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Abstract

RNA-seq is widely used to determine differential expression of genes or transcripts as well as 

identify novel transcripts, identify allele-specific expression, and precisely measure translation of 

transcripts. Thoughtful experimental design and choice of analysis tools are critical to ensure high 

quality data and interpretable results. Important considerations for experimental design include 

number of replicates, whether to collect paired-end or single-end reads, sequence length, and 

sequencing depth. Common analysis steps in all RNA-seq experiments include quality control, 

read alignment, assigning reads to genes or transcripts, and estimating gene or transcript 

abundance. Our aims are two-fold: to make recommendations for common components of 

experimental design and assess tool capabilities for each of these steps. We also test tools 

designed to detect differential expression since this is the most widespread use of RNA-seq. We 

hope these analyses will help guide those who are new to RNA-seq and will generate discussion 

about remaining needs for tool improvement and development.
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Assessing the content and abundance of RNA for the entire transcriptome has revolutionized 

our ability to understand gene expression over developmental time, between genotypes, drug 

treatments, or tissues, and even differences between species. Almost 20 years ago, the first 

microarrays were a breakthrough technology that allowed us to assess RNA content and 

abundance for all known transcripts simultaneously. RNA-seq has extended the scope and 

depth of investigation to the entire transcriptome of known and novel RNAs. This rich 

experimental technique has become a standard in many labs and the tools developed for 

analysis are constantly improving. Tools have been developed for assessing allele-specific 

expression(Skelly et al., 2011), quantifying alternative transcript usage(Hu et al., 2013; 

Emig et al., 2010; Sacomoto et al., 2012; Nicolae et al., 2011; Singh et al., 2011; Richard et 
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al., 2010; Trapnell et al., 2010), and discovering novel transcripts(Roberts et al., 2011) or 

gene fusions(Sakarya et al., 2012). RNA-seq can also be used for ribosomal profiling to 

precisely measure the translation of each transcript(Ingolia et al., 2009). By far, the most 

widespread usage of RNA-seq methods is for experiments that are designed to detect 

differential gene expression between two or more experimental groups and many advances 

have been made in the tools designed to detect differential expression(Wu et al., 2013; 

Chung et al., 2013; Soneson and Delorenzi, 2013; Anders et al., 2013; Anders and Huber, 

2010; Robinson et al., 2009; Wang et al., 2009; Law et al., 2014).

Regardless of the exact experiment, each RNA-seq experiment consists of several common 

steps: experimental design, quality control, read alignment, assigning reads to genes or 

transcripts, and estimating gene or transcript abundance. Several excellent papers have been 

published over the past few years that critically assess one or more facets of RNA-seq 

experimental design and analysis (e.g., (Fang and Cui, 2011; Bullard et al., 2010; Auer and 

Doerge, 2010; McIntyre et al., 2011; Nookaew et al., 2012; Grant et al., 2011; Marioni et al., 

2008; Robles et al., 2012; Vijay et al., 2013; Roberts et al., 2011; Soneson and Delorenzi, 

2013; Katz et al., 2010; Young et al., 2011)). However, rapid changes in technology that 

have allowed for longer reads, deeper sequencing, and lower costs, have changed the 

complexity of experimental designs, which requires us to constantly reevaluate what is the 

best approach for RNA-seq experiments.

Our aims for this work were to assess experimental design and available tools for the 

common steps of an RNA-seq experiment. We used real RNA-seq data as well as simulated 

data to 1) test and suggest parameters for experimental design, and 2) test software for each 

step of an RNA-seq analysis designed to detect differential expression. The experimental 

design elements that we assessed include: number of replicates, sequence read length, read 

depth, and whether to do paired-end (PE) or single-end (SE) sequencing. Laboratory 

protocols for the RNA extraction method, assessing RNA quality, barcoding/indexing, and 

library sequencing protocol are critical for getting good sequence data, but we will not 

discuss those parameters in-depth here. Our hope is that these recommendations on 

experimental design and tool choice will serve as a guide to the community and generate 

discussion surrounding the remaining needs for tool development or improvement of 

existing tools for RNA-seq experiments.

Data Set

Sequence data for the following analyses are from cardiac precursors and cardiomyocytes 

that were derived by differentiating mouse embryonic stem cells. The embryonic stem cells 

were generated by culturing blastocysts from Smarcd3 (Baf60c) del/+ intercrosses (Hota et. 

al, in prep). The wild-type ES cells were derived from the littermate controls. There were a 

total of 12 samples, with n=3 for each combination of cell type and genotype. RNA-seq 

libraries were prepared with ovation RNA-seq system v2 kit (NuGEN). The double-stranded 

DNA was then amplified using single primer isothermal amplification (SPIA). Random 

hexamers were used to amplify the second-strand cDNA linearly. Finally, libraries from the 

SPIA amplified cDNA were made using the Ultralow DR library kit (NuGEN). The RNA-

seq libraries were analyzed by Bioanalyzer and quantified by qPCR (KAPA). All 12 indexed 
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samples were sequenced in each of three lanes on an Illumina HiSeq 2500. The data are PE 

100 bp sequences with an insert size of 300-350 bp. On average, 57 million fragments were 

sequenced from each sample. Raw sequence data can be downloaded from GEO (accession 

# TBD). Initially, data were aligned with Tophat2 (v2.0.8b) to mm9 with mostly default 

settings (except the following: --mate-inner-dist=150 --no-discordant --no-mixed --no-

coverage-search --splice-mismatches=2 --microexon-search). The annotation is from 

Ensembl v66 annotation(Flicek et al., 2014); pseudogene annotations were removed and 

only standard chromosomes were used. Of 684 million fragments, 67.8% of read pairs 

mapped concordantly.

