for human 
JAR choriocarcinoma multicellular spheroids 
compared to HEC-1A cells [28-30] and are thus 
considered as a model of the receptive end- 
ometrium.

In this study, we examined the expression of 
FoxM1 in the mouse uterus during pre-implan-
tation period. We also examined the expression 
of FoxM1 with ovarian steroid hormones E2 
and P4 treated in the mouse uterus and human 
endometrium cells. We studied the effect of 
blocked FoxM1 on embryo implantation.

Materials and methods

Animals 

Mice of Kunming species were from Lab Animal 
Center in Dalian Medical University of China. All 
experimental procedures involves in the mouse 
studies were approved by the Institutional 
Review Board in Dalian Medical University. 
Adult female mice aged 20-24 g and adult male 
mice aged 40-44 g were maintained under con-
trolled environmental conditions. The mice 
were housed in a temperature 22-25°C, humid-

ity 60%, and light-controlled (12 h light: 12 h 
darkness) with ad libitum access to water and 
food.

Mouse superovulation and antibody injection

Each mouse was injected with pregnant mare 
serum gonadotropin (PMSG; 10 IU/0.1mL, 
Sigma) followed by hCG (10 IU/0.1mL, Sigma) 
48 hours later. Then females were placed with 
males (one female with one male per cage). 
Females were checked for the presence of a 
vaginal plug in the next morning, which was 
defined as D1 if the vaginal plug came out. The 
mice were killed in D1-D5.

To detect whether FoxM1 plays a part in embryo 
implantation, 20 pregnant mice were divided 
into 2 groups randomly. On Day 2 of pregnancy 
at 10 o’clock, after 10 mice were anesthetized 
with pentobarbital sodium (50 mg/kg), FoxM1 
polyclonal antibody (5 μl, 200 μg/mL), was 
injected into the right uterus horn, and IgG 
injected into the left uterus horn. In addition, 
10 mice were anesthetized and injected with 
IgG into the left uterus horn, with no treatment 
of the right uterus horn. All mice were eutha-
nized at 10 o’clock on Day 8 of pregnancy, and 
the number of embryo implanted was counted.

Immunohistochemistry

Uterine tissues were dipped in 4% (v/v) parafor-
maldehyde (Sinopharm Chemical Reagent Co., 
Ltd, Shanghai, China) in phosphate-buffered 
saline (PBS; pH 7.4) for 24 h at 4°C, then dehy-
drated in sucrose. The frozen section of uteri 
which were 7 μm thick were blocked with 4% 
paraformaldehyde for 15 min at room tempera-
ture, washed in PBS, and endogenous peroxi-
dase activity was blocked with 3% H2O2 for 15 
min at room temperature, washed in PBS and 
incubated in 5% goat serum at 37°C for 15 min. 
The sections were incubated with rabbit anti-
FoxM1 (1:100; Santa Cruz) and PBS (negative 
control) over night at 4°C. After washing three 
times with PBS, sections were incubated with a 
biotinylated secondary antibody (ZSGB-Bio Co., 
Ltd, Beijing, China) at 37°C for 40 min. And sec-
tions were wash with PBS, then were incubated 
with streptavidin-horseradish peroxidase (ZS- 
GB-Bio Co., Ltd, Beijing, China) at 37°C for 40 
min. Positive reactions were visualized with a 
diaminobenzidine (DAB)-peroxidase substrate 
(ZSGB-Bio Co., Ltd, Beijing, China) and counter-
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staining with haematoxylin for 30 s. Photo- 
micrographs were taken using OLYMPUS TH4-
200 microscope.

