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Abstract

Developing a user-friendly platform that can handle a vast number of complex physiologically based
pharmacokinetic and pharmacodynamic (PBPK/PD) models both for conventional small molecules and larger
biologic drugs is a substantial challenge. Over the last decade the Simcyp Population Based Simulator has gained
popularity in major pharmaceutical companies (70% of top 40 - in term of R&D spending). Under the Simcyp
Consortium guidance, it has evolved from a simple drug-drug interaction tool to a sophisticated and
comprehensive Model Based Drug Development (MBDD) platform that covers a broad range of applications
spanning from early drug discovery to late drug development. This article provides an update on the latest
architectural and implementation developments within the Simulator. Interconnection between peripheral modules,
the dynamic model building process and compound and population data handling are all described. The Simcyp
Data Management (SDM) system, which contains the system and drug databases, can help with implementing
quality standards by seamless integration and tracking of any changes. This also helps with internal approval
procedures, validation and auto-testing of the new implemented models and algorithms, an area of high interest to
regulatory bodies.
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Background
The relative complexity of differential equations involved
in physiologically based pharmacokinetic and pharmaco-
dynamic (PBPK/PD) models, together with the need for
comprehensive drug and system data, has previously
limited their use to a small group of modelling scientists;
however such models have been around since the 1930s.
(Teorell 1937). Recently, applications and acceptance of
PBPK models joined with In Vitro – In Vivo Extrapola-
tion (IVIVE) of Absorption, Distribution, Metabolism
and Excretion (ADME) in drug development and regula-
tory assessment have significantly increased (Zhao et al.
2011, Rostami-Hodjegan 2012). This trend can be attrib-
uted to many factors, including, the availability of user-

friendly software and an increase in computing power,
which have facilitated the use of PBPK modelling (Rowland
et al. 2011). Bouzom and co-workers reviewed the features
and limitations of both off-the-shelf and the traditional
user customisable software packages which are frequently
used for building and applying PBPK models (Bouzom
et al. 2012). The Simcyp Population Based Simulator is a
commercially available package used for Model Based
Drug Development (MBDD). An overview of the frame-
work and organisation of the Simulator and how it com-
bines different categories of information was previously
described (Jamei et al. 2009a). Each year more than 40
man-years of effort go into updating and refining the
Simulator; hence it is necessary to provide an update on
the latest architectural and implementation developments.
Interconnection between peripheral modules, the dynamic
model building process and compound and population
data handling are described. Also, the Simcyp Data
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Management (SDM) system, which contains the system
and drug databases and facilitates implementation of qual-
ity assurance procedures, is explained. This article also
provides details of the regression autotesting procedures
implemented to ensure the consistency and integrity of
new models and their interaction with already imple-
mented modules.

Chronology of modules
Since its inception the Simcyp Simulator has been devel-
oped in conjunction with a Consortium of major phar-
maceutical companies, who share pre-competitive
information and provide guidance on the addition of fur-
ther capabilities and features. The usage and functionality
of the Simulator is further enhanced by collaborations
with drug regulatory bodies and academic centres of ex-
cellence worldwide. Every year a new version of the Simu-
lator with new features is released. A rough chronological
order of the development of models and databases within
the Simulator is shown in Figure 1. The Simulator devel-
opment started with simple static drug-drug interaction
calculations (“Static CYP DDI” section of Figure 1). This
was expanded to dynamic models and the minimal PBPK
model that was subsequently expanded to full PBPK
models. The recent developments include handling of
therapeutic proteins, the ability to add custom PD scripts
and to model time-variant physiology in paediatric popu-
lation as the subjects grow and in pregnant women over
the duration of pregnancy.
Various architectural and procedural modifications

and enhancements introduced to maintain performance
and minimise simulation time are explained in the

following sections. The general workflow, quality assur-
ance procedures and module testing methodologies are
also described.

Methods
Each year a new version of the Simulator is developed
and released. This requires a rapid application develop-
ment environment that allows many iterations of code
within a development cycle to present and implement
novel modules in the most expedient manner. This nat-
urally dictates a specific workflow and procedures for
dealing with model development/implementation and
data generation/maintenance. The development work-
flow, data structure and integrity check, dynamic model
building and testing procedures are explained in this
section.

Development workflow
Agile and scrum
From the early days of development in 2002, an ap-
proach to software development has been used which
maps quite closely to methodologies known as Agile
(Martin 2011, Larman and Basili 2003). For Simcyp, this
approach usually involves a group of scientists, who are
responsible for creating a design or implementation
document for the new feature, along with at least one
developer. Each project team has a lead person who
heads the team and coordinates their efforts to define
and deliver the project deliverables within the given
timeframe. Each project also has a supervisor who pro-
vides advice and guidance whenever needed and also is
responsible for evaluating scientific and technical aspects
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Figure 1 The chronology of expansion of the Simulator features from 2001–2013 under the Simcyp Consortium guidance. The
development started with static metabolic drug-drug interaction calculations then dynamic drug-drug interaction models followed by whole
body PBPK and so on.
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of the deliverables and approve the implementation doc-
uments before they are passed onto developers for
implementation.
Although the implementation document contains the

scientific requirements of the new feature it is not pos-
sible to capture the nuances of interfacing with multiple
other concurrent projects nor can it capture interfacing
with an ever evolving computational core. As such the
project development is carried out in small sections with
iterations to modify and embed the new feature. In order
to accomplish this smoothly a Scrum approach (Sims
and Johnson 2012) is taken where regular updates aim
to ensure that developers working on different projects
are aware of what other projects and developers are both
doing and planning to do in the short term. This highly
communicative approach can remove a large amount of
ambiguity and ‘surprise’ during the development cycles.