Technical Considerations and Quality Control

Minimizing Technical Variation

Technical variation in RNA-seq experiments stems from many sources, such as differences 

in quality and quantity of RNA recovered during sample preparation, library preparation 

batch effect, flow cell and lane effects when using Illumina technology, and adapter 

bias(Bullard et al., 2010; Fang and Cui, 2011; Auer and Doerge, 2010; McIntyre et al., 

2011). Bullard et al. (2010) showed that library preparation was the largest source of 

technical variation, but that technical variation was minimal compared to the level of 

biological variation between samples from different tissues (Ambion brain vs. the Universal 

Human Reference). However, other work shows that technical replicates can have high 

variance and that estimation of expression is most severely compromised for lowly 

expressed genes(McIntyre et al., 2011). Auer and Doerge (2010) provide an excellent review 

of experimental design, especially with respect to the importance of replication and technical 

variation. As Auer and Doerge state, “No amount of statistical sophistication can separate 

confounded factors after data have been collected”(Auer and Doerge, 2010). Given these 

concerns, we recommend that samples be randomized during preparation and diluted to the 

same concentration. Then, to mitigate the effects of flow cell and lane we recommend 

indexing and multiplexing samples, with all samples included on all lanes/flow cells. 

However, some experiments have more samples than the number of available barcodes or 

indexes. In cases where all samples cannot be multiplexed on all lanes, a blocking design 

can be used that includes some samples from each group on each lane of sequencing(Auer 

and Doerge, 2010; Fang and Cui, 2011).

Pooling samples vs replicates

Generally, for RNA-seq, each biological replicate within an experimental group is prepared 

separately. Data from each replicate are then used in statistical analysis, with biological 

variance estimated from the replicates. An alternative design is to pool biological replicates 

within a group before library construction and sequencing. A pooled design removes the 

estimate of biological variance. We created “pooled” samples from our biological replicates 

by combining counts over samples. For each replicate, the total depth was accounted for 

before combining counts. We then conducted tests of differential expression for pooled 

samples using a binomial test vs. biological replicates using a test based on a negative 

binomial distribution (DESeq2, (Anders and Huber, 2010) and found that FDR-adjusted p-

values were correlated (Spearman’s Rho r=0.9). However, our data set has very low 
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biological variance within groups. Genes with high variance in expression may appear to be 

differentially expressed in a pooled design; this is especially problematic for genes with low 

expression levels. Additionally, when biological variance is low, replicates add power to the 

statistical test and subtle changes in gene expression can be identified. Biswas et al., (2013) 

conducted a thorough analysis of separate vs. pooled replicates. They were careful to ensure 

that each biological replicate was diluted to the same concentration of RNA before pooling. 

They concluded that that most differentially expressed genes can be identified with a 

biologically averaged design and that this design may be a good alternative to reduce the 

cost of experiments. However, when cost is not a limiting factor, maintaining separate 

biological replicates is ideal.

PCR duplicates

During library preparation each sample goes through a PCR amplification step where 

fragments are amplified so that there is sufficient material to load onto the sequencer. It is 

expected that a single copy or very few exact copies of each fragment would be sampled 

during sequencing. Therefore, if the PCR amplification step is completely unbiased, it 

should be very rare for two or more sequenced fragments to have the same start and end 

positions. However, depending on the sequencing depth, complexity of the library (i.e., 

number of transcripts expressed), and expression levels of transcripts, some fragments may 

by chance completely overlap yet would not be PCR duplicates. Under naïve conditions 

with no bias, we have simulated the expected number of these overlapping fragments with 

differing levels of expression. We simulated 30 million reads from 15,000 genes with a 

mean gene length of 2 kb, which would give an average of 67 FPM per gene. Fragment 

lengths were drawn from a normal distribution with mean 200. Expression level for genes 

ranged from 0.1 to 10 fold of the average. Our simulations show that the proportion of 

duplicates should be very low, even for highly expressed genes (about 5% for genes that are 

expressed 10-fold higher than the mean expression level). In experiments, RNA-seq data 

vary widely in the total proportion of duplicated fragments and this variance is greater than 

expected from our simulations. PCR bias is a well-known phenomenon that results in more 

amplification of some fragments and less amplification of other fragments. One major factor 

in amplification bias is the base composition of the fragment(Fang and Cui, 2011). 

Fragments with higher levels of amplification may be sampled more often during 

sequencing. This leads to oversampling of some PCR amplicons and inaccurate estimates of 

transcript abundance.

We recommend optimizing PCR cycles, providing sufficient RNA for library prep protocols, 

marking duplicates (using the Picard tool, MarkDuplicates(McKenna et al., 2010)) and 

assessing the level of duplication during QC. Samples with a similar level of complexity of 

transcripts that are sampled to equivalent depths should have similar levels of duplication 

that are due to PCR. We do not recommend removing duplicates for analysis of RNA-seq 

data that pass QC because this will underestimate abundance of highly expressed transcripts 

since it is not possible to disambiguate PCR duplicates and fragments that overlap precisely 

in highly expressed genes.
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Quality Control

Quality assessment is fundamental both before and after alignment. To assess the quality of 

RNA-seq data, we use FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

for raw fastq files and then RSeQC(Wang et al., 2012) for aligned (sam/bam) files. We have 

developed a perl script that aggregates the results of FastQC (http://github.com/staciaw/

fastqc_aggregator); the output is an html document that includes each QC metric as a single 

figure with all samples represented (e.g., Fig. 1). Important QC metrics include: base quality 

over read length, per sequence quality scores, GC content over read length, and proportion 

duplicate reads. QC metrics after alignment include proportion mapped, proportion mapped 

uniquely, proportion duplicate reads, proportion of reads mapping to rRNA, and map 

location relative to gene annotation (e.g., proportion of reads aligning to exons and other 

features).

Factors Affecting Alignment and Tools for Splice Junction Mapping

RNA fragments may be sequenced at a single end or at both ends of the fragment (i.e., 

paired end). Paired-end sequencing provides additional information for alignment because it 

doubles the amount of sequenced real estate and increases the probability of mapping across 

splice junctions. Paired-end data can be very useful for estimating alternative transcript 

usage, identifying novel transcripts, mapping to high-homology regions, and for de novo 

transcript assembly.