Western blotting

Proteins from uterine tissues or cells were 
extracted using Lysis Buffer (KeyGen Biotech 
Co., Ltd., Nanjing, China) and the determination 
of protein concentration was tested by the BCA 
assay (KeyGen Biotech Co., Ltd., Nanjing, 
China). Equal amounts of protein extracts (30 
μg) were separated by 12% sodium dodecyl sul-
fate (SDS)-polyacrylamide gel electrophoresis 
(PAGE) and transferred to nitrocellulose filter 
(NC) membranes (Millipore, Bedford, MA, USA). 
The membranes were blocked in 5% non-fat 
milk in tris-buffered saline containing 0.1% 
Tween 20 (TBST) for 2 hours at room tempera-
ture and probed with primary antibodies FoxM1 
(1:500, Santa Cruz), or β-actin (1:2000; 
Bioworld Technology Co., Ltd.,) overnight at 
4°C. The membranes were washed with TBST 
three times. Then the membranes were incu-
bated with horseradish peroxidase-conjugated 
anti-rabbit antibody (1:2000; ZSGB-Bio Co., 
Ltd, Beijing, China) for 1 hour at room tempera-
ture. After washed with TBST four times, the 
membranes were detected using an enhanced 
chemiluminescence detection system (ECL, GE 
Healthcare) and visualized using Bio-Rad 
Laboratories. Membranes were tested with 
β-actin or GAPDH as a loading control.

Steroid hormonal treatments 

To determine whether FoxM1 responds to E2 
and/or P4, adult female mice were ovariecto-
mized irrespective of the stage of the estrous 
cycle and rested for 11 days. They were given 
an injection of E2 (100 ng/mouse; 0.1 mL) 3 
days and rested for 2 days. Then they were 
divided into four groups, all which were injected 
for 4 days: 1). Control group, injected with ses-
ame oil; 2). E2 group, injected with E2 (100 ng/
mouse; 0.1 mL); 3). P4 group, injected with P4 
(2 mg/mouse; 0.1 mL); 4). E2 plus P4 group, 
injected with P4 (2 mg/mouse; 0.1 mL) for 3 
days and injected with P4 (2 mg/mouse; 0.1 
mL) plus E2 (10 ng/mouse; 0.1 mL). After 18 
hours, mice were sacrificed and uteri were col-
lected for Immunohistochemistry to study 
FoxM1 expression and distribution. The num-
ber of each group was five. The hormones were 

dissolved in sesame oil and injected sub- 
cutaneously.

Cell culture

RL95-2 and HEC-1A were acquired from the 
American Type Culture Collection (Manassas, 
VA, USA). RL95-2 cells were grown in DMEM/
F12 (1:1) supplemented with 10% FBS, 0.005 
mg/mL insulin, 100 U/mL penicillin and 100 
mg/mL streptomycin. HEC-1A cells were grown 
in McCoy’s 5A supplemented with 10% FBS, 
100 U/mL penicillin and 100 mg/mL strepto-
mycin. All types of cells were maintained at 
37°C, 5% CO2 in humidified air.

Stable transfection of JAR cells

JAR cells were trypsinized and seeded into 
6-well plates. When cells reached 90% conflu-
ence, overexpression and shRNA of FoxM1 
were transiently transfected into cells using 0.4 
mg of plasmids in the presence of 2 mL 
Lipofectamine reagent and plus reagent 
(Invitrogen) per manufacturer’s instructions. 
The transfection was terminated 6 h later and 
the cells were harvested after 48 h. Stable 
transfected JAR cells were maintained in the 
media with 0.2 mg/ml of G418.

Cell adhesion assay

RL95-2 cells were grown in 96-well plates to 
form a confluent monolayer. Trophoblastic cells 
in differently treated were stained with 
CellTracker™ Green CMFDA (Life Technologies, 
USA) 1 h before the adhesion assay. The cells 
were gently seeded onto RL95-2 or HEC-1A 
cells monolayers in trophoblastic culture medi-
um. After 1 h, unbound trophoblastic cells were 
removed by washing with PBS. The attached 
cells were detected by multimode plate reader 
(PerkinElmer, USA) and photographed on a fluo-
rescent phase microscope (Olympus, Japan)

Cell proliferation assay

Cell proliferation was detected by a Cell 
Counting Kit-8 assay. HEC-1A and RL95-2 were 
suspended in medium supplemented with 15% 
heat-inactivated fatal bovine serum and subse-
quently seeded in 96-well plates and incubated 
for 24 h. After that, plates were divided into four 
groups: 1). Control group; 2). Treated with E2 
group; 3). Treated with P4 group; 4). Treated 
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with E2 plus P4 group. Then, plates were con-
tinued incubating 24 h, 48 h, 72 h, 96 h, 120 h. 
After being incubated, the cultures were added 

10 μl CCK-8 solution to each well and incubat-
ed at 37°C for another 2 h. OD value of absor-
bance at 450 nm was measured by Thermo 

Figure 1. Expression of FoxM1 in mouse uterus during early pregnancy. A. Expression of FoxM1 detected by Immu-
nohistochemistry of mouse endometrium, luminal epithelium (L), glandular epithelium (G), and stromal cells (S). 
B, C. Expression of FoxM1 detected by Wertern blotting of mouse endometrium during pre-pregnancy. β-actin blots 
were used as controls. Endometrial tissues were divided into 5 groups (D1-D5). (*P < 0.05, **P < 0.01).