Microsoft visual studio and team foundation server (TFS)
The Simcyp Simulator is currently developed using
Microsoft Visual Studio 2010. Development is split into
two principal areas, the addition of new functionality
and the updating of existing features. As a result, mul-
tiple developers may be working on similar areas of code
that could in practice lead to significant development
collisions. To counteract this and to implement rigid
quality control procedures Microsoft Team Foundation
Server (TFS) is used as the central code repository but
also as the principal marshalling tool for code develop-
ment (Guckenheimer and Loje 2012).
Addition of code to the Simulator is strictly controlled.

Firstly, no code can be added to the Simulator without
being linked to a Task (see next section). The Task is a
unit of work defined within TFS and relates to either a
Project that is under way or a bug fix or an enhance-
ment. In this way there is traceability between documen-
tation and lines of code. Secondly the code being
checked in must ‘merge’ with the current code that is in
the repository. It is highly probable that another devel-
oper may have been working on the same files at the
same time. This could lead to collisions where one de-
veloper modifies or overwrites another’s code changes.
TFS prevents this through its intelligent Merge tools
and by calling on the developer to make executive deci-
sions where merging becomes ambiguous. As each code
section is added a build is carried out to verify the integ-
rity of the added code and ensure the overall code is
never ‘broken’.

Projects and tasks
With the increasing use of Simcyp in regulatory sub-
missions, full code control and audit trails need to be
rigorously imposed. To achieve this aim a policy of no
code development without accompanying approved

documentation has been introduced (see next section).
In order to marshal the documentation, TFS is used to
provide a direct link from the project based documenta-
tion or the ‘bugs database’ through to the code that is
developed.
In the first instance, the project team develops an im-

plementation document which is approved by two su-
pervisors (the project supervisor and another supervisor
who only checks/approves the final deliverables) before
it is passed onto developers.
This document is used to generate an overarching

Task within TFS. This Task itself can have Subtasks
dependent on the complexity of the project, for example
Graphical User Interfaces (GUI) development, algo-
rithms subtasks, outputs etc. All code that is then gener-
ated by the development team has to be linked to the
Task or Subtask thus providing a path between lines of
code and the implementation document.
Following on from first stage implementation there

may be a need to fix bugs and add enhancements. TFS
has the facility to report a bug or request additional fea-
tures that is accessible by all developers as well as the
scientists who are involved in the design and testing of
the platform. This allows for the raising and tracking of
reported/fixed bugs.

Data structure and integrity check
Inherent in the design of the Simcyp Simulator is a sep-
aration of data within discrete files from a relatively be-
nign GUI that operates on those files and an Engine that
uses file-based inputs as its ‘menu of operations’. Apart
from being in line with systems pharmacology concepts
(in term of separation of systems, drug and trial design
data), this has a number of significant benefits: notably
the ability to share discrete collections of data more eas-
ily within data libraries, to develop fast throughput sys-
tems minimising user interaction and perhaps the most
important, an ability to develop an automated testing
strategy which both reduces testing time and ensures a
greater integrity of the testing process.

Data files structure
The design of the Simcyp Simulator has been based
around the portability of the underlying data. In other
words all compound and population information can be
fed into Simcyp as external data files. There are two
principal classes of data that are necessary to run any
simulation, namely compound data and population data.
These data classes respectively correspond to properties
of (or values dependent on) a particular compound, and
to data describing the demographic, physiology, geno-
typic and phenotypic characteristics of a specific ethnic
or disease population with relevant inter-individual vari-
ability distributions.

Jamei et al. In Silico Pharmacology 2013, 1:9 Page 3 of 14
http://www.in-silico-pharmacology.com/content/1/1/9



These two types of data are conveniently stored within
XML-based files that can be viewed and accessed via the
Simcyp GUI as well as other tools such as Microsoft
Internet Explorer. The schema of these files has been
designed internally to allow forwards compatibility of
files over time. In other words the schema is fixed with
each release version and new parameters that are added
are done so without disrupting what already exists. This
allows files created with a version of the Simulator today
to be used with later versions when they come out
where any possible missing values are automatically re-
placed with default values. All files contain a degree of
meta-data showing varying information including the
Simulator version used to create the file. In order to en-
sure users are aware of changes a warning message is
displayed indicating some data have been added/updated
and they should consult with the help file.