Assessment of Sequence Length and the Utility of Paired-End vs. Single-End Reads

We used the gold standard data set of 100 bp PE reads described in the Splice-Aware 

Alignment Tools section to test the effects of mapping with only SE reads as well as 

mapping fidelity with shorter read lengths. We further filtered the gold standard data set by 

mapping with Tophat2; the data set includes reads that map unambiguously to a single 

location (Tophat2 setting –max-multihits=1) and with the pairs mapping concordantly. We 

also removed duplicate read pairs to allow only unique fragments (MarkDuplicates v. 1.90). 

For tests of SE vs. PE alignment, we simply aligned the first read of the pair and disregarded 

the second end. To test reads the effect of read length, we trimmed reads to 35, 50, or 75 bp 

using fastx trimmer (http://hannonlab.cshl.edu/fastx_toolkit/). Surprisingly, only a few 

percent of reads from the filtered gold standard data set were not uniquely mapped with the 

short read or SE read data sets (Fig. 2). With SE, 50 bp reads, over 95% of reads map 

uniquely. In sum, long PE reads only give marginal improvements over short SE reads in the 

ability to map reads uniquely.

Splice-aware Alignment Tools

Splice junction mapping is critical for mapping reads across splice junctions and 

understanding alternative transcript usage. If all exons and splice junctions were known, we 

could align reads to the exons and splice junctions and then map them back to genomic 

coordinates. However, new transcripts of known genes and new genes are discovered 

regularly, necessitating the use of splice-aware mappers. Many tools are now available for 

aligning reads across splice junctions (Aschoff et al., 2013; Grant et al., 2011; Li et al., 

2013; Dobin et al., 2013; Wang et al., 2010; Au et al., 2010; Trapnell et al., 2009; Kim et al., 
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2013). We compared splice junction mapping in Tophat v2.0.9, MapSplice v2.1.5, and 

STAR v2.3.1h to assess mappability of splice junction spanning reads. We also subsampled 

our data to assess the depth of sequencing needed to recover splice junctions.

Gold standard alignments—Alignments to the transcriptome were conducted using the 

BWA-MEM algorithm in BWA v0.7.5a(Li and Durbin, 2010) in PE mode with default 

settings and short split hits marked as secondary (-M). We mapped to the transcriptome by 

creating a transcript index using the Ensembl v66 annotation(Flicek et al., 2014). Each 

fragment was tagged with a read group ID that maintained sample information. There were a 

total of 91.8 million fragments with paired reads that mapped concordantly and uniquely. 

These fragments were used for all subsequent analyses except where noted that simulated 

data were used. Transcript coordinates were mapped back to the genome using a custom 

python script developed by N. Salomonis (getCoordinates.py) that is available upon request.

We aligned the complete set of fragments that mapped concordantly, but only assessed 

splice junction mapping in genes with a single transcript. We used this single transcript set 

to mitigate any confounding issues with mapping around small alternatively expressed 

exons. We also created subsets of the full gold data set in order to test the depth of 

sequencing needed to recover splice junctions. We sampled 10-80% of read pairs without 

replacement for the subset data sets.

Tophat2—Bowtie2(Langmead and Salzberg, 2012) provides high quality alignments to the 

genome and Tophat2(Kim et al., 2013) employs Bowtie2 to map reads in two ways. Reads 

are mapped first to the to the genome, which maps reads that do not span splice junctions 

and also helps identify exons. Unmapped reads are possible splice junction spanning reads, 

which cannot be mapped contiguously. Tophat2 then segments these reads and segments are 

mapped with Bowtie2 to find mapping locations for splice junction spanning reads. We also 

show results for mapping with Bowtie2 alone, which is a short read mapping program not 

designed to be a splice-aware aligner. This test was intended to show the importance of 

using a splice-aware aligner for mRNA-seq data.

Tophat2 (v2.0.9) was run with the mostly default settings (except for: --read-mismatches 2, 

-- mate-inner-dist 200, --splice-mismatches 1, --microexon-search, and --no-novel-juncs). 

Transcript annotations were from Ensembl v66 with only single transcript genes. Tophat2 

was run with annotation and without annotation included. We tested Tophat2’s ability to 

find “novel” junctions by removing the second exon from transcripts in the annotation and 

(i.e., without --no-novel-juncs in the command) and results were similar to those when 

Tophat2 is provided with an annotation (results not shown). We also ran Tophat2 with just 

the first read of the PE data set. Finally, we tested splice junction recovery with shorter reads 

by truncating the reads at 50 bp and ran Tophat2 with PE data as well as with just the first 

read.

MapSplice—The algorithm for MapSplice has two phases that include tag alignment and 

splice inference(Wang et al., 2010). First tags are partitioned into short segments and 

aligned to the genome. Unmapped segments are considered for splice junction spanning 

beginning with location of neighboring aligned segments. Segment alignments for a tag are 
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then merged and scored; candidates with the highest score based on alignment and junction 

quality are reported.

MapSplice (v2.1.5) does not use transcript annotation. We used default settings except that 

we allowed non-canonical splice junctions (i.e., with the --non-canonical setting). We ran 

MapSplice on the PE data as well as just with the first read from the data set.

STAR—STAR is an extremely fast aligner (approximately 30-40× faster than Tophat2), but 

requires a significant amount of RAM (~27 GB for a vertebrate genome)(Dobin et al., 

2013). STAR aligns non-contiguous sequences to a reference genome in two steps: a seed 

searching step and then a step that clusters, stitches, and scores possible alignments. In the 

seed searching step, STAR finds the maximal mappable prefix (MMP), then takes the 

unmapped portion of the read and finds the MMP for that segment. In the second step, 

segments from a read are stitched together with any number of mismatches but only a single 

insertion or deletion. The stitched combination with the highest score is selected as the best 

alignment of the read.