Figure 2. Effects of E2 and P4 on FoxM1 in the ovariectomized mouse uterus, luminal epithelium (L), glandular 
epithelium (G), and stromal cells (S).
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Scientific Fluoroskan Ascent FL. The results 
were plotted as means ± SD of three indepen-
dent experiments having three determination 
per sample for each experiment.

Statisical analysis

All of the experiments were replicated three 
times independently. The data were analyzed 
using an ANOVA followed by Fisher’s Least 
Significant Different Test (Fisher LSD) and 
Independent-Samples T test with SPSS soft-
ware (Version 19.0). Differences were consid-
ered significant when P < 0.05.

Results

Expression of FoxM1 in mouse uterus during 
early pregnancy

Immunohistochemistry was performed to 
examine the distribution of FoxM1 protein in 
the uteri of peri-implantation pregnant mice. 
FoxM1 was mainly located in the glandular epi-
thelium and luminal epithelium on Day 1. Then 
FoxM1 was located in the glandular epithelium 
and luminal epithelium on Day 2. But FoxM1 
was not detected in the stromal cells obviously 
on the two days. FoxM1 was negative in the 
luminal epithelium, but detected in the stromal 
and glandular epithelium cells obviously on the 
Day 3. The expression of FoxM1 was located in 
the glandular epithelium and luminal epitheli-
um on Day 4 and Day 5 (Figure 1A). FoxM1 pro-
tein levels were gradually increased from Day 1 
to Day 3, then low in Day 4, and reaching a 
peak value on Day 5 (Figure 1B, 1C).

Uteri expression of FoxM1 is regulated by E2 
and P4

We used immunohistochemistry to examine 
the expression of FoxM1 in the ovariectomized 
mouse uterus, the results showed that FoxM1 
expression was low in ovariectomized uteri 
treated with tea oil and that expression was 
localized to the glandular epithelium. However, 
the expression showed a significant increase in 
glandular epithelium and stromal cells. A P4 
injection prominently decreased in the glandu-
lar epithelium and stromal cells compared to 
the normal group. A combined treatment with 
E2 plus P4 increased the level of FoxM1 in the 
glandular epithelium but lower than E2 group 
(Figure 2).

E2 and P4 regulate the expression of FoxM1 in 
endometrial cells 

Our observations of uterine expression of 
FoxM1 in mice suggested that FoxM1 could be 
regulated by ovarian E2 and P4. Therefore, we 
further examined the expression of FoxM1 in 
human endometrium cell. The expression of 
FoxM1 was increased by E2 in a dose-depen-
dent manner (Figure 3A) and time-dependent 
manner (Figure 3C) in RL95-2 and HEC-1A 
cells. However, the expression of FoxM1 was 
decreased by P4 in a dose-dependent manner 
(Figure 3B) and time-dependent manner 
(Figure 3D) in RL95-2 and HEC-1A cells. Then 
we investigated the combined infection of E2 
plus P4, result showed that E2 plus P4 group 
was significantly lower than the control group in 
RL95-2 and HEC-1A cells. E2 and P4 were dis-
solved in absolute ethyl alcohol and Con group 
added absolute ethyl alcohol as control (Figure 
3E).

E2 and P4 regulate the proliferation of endo-
metrium cells

As showed in Figure 3F, 3G, E2 group signifi-
cantly increased RL95-2 and HEC-1A cells pro-
liferation compared to control group. P4 group 
and E2 plus P4 group hardly promoted cells 
proliferation in HEC-1A and RL95-2 cells.