Workspaces
The compound and population data files have limita-
tions in that neither captures the simulation trial condi-
tions nor the user optimisation options utilised on the
user screens. To cater for this a third type of file struc-
ture known as a workspace has been developed. Again
the workspace file is XML-based; however this time it
acts as a container for one or more compound files, one
or more population files as well as all trial information
and user defined settings. Because of its all-encompassing
nature it is used as a snapshot of the running condition of
any simulation. In other words, to reproduce any simula-
tion exactly, all that is needed is a copy of the workspace
taken at the time the simulation was run.
As a Workspace contains full details of the simulation,

it is possible to use the workspace file alone to drive a
simulation. In this manner the screens can become de-
tached from the main engine enabling much greater
flexibility in designing and updating the interface. An-
other benefit of defining workspaces is the ability to run
a simulation in an automated/fast throughput mode.

Reporting simulation results
After running simulations Microsoft Excel (Microsoft
Corp., Redmond (WA), USA), is used as the output
medium to present the results. Excel was selected be-
cause the majority of computers in the workplace would
have Microsoft Office software installed and additionally
Excel contains many powerful analysis tools that could
be used to analyse the output data once in Excel.
The reporting process is implemented through the

Excel Automation interface which is based on the Office
Object Model. The Simcyp platform uses this technology
to create or connect to an Excel application Component
Object Model (COM) object, to manipulate and add
worksheets as required. Each worksheet is a bespoke

output based on the simulation input selections: each
cell is effectively created individually with the selection
of font (including size and weight), colour (both fore-
ground and background), alignment of text within the
cell, number format (based on the users’ machine selec-
tion) as well as many other specifications.
After the data have been rendered, Excel charts are

added if applicable. These may be concentration-time
profiles or, for example, pie charts of enzyme contribu-
tion which are created based on the data on the work-
sheet and formatted individually based on user
selections such as number format and also the colour
‘skin’ chosen before outputting the data.
The cost of using the Automation interface is speed:

sending large amounts of data across process boundaries
is a great bottleneck. This can be improved using alter-
native methods such as creating the Excel file directly
which means the whole process will be a simple file in-
put/output process and hence much quicker. Unfortu-
nately, the development time required for this is huge
and the entire process would need a great deal of testing
as this would require writing the code from scratch.
Currently, an option is provided to write a subset of data
to a CSV file. This is extremely quick and the data can
subsequently be imported by most packages (including
Excel). The down-side of CSV transfers is that no for-
matting or graphs can be included.
Other output options are the use of a relational data-

base. This is currently used by the Simcyp Batch Proces-
sor but could be expanded to include standard Simcyp
outputs. This would be a powerful tool to put the Simu-
lator as part of a company workflow as it could then
write directly into a corporate database. The downside
of this is similar to the CSV option: all formatting and
visualisation would have to be done by the user.

Insertion of workspaces into excel
There is frequently a desire to reproduce a complete
simulation from the results of an earlier simulation
whether to verify original findings or to continue run-
ning similar simulations. In order to facilitate this, the
Simcyp Simulator can embed a copy of the workspace
into the Excel file while creating the Excel outputs. This
is a two phase operation with the first phase being the
creation of a workspace ‘on the fly’ after a simulation
has taken place but before any output to the Excel file.
The second phase is the embedding and subsequent en-
cryption of the workspace within the Excel file. The em-
bedded workspace can only be accessed by the
Simulator at a later stage; therefore it is not possible to
manipulate or change the workspace data, so it can be
used as a quality control measure. Although the embed-
ding of a workspace is desirable both in terms of internal
traceability (input and output data fully interlocked) and
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when submitting results to authorities, there is a small
overhead involved both in terms of reporting time and
file size.

Simcyp Data Management (SDM) system
Simcyp Ltd often release a number of new and revised
Compound and Population files, typically on an annual
basis. These files are the culmination of a large amount
of meta-analysis and changes may include new parame-
ters for previous files when new features are incorpo-
rated. This can result in variation between file contents
from version to version.
There are two quality issues that surround the files

themselves. The first is the curation of data. Both the
Compound files and the Population files can each have
in excess of 1000 data items and generation of each of
these files is usually the outcome of a meta-analysis of
multiple sources. In order to impose a level of control
over this huge pool of data and to allow intelligent
querying, a tool known as the Simcyp Data Management
(SDM) system has been developed. This tool takes in the
numbers that will go into the Simulator from scientists
via whatever mechanism they exist in at the time and
passes the data through a series of approval procedures
before allocation to particular files. This happens for all
values within a file, ensuring that a full history of the
source of each number is maintained. As the system is
database driven, it also enables searches to be carried
out across files and versions to allow cataloguing of
changes to take place rapidly. As an end point the SDM
generates the compound and population files themselves
that are then bundled with the Simcyp Simulator. This
removes possibility of human error in the process and
ensures data integrity.
These files are stored in an xml format. When new

values are added to the files i.e. when new features are
added, these new values are appended with no change to
the existing structure. A big benefit of this feature is to
enable version control while allowing a new release ver-
sion to read an older version’s xml file.