The splice junction database for STAR (v2.3.1h) was created using the command 

“genomeGenerate” with the Ensembl v66 annotation of single transcript genes. Default 

parameters were used except the splice junction database overhang (--sjdbOverhang) 

parameter was set at 100. STAR alignments were conducted with mostly default parameters 

with and without annotation. Default settings require 66% match for each read. Therefore, 

we ran STAR with relaxed criteria for match (--outFilterScoreMinOverLread 0.5 --

outFilterMatchNminOverLread 0.5). We also ran STAR with just the first read of the PE 

data set.

We compared these splice-aware mapping tools using our gold set of concordantly mapped 

read pairs from the BWA alignments to the transcriptome for single transcript genes. The 

splice-aware mapping tools we tested recovered 95-99% of splice junctions that are spanned 

by 5 or more reads (Fig. 3A, Table 1). Junctions with low coverage (<5 fragments) in the 

BWA alignments (~14% of total) are much less likely to be recovered with splice-aware 

mapping tools (Fig. 3A, Table 1). It is interesting that 50 bp PE reads have a higher 

proportion mapped across splice junctions than 100bp PE reads (Table 1). This is possibly 

due to the likelihood of longer reads including regions with small indels or variants that 

exceed the setting for allowed mismatches (Tophat2 setting --read-mismatches 2). The vast 

majority of junctions are spanned by at least some fragments for all analyses (Fig. 3A, Table 

1) and the absolute counts are quite similar between algorithms. STAR appears to be a more 

sensitive splice-aware aligner as it maps a higher proportion of splice-junction spanning 

reads than the other two mappers (Table 1). As expected, fewer junctions are recovered with 

smaller subsamples, especially when junctions are covered by fewer reads (Fig. 3B). Counts 

for both PE and SE analyses were highly correlated with counts from BWA (Fig. 4); STAR 

and Tophat2 performed extremely well. Each fragment is counted a single time for PE or SE 

analysis. The BWA alignment with PE data has about 2-fold more splice junction spanning 

fragments than are captured by the SE mappings with other tools; this is expected since there 

is approximately 2-fold more genomic real estate covered with the PE data.
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Sequencing depth is an important consideration with RNA-seq experiments. With 55 million 

mapped read pairs, 94% of junctions identified in the full data set are recovered when using 

Tophat2 and providing an annotation (Fig. 3C).

Overall, the splice-aware aligners performed well. STAR aligned more reads to the same 

location as the BWA alignments, recovered more splice junctions, and runs at least an order 

of magnitude faster than Tophat2. However, STAR does require a significant amount of 

RAM. Tophat2, when provided annotation, has a higher correlation with the bwa alignments 

in total number of reads assigned to a splice junction. MapSplice, which does not use an 

annotation, performs as well as Tophat2 without annotation.

Recommendations for sequence length, paired vs. single-end, and splice-aware aligners

Logically, we assumed that long, PE reads would map with the highest fidelity, and provide 

the most information about splice junctions and alternative transcript abundance. 

Nevertheless, we find that SE reads recover junctions fairly well and that short reads are 

sufficient for unique mapping. Over 95% of SE, 50 bp reads align uniquely compared to 

those that map from a 100 bp PE alignment using Tophat2 (Fig. 2). We recommend 50bp SE 

reads for most experiments. The exception is when hypotheses rest on identifying alternative 

transcript usage, chimeric or fusion transcripts, and in cases where de novo transcript 

assembly is necessary. All three splice-aware aligners that we tested perform well, but 

STAR slightly outperforms the other two in sensitivity and is extremely fast.

Estimating Transcript Abundance

The goal of this set of analyses was to characterize the properties of several tools designed 

to calculate the relative abundances of transcripts within a given RNA sample and to make 

recommendations for best practices for future RNA-seq analyses. A recent paper compares 

several tools for differential splice analysis(Hooper, 2014), but we are focused on estimating 

transcript abundance. RSEM (v1.2.8, Li and Dewey, 2011), Cufflinks (v2.1.1, Trapnell et 

al., 2010), MISO (v0.5.2, Katz et al., 2010), and TIGAR (Feb. 2014, Nariai et al., 2013) 

were used, with default settings, to estimate the transcript abundance within two replicates 

(WT cardiomyocyte replicates 1 and 2; see Data Set). We also developed a simple counting 

technique to estimate the abundance of each transcript. The simple counting method takes 

the sum of all reads that map to the exons of a transcript. This method overestimates the 

expression of transcripts for genes expressing multiple transcripts since each fragment must 

originate from a single transcript.

The estimated counts from each tool were first compared in order to determine the relative 

precision of each method by performing correlation analysis and scatterplots of the results 

(Table 2, Fig. 5). Then to compare the accuracy of each method, the estimated counts from 

RSEM were used to generate a simulated RNA-seq dataset of 10 million tags across the 

transcripts of chromosome 1. The relative abundance of each 50 bp transcript segment 

compared to the remaining transcriptome was calculated and 10 million transcript segments 

were chosen at random from that abundance distribution. To assess accuracy, the seeded 

values that the simulation was based on were compared to the estimated values obtained by 

each method (Fig. 7).
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Given the high correlations across biological replicates when comparing the estimates of 

different methods (Fig. 6A), it is clear that the methods mostly agreed with one another, 

with Cufflinks and RSEM slightly outperforming the rest in terms of technical 

reproducibility between the replicates we analyzed (Fig. 6B). Compared to a naïve method 

that doesn’t deal with the complexities involved in assigning tags to transcripts, all methods 

exhibited good collective precision, and certain transcripts that were problematic for this 

simple counting method (Fig. 6C) exhibited reproducible, precise values when comparing 

the estimates made by other methods (Fig. 6B). Those genes that were observed to be 

problematic for all methods exhibited shorter transcript lengths and fewer average 

transcripts per gene (Fig. 6D). The precision of the methods can be therefore said to be quite 

high and consistent across methods. The estimates of expression were also consistent across 

methods, but many of the transcript abundance estimates were quite inaccurate (Fig. 6E,F). 