Effects of FoxM1 antibody on embryo implan-
tation in vivo and in vitro

To identify whether FoxM1 was necessary for 
the implantation, we injected FoxM1 antibody 
to the mouse uterus. As shown in Figure 4A, 
4B, injection of FoxM1 antibody interfered 
embryo implantation obviously: the number of 
implanted embryo in the horn treated with IgG 
(10.20 ± 0.92) was higher than that in the horn 
treated with FoxM1 antibody (2.20 ± 1.03, P < 
0.01). In the other group, there was no statisti-
cal difference for the embryo implantation 
between the untreated horn (10.30 ± 0.95) and 
IgG control mice (10.20 ± 0.92).

In vitro implantation model constituting of tro-
phoblastic cells and uterine epithelial RL95-2 
cells and HEC-1A cells was utilized to analyze 
the role of FoxM1 in cell adhesion. The results 
showed that we had successfully screened out 
JAR-FoxM1 cells and JAR-sh FoxM1 cells (Figure 
4D, 4E; P < 0.05). The adhered trophoblastic 
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Figure 3. Effects of E2 and P4 on FoxM1 in human endometrium cells. A. The expression of FoxM1 treated by E2 
with 0, 0.01, 0.1, 1, and 10 μmol/L in HEC-1A and RL95-2 cells for 48 h. B. The expression of FoxM1 treated by P4 
with 0, 0.1, 1, 10 and 100 μmol/L in HEC-1A and RL95-2 cells for 48 h. C. The expression of FoxM1 treated by E2 
with 0, 24, 48 and 72 h in HEC-1A and RL95-2 cells at 10 μmol/L. D. The expression of FoxM1 treated by P4 with 0, 
24, 48 and 72 h in HEC-1A and RL95-2 cells at 100 μmol/L. *P < 0.05, **P < 0.01 versus control. E. The expression 
of FoxM1 treated by E2 10 μmol/L, P4 100 μmol/L for 48 h. F. The effect of combined treatment with E2 and P4 in 
the proliferation of HEC-1A cells. G. The effect of combined treatment with E2 and P4 in the proliferation of RL95-2 
cells. (*P < 0.05, **P < 0.01).

cells were observed after fluorescent staining 
and the adhesion rate was analyzed (Figure 
4F). It was showed that JAR-sh FoxM1 cells 
markedly decreased the adhesion rate of tro-
phoblastic cells to RL95-2 cells and HEC-1A 
cells, compared to the control JAR cells. And 
JAR-FoxM1 cells increased the adhesion rate of 
trophoblastic cells to RL95-2 cells and HEC-1A 
cells, compared to the control JAR cells.

Discussion

The exact molecular characteristics of the 
embryo implantation are still not completely 
characterized because of the complexity of 

using human embryos and endometrial tissue 
in research. Therefore other means must be 
elucidated for research of receptivity of the 
endometrium. FoxM1, is a key regulator of both 
G1/S and G2/M phases of the cell cycle and 
mitotic spindle integrity [31]. Recent studies 
have strongly suggested that FoxM1 is onco-
genic and plays important roles in angiogene-
sis, invasion and metastasis [32, 33]. Amp- 
lifications of FoxM1 gene has been reported in 
numerous tumors such as pancreatic carcino-
mas, breast cancer and hepatocellular carci-
noma [34-37]. However, studies of FoxM1 in 
embryo implantation were few.
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It has been reported that embryo implantation 
has similar cellular processes to the invasion of 
cancer cells, like angiogenesis and immunosur-
veillance [38, 39]. The invasion of trophoblastic 
cells into the endometrium and formation of 
the placenta are the most important steps in 
embryo implantation. The process including 
endometrial epithelial, trophoblasts and stro-

mal cells needs precise regulation of the differ-
entiation and proliferation of trophoblast and 
endometrial decidualization [40]. The invasion 
process involves the interaction and regulation 
of adhesion molecules, growth factors, vasoac-
tive factors cytokines and proteolytic [41, 42]. 
Matrix metalloprotrinases (MMPs), being capa-
ble of degrading all kinds of extracellular matrix 

Figure 4. Effect of FoxM1 antibody on embryo implantation in vivo and in vitro. A. a, injected with IgG; b, no treat-
ment. B. a, injected with IgG; c, injected with FoxM1 polyclonal antibody. C. The number of implanted embryos was 
significantly inhibited in the group injected with FoxM1 polyclonal antibody compared with IgG and no treatment 
groups (**P < 0.01). D, E. Identification of stable transfection JAR cells. F. Adhesion assay of trophoblastic cells. 
Cells were stained with CellTracker™ Green CMFDA 1 h before adhesion assay and photoed with fluorescence mi-
croscope.
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proteins, have been known to play direct roles 
in the process of embryonic implantation [43]. 
It has been shown that FoxM1 overexpression 
is associated with up-regulation of MMPs 
expression that in turn leads to degradation of 
the TIMPs, resulting in increased invasion and 
migration of tumor cells [44-46]. So it might be 
believed that FoxM1 regulates MMPs to impact 
on the invasion of trophoblasts in embryo 
implantation.