Model structure and testing
Simcyp PBPK models are built using ordinal differential
equations (ODE). The models’ differential equations are
handled in a module called ‘Simpak’ which is an inde-
pendent and scalable environment to accommodate the
continuing evolution of the models and algorithms
contained within the Simulator (Jamei et al. 2009a). One
of the main objectives in the Simulator’s design is to take
away the model building burden from users. Therefore,
users only select their desired models using the Simula-
tor GUI and these selections are dynamically translated
to the relevant models in ‘Simpak’. To allow more flexi-
bility and scalability ‘Simpak’ is highly modularised to

facilitate the combination of many different components.
Currently, the Simulator handles over 1000 PK model
combinations, involving:

� Single (small and large molecules) or multiple (up
to 4) chemical moieties,

� Different absorption models, namely one-compartment,
enhanced Compartmental Absorption and Transit
(CAT), and Advanced Dissolution, Absorption and
Metabolism absorption (ADAM) models,

� Different distribution models such as minimal and
full PBPK models with different perfusion- and
permeability-limited models, including multi-
compartment liver, kidney, blood–brain-barrier
models and an additional multi-compartment user
defined organ/tissue,

� Modelling of up to 3 metabolites.

As an example, if the ADAM and full PBPK models
are used while the gut, liver, brain and kidney transporters
are incorporated for the substrate and main inhibitor
around 500 differential equations are automatically assem-
bled to run the simulation.
The ever increasing number of models and the expo-

nential rise of possible combinations have made model
checking/testing a challenging task; therefore a range of
solutions for model testing has been deployed which are
explained below.

Regression testing
Reproducibility of simulation result is a key requirement
when users install different versions of the Simulator
and plays an equally important role during the develop-
ment lifecycle of the Simulator. As the complexity of the
Simulator has increased automated tools have had to be
developed to allow a large proportion of the testing to be
done automatically. The key players in this regime are the
Simcyp Autotest package coupled with an in-house Excel
Comparison tool; which compares the same worksheets in
two given Excel workbooks; that enables a full regression
testing (comparing the results from a new build against
historical results) procedure to take place directly and
automatically after any development build of the Simula-
tor. For this purpose a repository of workspaces that is
ever increasing, which cover a wide range of GUI options,
is established and used during regression testing.

Autotesting
The Simcyp Autotest package allows the automated run-
ning of multiple workspaces with pre-selection of rele-
vant outputs. In order to make use of this as part of a
regression testing, two areas need to be addressed.
Firstly, any new build of the Simulator needs to generate
similar results to those generated in a previous build for
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an existing feature in similar scenarios. Secondly, testing
needs to be done to ensure any new feature needs to gen-
erate defined outputs without interfering with existing fea-
tures in any unpredictable/unexpected manner.
To check this, existing results generated by running

defined Workspaces on early versions/builds need to be
checked against results from the current released build
of the Simulator to ensure that no unexpected discrep-
ancies (i.e. where the underlying algorithms and/or data
have not been intentionally altered) occured. Addition-
ally new features need to be run via newly defined
Workspaces to ensure that initially a benchmark and
then subsequently regression testing against that bench-
mark can take place. In practice, project teams initially
manually verify the results generated by new modules
often against previously developed prototypes in other
environments such as the MATLAB (The Mathworks
Inc., Natick (MA), USA) or R (1) packages. Further, pro-
ject teams are asked to prepare a range of workspaces to
cover required features. These workspaces will be re-
peatedly run for each successive build and compared to
the previous run. The Autotest package was initially de-
veloped as Python Scripts but has since been recoded in
C# to add extra layers of functionality. The exposed fea-
tures within the Simulator Engine however allow any
scripting engine to be used.
Over time, new literature data leads to the revision

and updating of physiological and compound parameters
used within the Simulator. When this happens, the
workspace files are updated with the latest values.

Consequently the corresponding benchmark test results
are also modified for future regression testing.
The Autotest package provides two options for deter-

mining the outputs. The first and default method is to
use the Excel outputs that the user defined at the time
that the Workspace was saved. In this case the work-
space serves as a complete input and output unit. The
second method is to define the required outputs via
command line inputs within the script. Although effect-
ive the latter approach can be time consuming given the
large number of different sheets that can be generated.
A final by-product of the Autotest system is metrics. A

wide range of metrics are gathered for each simulation
and can be compared against previous Autotest runs in
order to ensure that either programmatic issues (mem-
ory usage, simulation run time, etc.) and/or algorithmic
issues (stiff differential equations) have not crept into
the design and had any adverse effect on time and/or
memory usage. The overall autotesting process is shown
in Figure 2.

Excel comparison tool
An issue that occurred when running Autotest was the
huge number of Excel files that are potentially generated
as a result of running multiple workspaces across many
projects. Since checking these files manually was very te-
dious and time consuming, a new in-house package was
developed to compare one set of Excel files (the current
run) against an earlier set. Built into this utility was a
way of setting a threshold so that discrepancies could be

Multiple
Workspaces

Autotest
Package

Excel 
Outputs

Summary

Results

Metrics

Excel Compare
Package

Historical results
in database

Figure 2 The overall autotesting process which starts from running the repository of workspaces to the generation of summary reports.
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reported on a master report sheet with colour coding
added to the Excel files themselves to ‘mark’ the discrep-
ancies. In this way a user can allow discrepancies of say
1% to exist between values to cater for potential
rounding errors in Excel yet still report significant dis-
crepancies. Similar checking is carried out on the met-
rics files to verify time or memory differences are not
occurring.