Methods are fairly equivalent, but the level of accuracy is still in question. In order to assess 

“ground truth”, we simulated data for this analysis. Given that it is difficult to simulate 

RNA-seq data in a biologically realistic manner, we hesitate to make strong 

recommendations about particular tools. We do encourage researchers to generate browser 

tracks to visualize read densities of exons that are transcript specific in conjunction with 

estimating transcript abundance. Estimating transcript abundance is a complex problem that 

will likely be solved as read length increases.

Detecting Differential Expression: Sequencing Depth, Biological 

Replicates, Normalization and Estimating Variance

One of the primary goals of RNA-seq analysis is to detect differential expression between 

two or more experimental groups. Unlike microarrays, which measure expression by 

fluorescence (a continuous measure), RNA-seq data are discrete counts of sequence reads 

aligning to a particular gene or transcript. Therefore different statistical tests or 

transformation procedures must be employed to detect differential expression. Early models 

assumed a Poisson distribution of reads, which sets the variance equal to the mean, and used 

a straightforward binomial test to detect differential expression between two samples (or 

groups). However, we now know that there is greater variation than expected under a 

Poisson distribution; this extra-Poisson variation is termed overdispersion(Wang et al., 

2009; Robinson et al., 2009; Auer and Doerge, 2010; Anders and Huber, 2010). Hence, 

estimates of biological variance must be incorporated into tests for differential expression. 

Many tools employ a test based on the negative binomial distribution that allows for 

estimation of variance. Given the small sample sizes of RNA-seq experiments, most 

methods borrow information over all genes to estimate variation. In this section will discuss 

methods for estimating variance, testing for differential expression, as well as testing for 

appropriate sequencing depth and number of replicates.

Several groups have published thorough comparisons of tools for testing differential 

expression (e.g., (Soneson and Delorenzi, 2013; Kvam et al., 2012)). We tested EdgeR, 

DESeq (v1 and v2), and VOOM as well as a simple Poisson model. The goals of our tests 

are two-fold. First, we are interested in sensitivity and specificity of these tools in detecting 
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differential expression. Second, we are also using our simulated data to test sequence depth 

and number of replicates needed to detect differential expression.

Depth and Replicates

The depth of sequencing and number of replicates are intimately tied together to give power 

for accurately estimating transcript or gene-level expression, modeling the biological 

variance, and ascertaining which transcripts or genes are differentially expressed. Some have 

suggested small pilot projects to better estimate the complexity of the transcriptome in 

particular samples(Bashir et al., 2010), which would assist with making decisions about 

experimental design. Alternatively, Busby et al. (2013) developed Scotty, a tool to estimate 

the necessary sequencing depth and number of replicates for RNA-seq experiments. Others 

have described methods for estimating sample sizes for technical and for biological 

replicates(Fang and Cui, 2011; Hart et al., 2013). An additional concern is that regardless of 

depth, lowly expressed transcripts are difficult to measure accurately. One possible solution 

is to remove high-abundance RNAs using capture probes(Łabaj et al., 2011) and then to 

sequence remaining mid- to low-abundance RNAs. Finally, while we are focused on 

experiments designed to detect differential expression between two or more groups in this 

work, RNA-seq can also be used to detect allele-specific expression. Heap et al. have 

developed a tool for power analysis for allele-specific expression(Heap et al., 2010).

Knowledge of the biology is critical for accurately estimating both sample size and 

sequencing depth. For example, biological variance is relatively minimal in cell lines or in 

inbred strains of flies or mice. However, with human samples that are possibly collected at 

different times or even post-mortem there are significant biological, environmental, and 

technical sources of variation. The recommendations that we make here are from the 

analysis of differentiated mouse embryonic stem cells that have minimal genetic variation 

and little technical variation relative to human samples. We tested recovery of splice 

junctions based on subsampled data sets (see above, Splice-aware Alignment Tools) and 

found that with 55 million reads mapped, we were able to recover 94% of expected 

junctions. In this section we test the depth of sequencing and number of replicates needed to 

identify differentially expressed genes using several different tools.

Normalization

Sequencing depth, RNA composition, and GC content of reads may differ between samples. 

Therefore, samples must be normalized before they can be compared within or between 

groups (see (Dillies et al., 2013) for review). Library-size (depth) normalization procedures 

assume that the underlying population of mRNA is similar between samples, which means 

that samples with dramatically different compositions of RNA will violate this assumption 

and cannot be compared without accounting for this difference. For example, a few highly 

expressed genes can bias library-size based normalization (the per million reads mapped as 

denominator) when those genes are not highly expressed in all samples. The net effect is that 

these genes consume a large portion of the total number of reads, which causes other genes 

to be under-sampled. Bullard et al. (2010) showed that by removing the genes with highest 

expression (e.g., upper quartile) from the denominator, estimation of expression levels was 

more accurate for less abundant transcripts, but the methods implemented vary by tool. In 
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more extreme cases, ERCC spike-in controls can be used for normalization when samples 

are likely to have dramatically different RNA compositions(Lovén et al., 2012).

Sample-specific GC-content differences are another source of between sample variation. 

Two packages, EDASeq(Risso, 2013) and cqn (conditional quantile normalization) (Hansen 

et al., 2012) estimate correction factors to mitigate sample-specific GC-content. In our 

experience, dramatic differences in GC content may indicate a problematic sample, which 

should also be investigated with QC measures.