In our study, FoxM1 was localized to different 
sites on Day 1 to 5 of normal pregnancy. It is 
showed that the expression of FoxM1 protein 
was time-dependent during the embryo implan-
tation period (Figure 1). The location of FoxM1 
was transferred from glandular epithelium and 
luminal epithelium to stromal cells gradually on 
Days 1 to 3 (Figure 1). This might because that 
stromal cells need to proliferate for the follow-
ing decidualization. Then the location of FoxM1 
was back to glandular epithelium and luminal 
epithelium (Figure 1). This might be because 
that luminal epithelium secreted MMPs and 
glandular epithelium secreted growth factors, 
which were regulated by FoxM1. E-cadherin is a 
critical regulator in the development of the uter-
ine and uterine function also is one of the best-
characterized markers of epithelial-mesenchy-
mal transition (EMT) [47, 48]. During the “win-
dow of implantation”, the expression of E- 
cadherin decreased for a while, which is benefi-
cial for the embryo to invade into endometrium. 
It is proven that Fox M1 and E-cadherin can be 
mutual inhibition [49, 50]. We might believe 
that during the Day 4, FoxM1 was inhibited by 
E-cadherin in the luminal epithelium, in order to 
embryo recognize endometrium. Then FoxM1 
reemerged in the luminal epithelium in order to 
embryo invading endometrium.

There are several reports already revealing the 
effects of E2 on FoxM1 expression, such as 
regulation of FoxM1 by ERα in breast cancer 
[51], and FoxM1 co-binging with ERα in breast 
cancer [52]. Progesterone regulates many 
down-stream gene expressions through the 
receptor mediated way, such as Bmp2, Wnts, 
PAPPA and ILs, et al, which are involved in 
embryo implantation and development [53-
56]. In this study, we investigated the regulato-
ry effects of ovarian steroid hormones, E2 and 
P4, on FoxM1 expression in mouse uteri and 
human endometrium cells. E2 increased FoxM1 
expression, however, P4 and E2 plus P4 

decreased FoxM1 expression. During mouse 
normal pregnancy, E2 peaks around 15:30 on 
Day 3 until 08:30 on Day 4 of pregnancy, and 
P4 peaks from 03:30 of Day 4 onwards [57]. 
From the onset of puberty to menopause for 
human, the endometrium undergoes extensive 
remodeling in response to the ovarian steroid 
hormones E2 and P4 during each menstrual 
cycle in preparation for implanting an embryo. 
E2 promotes the proliferation and growth of the 
endometrial lining while P4 antagonizes estro-
gen-driven growth and promotes differentia-
tion. In this study, E2 increased FoxM1 expres-
sion to endometrium proliferation. Then P4 
plus E2 decreased FoxM1 expression to pro-
mote endometrium differentiation and deci- 
dualization. 

We injected FoxM1 antibody in the mouse uter-
us. We found that lack of FoxM1 resulted in 
embryo implantation unsuccessful (Figure 4). 
These researches suggested that FoxM1 might 
play a significant role in the process of embryo 
implantation during early pregnancy.

We have concluded that the expression of 
FoxM1 followed a spatiotemporal pattern in the 
mouse endometrium during early pregnancy. 
The results of this investigation have demon-
strated a specific expression pattern of FoxM1 
in the mouse uterus and human endometrium 
induced by E2 and P4, also provide insights to 
our understanding regarding the potential roles 
of FoxM1 in uterine biology during implantation. 
High expression of FoxM1 in the mouse endo-
metrium suggests that FoxM1 may be a novel 
molecule involved in the early processes of 
pregnancy, especially in the proliferation of 
endometrium and embryo invasion. However, 
further studies are needed to be detected the 
precise mechanism underlying the role of 
FoxM1 in the embryo implantation.
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