Code coverage testing as part of regression testing
Given the high number of model combinations and
available options, there were cases where the workspaces
did not cover specific areas. Hence, the question was
how to make sure all areas of the code are sufficiently
covered for testing. To address this issue and assess
which parts of the code were activated whilst running a
specific workspace, a code coverage tool called the Bulls-
eye Coverage package (Bullseye Testing Technology,
Washington, USA) is used. It determines which paths
through the code within the new module are called and
tested and which remain to be. Therefore, this additional
checking assists with identifying any shortcomings in the
test workspaces and allows an iterative approach to gen-
erating a good quality set of test workspaces that cover
as many options as practical.

Computer virus checking
The Simulator is usually used in an environment
(pharmaceutical companies and regulatory agencies)
where it is essential to be free from any computer vi-
ruses or malware and additionally for the software not
to send any sensitive information outside of the com-
pany. Therefore, the Simulator (after passing all internal
testing and checking and when it is ready to be released
to clients) is sent out to the National Computing Centre
(NCC). The NCC is an independent membership organ-
isation for IT professionals and is the single largest and
most diverse corporate membership body in the UK IT
sector. The centre runs a variety of tests on all Simula-
tors (for human and animal species) to verify they are
free from any computer viruses or malicious codes and
do not broadcast anything outside of the computer. The
NCC then issues a certificate and endorses that specific
release of the software after which the installer is re-
leased to users.

Peripheral modules
During the course of Simulator development many addi-
tional (peripheral) modules were added to extend its fea-
tures and functionality. To retain the modularity of the
platform and facilitate its maintenance these modules
were developed independently whenever possible and
called in to perform specific tasks when needed. One
of the very first peripheral modules was the Batch

Processor that allows running many simulations without
user intervention (Jamei et al. 2009a). In the current art-
icle three major peripheral modules added since Simcyp
Version 9, namely the Automated Sensitivity Analysis
(ASA) tool, Parameter Estimation (PE) modules and the
Pharmacodynamics (PD) module, are described. Further-
more, an update is provided on the differential equation
solver.

Automated sensitivity analysis tool
On occasion there is uncertainty in the true value of an
input parameter. This may be due to some particular
parameter being unavailable for the drug of interest or
because for that particular compound the in vitro data is
unreliable. In these cases it is useful to check the impact
that the input parameter has on the simulation outcome.
This can be achieved using the automated sensitivity
analysis (ASA) tool. This is a local sensitivity tool which
scans the selected parameters within a given range and
reports the selected endpoints for a population represen-
tative subject. ASA can be used to assess the impact of
changing specific parameters (maximum of two at a
time) on a range of PK/PD parameters or concentration-
time profiles. For investigating more than two parame-
ters the Batch processor (Jamei et al. 2009a) can be used
instead. Identifying whether an input parameter has a sig-
nificant impact on the outcome of a simulation is highly
valuable as it assists with making decision on what in vitro
assays should be done at what stages and how much re-
source should be invested in obtaining a particular param-
eter for a particular compound. ASA can be performed on
virtually any parameter displayed on the Simulator inter-
face. After a parameter is selected the ASA interface tool
is called within this interface the user can define the par-
ameter ranges and the number of steps the range should
be divided into, as shown below (Figure 3).
The user then selects the endpoint parameters to be

shown as Excel output, many of the PK/PD parameters
and profiles are available for selection when ASA is used.
Within the Excel outputs the selected endpoint values
for any of the selected input values along with the sensi-
tivity index, which is the ratio of change in endpoint to
the change in input, and elasticity index, which mea-
sures the relative change in endpoint for a relative
change in input, are provided. Generally, sensitivity ana-
lysis is recommended prior to fitting a model to the ob-
served data as these help to decide which parameters
should be or can be fitted.

Parameter estimation (PE)
Another recently introduced feature of the Simulator is
the ability to simultaneously estimate up to 10 parame-
ters to match clinical observations using the Parameter
Estimation (PE) module (Zhao et al. 2012). One of the
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biggest advantages of this module is that a user does not
need to write any models and their relevant differential
equations as all of these are automatically performed.
This module allows non-modellers quickly and effi-
ciently to fit very sophisticated models to clinical obser-
vations. Historically, model fitting has been an area of
expertise that only a limited number of modellers could
handle and this limited the wide use of modelling and
simulation in the pharmaceutical industry. Introduction
of modules such as PE has enabled a larger group of sci-
entists to apply model-based drug development.
Since many PK covariates are already built into the