The tools we use to test for differential expression between groups implement different 

methods of normalization. edgeR uses a trimmed mean of M-values (TMM), which is a 

scaling factor for library sizes that minimizes the log-fold change between 

samples(Robinson and Oshlack, 2010). They then used counts normalized by this effective 

library size for all downstream analyses. DESeq and DESeq2 take a similar approach and 

create a virtual reference sample for each gene by taking the geometric mean of counts over 

all samples and then normalizing each sample to this reference to get a scaling factor per 

sample(Anders and Huber, 2010). With VOOM, one can either do a simple library size 

normalization of log of counts per million, a quantile normalization, or use the TMM as in 

edgeR(Law et al., 2014); we used the TMM in our tests. Our Poisson-based test uses library-

size normalization of reads per million.

Modeling the Biological Variation and Testing for Differential Expression

RNA-seq data give a discrete measurement of the fragments mapping to a particular gene or 

transcript, which is different from the continuous distribution of expression intensities from 

microarray data. Appropriate statistical models must be used for these count data. It is 

natural to consider the distribution of read counts as coming from a Poisson process. 

However, since the days of SAGE (Serial Analysis of Gene Expression), a precursor to high 

throughput RNA-seq, we have known that biological replicates exhibit higher levels of 

variance than can be accounted for with the Poisson distribution (Baggerly et al., 2004; Lu et 

al., 2005), which assumes the mean equals the variance. DESeq, DESeq2 and edgeR employ 

the negative binomial (NB) distribution to model this overdispersion, which includes a 

variance parameter that must be estimated from the data. The NB reduces to the Poisson in 

cases of no overdispersion. edgeR then estimates dispersion using either the quantile-

adjusted conditional maximum likelihood for single factor experimental designs or the Cox-

Reid profile-adjusted likelihood for more complex designs(Cox and Reid, 1987; McCarthy 

et al., 2012); DESeq2 uses the latter method and see (Anders and Huber, 2012) for DESeq. 

For tests of differential expression, DESeq uses the R function nbinomTest and DESeq2 

employs a negative binomial generalized linear model fitting β (log2 fold change) with a 

gene-specific dispersion parameter for each gene and the Wald test to generate p-values. 

edgeR uses a model similar to DESeq2, but tests for differential expression using a 

likelihood ratio test. VOOM instead estimates the mean-variance relationship of the log of 

read counts by fitting a locally weighted regression (LOWESS), which gives a residual 

standard deviation for each gene. The fitted log counts per million is converted into a 

predicted count and the variation is based on that count size. The weight for each 
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observation is the inverse of the predicted variance; conveniently, tools such as 

limma(Smyth, 2005) can then be used to test for differential expression.

Simulated Differential Expression with Varying Numbers of Replicates and Sequence 
Depth

We simulated replicates and a treatment and control group from the initial Tophat2 

alignment of real RNA-seq data described in the Data Set section. Input to the simulator is a 

bam file and a table of counts for each gene. The tool htseq-count was used to assign reads 

to genes(Anders et al., 2014). Using real data for generating data sets preserves any 

technical biases in the data, such as random hexamer bias or base composition bias. 

Parameter settings for generating simulated data include number of replicates (default=3), 

proportion of genes to be differentially expressed (DE, default=0.1), minimum read count 

per gene for inclusion (default=20 reads), differential expression level for each DE gene 

(range 0-1, default 0.2-0.45), and overdispersion for each treatment-control pair (+/− 0.05). 

Data set generation involves five steps. First, all aligned reads from the initial experiment 

were combined and then for each gene, were split into equal-sized bins, with each bin 

serving as one treatment-control replicate pair. Second, we determine whether a particular 

gene will be DE by drawing from a uniform distribution; if the random number is less than 

the proportion to be DE, that gene is set as DE. Third, we determine the level of differential 

expression for each DE gene by drawing from a uniform distribution with minimum and 

maximum set by the differential expression level parameter. Fourth, we set the level of 

overdispersion for each treatment-control pair of each gene and add that to the level of DE. 

For example, if the level of DE is 0.3 and the overdispersion values for each of three 

replicates are 0, −0.02, and 0.05, then the total proportion of reads that go to each of the 

three treatments are 0.3, 0.28, and 0.35. Finally, we use these treatment-control pair values 

for each gene and for each read, we actually draw from a uniform distribution and would 

assign the read to treatment 1, replicate 1, if the value is less than or equal to that value (0.3 

in the example). Read distribution for treatment-control pairs of non-DE genes is simply 

based on the overdispersion parameter. The output of the simulator is a table with a gene on 

each row and counts for each sample in columns. We conducted 3 different simulations, but 

all three have 24,913 genes, with 500 differentially expressed genes. We conducted two 

simulations with 6 replicate pairs with ~38 million reads per replicate and different settings 

for overdispersion +/− 0.05 and +/− 0.15. For subsampling tests to assess sequencing depth, 

we simulated 3 replicate pairs with 76 million reads per replicate with overdispersion +/− 

0.05. Genes with fewer than 10 reads on average are excluded from analysis. We generated 

ROC curves showing true positive rate and false positive rate for each method and with 

different numbers of replicates and depth using the ROCR package in R (Fig. 8)(Sing et al., 

2007). Results from VOOM and the Poisson-based test were post-processed to set p-value=1 

when the average number of reads across all samples was <5 because both methods returned 

highly significant p-values for genes with small numbers of reads; other methods were not 

significantly affected by small read counts and were not post-processed.

We show the power to detect differential expression with overdispersion +/− 0.05 for 

varying levels of replicates (n=2-6) with 38 million fragments per sample (Fig. 8A-D). With 

3 replicates and 38 million mapped fragments per sample, we recovered 94% of DE genes at 
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FPR 0.1 with EdgeR and just slightly fewer with both versions of DESeq (Fig. 8B). 

Increasing the number of replicates to n=4, marginally improves identification of DE genes 

(Fig. 8C). Decreasing the number of reads to 19 million per sample reduces the power to 

detect differential expression slightly for both edgeR and DESeq (Fig. 8F). Further 

reductions in read depth begin to have dramatic effects on the ability to detect differential 

expression (Fig. 8G,H), and this would be especially difficult with lowly expressed genes. 