Simulator (Jamei et al. 2009b), the covariate selection,
which can be a challenging step in typical Nonlinear
Mixed Effect (NLME) modelling, becomes a less challen-
ging task. This is a major advantage of parameter esti-
mation using models that have been developed in a
systems pharmacology context.
To allow entering the observed clinical data, PE tem-

plates are designed and implemented as add-ins within
Excel. The PE templates are structured in a manner that
facilitates entering clinical data which are already saved
in NONMEM (GloboMax, ICON Development Solu-
tions, USA) software format. Within PE templates, two
sets of data checking are carried out: first, while the data

are being entered and second, right before saving the file
to check the consistency of overall entered data. The lo-
cation and reason of any errors are reported to users so
they can quickly ratify them. At the end the data are
saved in XML format.
The available on screen parameters are dynamically

changed depending on the selected models and users
can easily select parameters to be estimated from the
screen which makes the fitting process intuitive. After
selecting the parameters to be estimated invoking the PE
module brings up an interface from which the optimisa-
tion methods, error models, ending criteria and the pa-
rameters' initial values and ranges can be entered. The
PE can fit models using both rich and independent indi-
vidual data and sparse population data as it is done in
typical PoPPK data analysis.
A range of least square objective functions with different

weighting methods can be selected for fitting. These ob-
jective functions can be fitted using classical Nelder-Mead
(Nelder and Mead 1965) or Hooke-Jeeves (Hooke and
Jeeves 1961) methods or more modern methods such as
Genetic Algorithms (Goldberg 1989). For NLME fitting
the Expectation-Maximisation (EM) (Dempster et al.
1977) method is used to solve either of the Maximum
Likelihood or Maximum A Posterior problem. A screen

Figure 3 A screen shot of the automated sensitivity analysis tool in Simcyp Version 12 Release 2; an example for assessing the impact
of fraction unbound in plasma and the absorption rate constant on specific outputs where the minimum and maximum values, the
steps and the step-size distributions are defined.
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shot of the main interface of the PE module is shown in
Figure 4.

The PD (pharmacodynamic) framework
Since Version 11 Simcyp has provided a collection of
PD models for simulation and parameter estimation to
complement PK/ADME modelling facilities. The initial
emphasis in development of this PD module has been
to capture some well-known semi-empirical models
within building blocks (PD Response Units) which can
readily be linked together by generalized transduction
to represent more complex responses. This early frame-
work envisaged connecting simulated compounds (PK
substrate/inhibitor/metabolite) to one or more responses
via a directed acyclic graph (DAG) of linked units.
Complexities of PD to PK feedback and other systems
biology motifs were to follow on a slower timescale.
Similarly, mechanistic details of receptor-based in vitro

to in vivo extrapolation (PD-IVIVE) were to be grafted
on more gradually, as the science developed, within this
framework.
Two types of PD Response Unit have so far been

implemented: the PD Basic Unit (Version 11) and the
PD Link Unit (Version 12). Just one PD Basic Unit is all
that is needed to represent elementary PD (such as a
Hill model or Emax response) and a PBPK compartment
providing a concentration or amount driving the re-
sponse can be selected from a simple dropdown list;
thus a specialist in metabolism or biopharmaceutical sci-
ence does not need further training to add a quick pre-
view of possible PD effects, consequent to some
simulated PK interaction or a formulation change.
Nevertheless, with a PD Link Unit attached, Simcyp ex-
tends the offered response models to include many in-
direct models via link models well known to
pharmacometricians and PK/PD modellers, combining

Figure 4 A screen shot of the Parameter Estimation (PE) module that allows either of simulation or estimation modes. The observed
clinical data are loaded in XML format and in the shown case the data include both plasma concentration and a PD response profile for
simultaneous fitting of PK and PD dependent variables.
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concepts from Generalized Linear Models (McCullagh
and Nelder 1989), Survival Analysis (Kalbfleisch and
Prentice 2002), empirical disease progression (Chan and
Holford 2001) and “Indirect Physiological PK/PD”
(Dayneka et al. 1993). Figure 5 shows the screen repre-
senting the PD Link Unit.
PD Response Units are themselves subdivided into a

sequence of data processing steps with associated model
choices from unit input to unit output and this is repre-
sented on-screen as a flow from top to bottom. More-
over, a Simcyp response comprising just two connected
PD Basic Units can be cast at different mechanistic
levels according to a user-chosen transduction mode:
other than just empirical mode; operational mode may
be used to capture receptor binding-activation (up-
stream) and stimulus–response (downstream) with the
efficient transducer-ratio parameterisation of operational
agonism models (Black et al. 1985); or intrinsic efficacy
mode representing intricacies more familiar to receptor
pharmacologists (Stephenson 1956, Karlin 1967), with
explicit receptor abundance (at least) as a system prop-
erty to be pulled from a Simcyp population library. As of
Simcyp Version 12, PK/ADME extensions, particularly

for biologic drugs with high target affinity, have included
target-mediated drug disposition (TMDD) models
(Mager and Jusko 2001) where target receptor binding
affects drug disposition profiles: from Version 12 Release
2 these models are also available for PD response.
Completion of the full DAG framework would require

two further items, namely a PD Interaction Unit to
join responses of different compounds according to
phamacodynamic interaction models and a response
splitting motif which allows unit outputs to input to
more than one downstream unit.
The framework so far described, and included in Ver-

sion 11, is sufficient to allow a user to input elementary
descriptions of inter-individual variability in PD model
parameter distribution as well as optimise the popula-
tion mean parameters (possibly within the context of a
high-dimensional PBPK model). However it is important
ultimately to provide cross-links from potential predic-
tors in Simcyp’s virtual populations (“covariates”) which
condition PD model parameters to account for PK/PD
correlation mechanisms to underpin pharmacometrics
concepts active within the NONMEM community: the
intrinsic efficacy and custom scripting facilities (see next

Figure 5 Simcyp screen representing a PD link response unit: input from the previous unit can go through a Link transform model
and then feed into either a growth/progression/turnover model, survival model or custom scripted model.
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section) already go some way towards this ideal
framework.
In addition to simple time-independent and PK/PD

profiles modes, the PD Simulator in Version 12 also ac-
commodates possibilities of time-summaries converting
profile responses into time-independent responses and the
“LONG” timescale mode feature in a Link Response Unit
which allows some link models (such as survival models)
to be run on an extended timescale after a time-
summarised or otherwise time-independent input.