Increasing the overdispersion to +/− 0.15 (results not shown) decreases the ability to detect 

differential expression, as expected. If biological variance is high, more replicates are 

needed; with n=6 replicates per group and high overdispersion (+/− 0.15), edgeR, both 

versions of DESeq, and VOOM recover about 85-86% of DE genes at FPR 0.1. Soneson and 

Delorenzi (2013) conducted thorough simulations that tested biases when there are large 

numbers of differentially expressed genes or in cases where one experimental group has a 

bias in the direction of expression patterns. Their results show that edgeR and DESeq 

perform quite well except when there are very large numbers of differentially expressed 

genes and they are highly biased in the direction of expression (i.e., one group always shows 

higher expression). Given the results from our simulations and others, we recommend 3 or 

more replicates per group, 30+ million mapped fragments per sample, and using edgeR (or 

DESeq) to detect differential expression on a gene-level with samples from inbred lines or 

cell culture.

SUMMARY RECOMMENDATIONS

RNA-seq experiments may take many different forms with a variety of sample types. 

Herein, we address common steps of designing experiments and analyzing data when the 

goal of the experiment is to detect differential expression. We make a number of 

recommendations based on these analyses (Fig. 9). Our first recommendation is to collect at 

least 3 biological replicates for each experimental group. This recommendation is based on 

analysis of differentiated embryonic stem cells that have minimal genetic and environmental 

variation and should be valid for inbred lines of mice or other cell lines. When analyzing 

samples with high levels of biological variation, such as clinical or post-mortem samples, it 

may be necessary to have many more replicates. Tools have been developed to help estimate 

the number of replicates needed based on the level of biological and technical 

variation(Bashir et al., 2010; Busby et al., 2013; Fang and Cui, 2011; Hart et al., 2013). For 

gene-based analysis, we recommend 30+ million mapped fragments. Surprisingly, 50 bp 

single-end reads map with high specificity. However, if the experiment relies on detecting 

alternative splicing, or chimeric transcripts, paired-end sequencing is recommended. Once 

sequence data are collected, we recommend thorough QC. Our fastQC aggregator may be of 

utility for comparing quality across samples (http://github.com/staciaw/fastqc_aggregator). 

We also recommend trimming adapter sequences before alignment and assessing the level of 

read duplication before and after alignment.

Many available tools exist for each step of the analysis. In our hands STAR and Tophat2 

performed best for splice-aware alignment; we slightly prefer STAR because it is extremely 

fast and slightly more sensitive. Many tools exist for estimating transcript abundance and we 

tested a handful of them. Others that we did not test include IsoEM(Nicolae et al., 2011) and 

FDM(Singh et al., 2011). The estimates of transcript abundance for each method tested were 
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correlated between methods. However, there was significant variation in estimates compared 

to our ground truth data set. We recommend viewing the data within a genome browser 

following estimates of transcript abundance. Finally, for detecting differential expression, 

we found that edgeR (Robinson et al., 2009) performed best, followed closely by 

DESeq(Anders and Huber, 2010).
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Figure 1. 
Example plot of one QC metric from FastQC, per base sequence quality, aggregated over 

samples into a single figure. Plotted line will be orange to indicate warning if the lower 

quartile for any base is less than 10, or if the median for any base is less than 25. Plotted line 

will be red to indicate failure if the lower quartile for any base is less than 5 or if the median 

for any base is less than 20. All aggregated plots can be viewed as separate images and are 

also combined into an html document.
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Figure 2. 
Proportion of reads mapping uniquely from PE and SE alignments relative to 100 bp PE 

results using Tophat2.
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Figure 3. 
Splice junction mapping with Tophat2, MapSplice, and STAR. Proportion of junctions 

recovered with splice-aware mappers based on a minimum number of fragments spanning 

the splice junction from the BWA gold set alignment (A). Filled symbols indicate an 

annotation was provided whereas open symbols indicate no annotation was provided to the 

aligner. Results from Bowtie2 in green, MapSplice in red, STAR in dark yellow, and 

Tophat2 in blue. Proportion of junctions recovered from subsampled data sets using Tophat2 

based on a minimum number of reads spanning splice junction in BWA alignment (B). 

Proportion of junctions recovered from subsampled data sets relative to the full data set 

(91.8 million read pairs) using Tophat2 provided with annotation (C).
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Figure 4. 
Correlation between counts of fragments spanning each splice junction for BWA compared 

to splice-aware aligners. PE (A-D) and SE (E-H) analyses using STAR (A,E), MapSplice 

(B,F) and Tophat2 (C,D,G,H). Panels D and H are for 50 bp reads; all other panels are 100 

bp reads.
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Figure 5. 
Scatterplots comparing WT cardiomyocytes replicate 1 and replicate 2 of real RNA-seq data 

for each transcript abundance tool.
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Figure 6. 
Comparison of transcript abundance estimating methods. General properties of RNA 

abundance estimating methods (A). The average correlation between each method and other 

methods’ abundance estimates of real data are indicated (green=high Spearman correlation) 

at the far left, followed by a description of the outputs generated by each tool. On the right is 

indicated the correlation of the abundance estimates with gene length for each method. High 

correlation between most methods (B). The estimated log2 FPKM values of transcript 

abundance are shown for Cufflinks and RSEM. Blue and green points indicate genes with 
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large difference in FPKM estimates given simulated data. Most methods are more precise 

than a simple counting method (C). Shown for Cufflinks and RSEM are comparisons of 

abundance estimates from each method with a naïve abundance estimate that does no 

correction for any of the issues that pertain to RNA-seq data including the possibility that a 

given tag may map to multiple different transcripts. Black points indicate high correlation 

between Cufflinks and this simple counting technique, red points indicate the ~2,000 genes 

that exhibit large differences between Cufflinks and this method. In the other comparisons 