Custom PD scripting
A facility allowing user-scripted custom models to be
inserted as replacement processing steps into the PD
framework was developed in Version 12 Release 2. Lua
(2) was selected for (first) implementation of this require-
ment as a freely available, lightweight and efficient embed-
ded scripting language with widespread support. In
particular, to function well, a script interpretation needs to
be very fast. It is likely that later versions of Simcyp will
interface more extensively with other (typically compiled)
modelling languages familiar to pharmacometricians and
PK/PD scientists (such as Pharsight Modelling Language
(PML)). In any case, the provision of scripting extends the
range of models that Simcyp can simulate.
The execution context of user-scripted code in a

population Simulator with hierarchical variability and
many predefined models needs careful consideration. In
Simcyp Version 12 Release 2 this is primarily controlled
by the positioning of a script as a replacement for a spe-
cific response step in a specific response unit for a particu-
lar compound. Simcyp also provides several placeholders
in its code for users to implement call-back functions for
different simulation contexts. Simcyp Version 12 Release
2 includes a dedicated Lua script editor (based on Scintilla
editing software components (3)) which supplies tem-
plates for such code. It also implements a library of
Simcyp functions callable from Lua scripts: for storing var-
iables in the Simulator and accessing or manipulating ele-
ments of the PK and PD simulation. This notably includes
read access to potential covariates in a virtual population.
The custom scripting module also facilitates handling

of user defined differential equations. For this purpose, a
block of state variables and corresponding time gradients
are reserved for user scripting of ordinary differential
equations (ODEs). Just as the built in engine has access
to the state variables and predict time gradients for the
generic ODE solvers, so will the custom defined differ-
ential equations do the same for the user block, and this
block will be re-indexed into the full state array by
Simcyp.
User step functions will be called many times as the

ODE solver updates the model predictions for each
time-step so script efficiency is crucial here. Benchmark

performance tests of Lua prototype ODE code have
however demonstrated impressive performance: these
tests contributed to the selection of Lua over other pos-
sible scripting options.

Expansion of differential equation solvers
PBPK models are dynamic models constructed using dif-
ferential equations. Therefore, having a robust, efficient
and reliable differential equation solver engine is an es-
sential part of any software that deals with such models.
As the number and complexity of implemented models
within the Simulator are increasing, the possibility of en-
countering stiff ordinary differential equations (ODEs)
has increased. Therefore it was decided to introduce a
second differential equation solver that can efficiently
handle stiff differential equations. In practice the stiff-
ness of ODEs is a transient phenomenon: i.e. an ODE
may be stiff in some interval and non-stiff in others.
Hence, it is desirable to choose a scheme which can dy-
namically follow the qualitative behaviour of the ODE.
After assessing a range of solvers it was decided to use
LSODE (Livermore Solver for Ordinary Differential
Equations) (Radhakrishnan and Hindmarsh 1993).
LSODE is a very robust method that combines the cap-
abilities of the GEAR approach (Gear 1971) and solves
explicitly given stiff and non-stiff system of ODE. It of-
fers a number of features (see (Hindmarsh 1983)) which
are more convenient, flexible, portable, and easier to
install in software libraries.
A variant of LSODE called LSODA (the suffix A

stands for automatic) (Petzold 1983) was adopted. The
algorithm used within LSODA has the capability to
switch automatically between stiff and non-stiff methods.
This is very convenient for the Simulator as it optimises
the simulation speed. Moreover LSODA is known to be
potentially more efficient than the basic LSODE when
the nature of the problem changes between stiff and
non-stiff in the course of the solution. The Livermore
solver was introduced in Simcyp Version 9 in addition
to the fifth-order Runge–Kutta method (Jamei et al.
2009a). The fifth-order Runge–Kutta method is very ro-
bust for the majority of simulations. Hence we kept both
solvers and set the Runge–Kutta as the default solver.
Users can switch between the solvers and there are cases
where according to the selected combination of models
the Simulator suggests or enforces selecting the Livermore
solver.
Both of the solvers are coded in C++ and optimised to

address specific needs in dealing with complex dose ad-
ministration regimens. The ODE solvers are located in
an independent module which is completely separated
from the other modules so it can be used as an inde-
pendent engine and called up wherever needed even
outside the Simulator.
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Memory usage and speed maintenance
Memory management
Due to the number of additional outputs required in
each version as well as the need for larger population
sizes, improvements had to be done on the way the gen-
erated data are maintained. The first stage for improve-
ments was the removal of duplicated data; this was
mostly in the area of how individuals’ data were stored.
Removing duplicated data significantly increased the
possible number of simulated subjects and also im-
proved the time taken to create the individuals data.
The next step was to improve the way concentration

time profile data were handled. This was accomplished
via two stages of improvements. Firstly the stored data
were split so that systemic plasma concentrations were
kept in greater detail than the rest of the concentration
time profiles. Secondly a compression algorithm was in-
troduced, with a pre-processing step that increases the
compressibility. The pre-processing step takes advantage
of the fact that both integer and floating point data use
4 bytes of memory and keeps the integer value of sub-
traction of two consecutive values rather than their ab-
solute values. Without pre-processing representative
data were compressed to 40% of original size; however
after pre-processing they reduced to 25%.