(e.g. RSEM versus simple counting) those red points remain outliers, suggesting that these 

genes are problematic for simple counting, but whose estimates are more precisely estimated 

using any of the specified tools, given the much higher correlation in (B). Problematic genes 

are shorter than average genes (D). The intersection of genes with low precision across a 

round robin of estimates was labeled as the set of ‘super problem genes’ (e.g., red points in 

(B)). These ~200 genes had a different distribution of length (red) than the average transcript 

length of all genes (blue). Methods are accurate on average, but with higher variance than 

estimates might indicate (E,F). Differences between simulated data with known FPKM 

values feeding the simulation (black) were compared to estimated FPKMs using Cufflinks 

(E) and RSEM (F). Transcripts were first ranked by estimated FPKM (red), then binned into 

groups of 100 genes. Interquartile ranges and outliers for the ‘truth’ simulation (black/grey) 

are shown for each bin. Both methods work well on average, but many genes have incorrect 

estimates.
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Figure 7. 
Scatterplots comparing estimated transcript abundance compared to ground truth for each 

tool. Log2 FPKM values for Cufflinks (A), TIGAR (B), MISO (C), RSEM (D), simple 

counting (E). Each tool is correlated with ground truth, but there is a considerable amount of 

scatter.
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Figure 8. 
Assessment of power with various sequencing depth and number of replicates for tools that 

test for differential expression. Comparison of sensitivity with varying numbers of replicates 

(n=2-6) and 38 million mapped reads per sample (A-D). DESeq and EdgeR perform well 

with 3 or more replicates. VOOM makes dramatic improvements with increasing sample 

size. Comparison of sensitivity with differing sequencing depths: 76, 38, 19, 9.5, 3.8 million 

reads per sample (E,B,F,G,H, respectively). Each group has n=3 replicates for testing depth. 

Power to detect differentially expressed genes drops off considerably with only 19 million 

reads per sample. Note that the false positive rate on the x-axis of each figure ranges from 0 

– 0.10; this zoomed-in view shows subtle differences between methods, number of 

replicates, or depth of sequencing.
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Figure 9. 
Workflow and recommendations for RNA-seq analysis. We recommend 3 replicates per 

group when biological variance is expected to be low (e.g., for inbred lines of mice or other 

cell lines) and using tools to estimate sample size when biological and/or technical variance 

is expected to be higher (e.g., with clinical or post-mortem samples). For gene-based 

analysis, we recommend 30+ million mapped fragments with 50 bp single-end reads 

However, if the experiment relies on detecting alternative splicing, or chimeric transcripts, 

much deeper 50 bp paired-end sequencing is recommended. Once sequence data are 
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collected, we recommend QC with FastQC and our aggregator for visualization, trimming 

adapter sequences with fastx trimmer (http://hannonlab.cshl.edu/fastx_toolkit/) before 

alignment. We also recommend QC and marking duplicates following alignment. We 

recommend STAR for splice-aware alignment, and carefully viewing the data within a 

genome browser following estimates of transcript abundance. Finally, for detecting 

differential expression, we recommend edgeR or DESeq. The green check marks and red Xs 

are meant to give a qualitative assessment of tool capabilities.
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Table 1

Proportion of Junctions Recovered Based on Number of Fragments Spanning Splice Junction in BWA 

Alignments

Prop. SJS
Relative to

BWA

Percent Splice Junctions Recovered*

SJM Length SE/PE Annotation 1+ 5+ 10+ 20+ 50+

Bowtie2 100 PE No 0.10 71.7% 84.2% 87.9% 90.8% 93.1%

Mapsplice 100 PE No 0.89 89.0% 98.0% 98.8% 99.3% 99.7%

Mapsplice 100 SE No 0.43 85.2% 95.6% 97.6% 98.5% 99.2%

STAR 100 PE Yes 0.94 93.2% 98.9% 99.3% 99.6% 99.9%

STAR 100 SE Yes 0.44 90.8% 98.0% 98.9% 99.5% 99.8%

STAR 100 PE No 0.83 92.0% 98.6% 99.1% 99.5% 99.8%

STAR 100 SE No 0.35 90.0% 97.5% 98.7% 99.3% 99.7%

Tophat2 100 PE Yes 0.73 86.9% 97.8% 98.9% 99.6% 99.9%

Tophat2 100 SE Yes 0.41 82.8% 95.7% 97.9% 99.0% 99.7%

Tophat2 100 PE No 0.64 85.3% 96.7% 98.0% 98.8% 99.5%

Tophat2 100 SE No 0.37 81.5% 94.2% 96.7% 98.0% 98.9%

Tophat2 50 PE Yes 0.82 88.5% 98.4% 99.2% 99.7% 99.9%

Tophat2 50 SE Yes 0.22 79.1% 92.8% 96.4% 98.7% 99.7%

*
Binned by minimum number of fragments spanning junction in BWA alignment.
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Table 2

Transcript abundance estimates for each of two replicates were calculated using Cufflinks, TIGAR, MISO, 

RSEM, and a simple counting method.

Cufflinks.1 TIGAR.1 MISO.1 RSEM.1 count.1

Cufflinks.1 1.00 0.96 0.84 0.96 0.70

Cufflinks.2 0.99 0.96 0.80 0.95 0.74

TIGAR.1 0.96 1.00 0.81 0.98 0.74

TIGAR.2 0.93 0.99 0.77 0.96 0.76

MISO.1 0.84 0.81 1.00 0.87 0.45

MISO.2 0.85 0.83 0.97 0.89 0.51

RSEM.1 0.96 0.98 0.87 1.00 0.70

RSEM.2 0.94 0.98 0.84 0.99 0.74

count.1 0.70 0.74 0.45 0.70 1.00

count.2 0.69 0.73 0.43 0.69 1.00

Correlation coefficients are Spearman’s Rho.
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