Using multiprocessor and multicore advantages
The advancement of laptops and workstation machines
has meant that support for multiple processing cores is
paramount for modern software. Since the main compu-
tational burden in the Simulator is solving simultaneous
sets of equations, there were limitations on how to ap-
proach the use of these additional cores. Nevertheless,
given the population based nature of the simulations
one candidate solution was to simulate multiple individ-
uals concurrently. Interestingly, there were limitations
on the gained efficiency when the computation load was
divided among different cores. Testing different com-
puter configurations revealed that the main consider-
ation for the scalability appears to be the size of the
processor cache, the larger the cache the greater the
scalability. Therefore, whenever multiprocessor and/or
multicore machines are available the Simulator has been
designed to take advantage of them.

Maintaining the simulation speed
As the complexity of models and the number of differ-
ential equations increase so does the possibility of
slowing down the simulation speed. To obtain quantita-
tive measures of the speed performance of the Simulator
an in-house package called Profiler is developed and
used to measure the runtime duration for a wide range
of internal tasks. The Profiler statistics are regularly
assessed during the development process and in

particular when new modules are introduced and com-
pared against the historical records. Typical types of col-
lected data include which functions in the code are
being called, how many times, how much time is spent
inside the function and in many cases how much time
was spent on specific sections of code inside those func-
tions. Whenever a speed reduction is observed the rele-
vant functions are investigated and are possibly
optimised to regain the lost speed. Sometimes the saving
of only a few milliseconds in a function can add up to
large savings over the course of an entire simulation.
One of the major tasks undertaken as part of these

optimization processes was to rewrite portions of both
of the Simcyp Simulators differential equation solvers
using processor instruction sets which take advantage of
Single Input Multiple Data (SIMD) facilities known as
Streaming SIMD Extension (SSE) Intrinsics (4). Ma-
chines supporting SSE2, which allows multiple floating
point instructions to be carried out simultaneously, have
been available since 2001 (Intel, Santa Clara, CA, USA)
and 2003 (AMD, Sunnyvale, CA, USA) and are now in-
cluded in all commercially available x86 processors. The
differential equation solvers in the Simcyp Simulator use
double precision data, so application of SSE2 instruc-
tions allowed two calculations to be performed for each
processor clock cycle thus improving the speed and effi-
ciency. In order to make full use of the power of these
instructions the data has to be specifically aligned to 16
byte boundaries; also the size of the data must always be
an even number, so if an odd number of items is re-
quired a dummy set must be added to the end. The
changes significantly improved the overall simulation
time of complex models by approximately 10% for the
Runge Kutta solver and 20% for the Livermore solver.

Conclusions
The iterative and incremental development of the
Simcyp platform has facilitated its rapid expansion and
the consortium guidance has kept it in line with users’
requirements. Applying the concept of separation of da-
tabases and models has assisted with implementing the
systems pharmacology paradigm. Further, since scientists
are directly involved in the design and development
process and working closely with developers the whole
software development life cycle has improved and short-
ened. Implementing the auto and regression testing pro-
cesses has reduced the burden of testing and the SDM
systems has smoothened the integration and tracking of
data in the databases. As the role and applications of
model-based drug development approach increase so
does the need for peripheral modules (e.g. PD, PE, ASA,
Batch processor, etc.) that can seamlessly connect and
interact with variety of different models and databases.
Although more than a decade of internal experience and
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many more years of external knowledge have gone into
the development of the Simulator there is a long way to
go and lots more development and expansions are yet to
come. Handling of large molecules with full PBPK
models, expansion of the current models to all com-
pound types and expansion of the population databases
to other special groups (e.g. geriatric populations, differ-
ent ethnicities) are only some of the potential future de-
velopments. More exciting and challenging directions
include identifying and incorporating response covariates,
incorporating physiological changes in disease progression
and addressing safety issues such as cardiotoxicity,
nephrotoxicity, hepatotoxicity and neurotoxicity with
mechanistic models. It is also envisaged to connect the
Simulator to other packages such as Tripos (a Certara
company, St. Louis, USA) and Pharsight (a Certara com-
pany, St. Louis, USA) products to apply the MBDD para-
digm in different phases of the drug discovery and
development cycle.

Websites
(1) The R-Project for Statistical Computing [http://www.
r-project.org]
(2) Scintilla and SciTE [http://www.lua.org]
(3) The Programming Language Lua [http://www.scintilla.
org]
(4) Microsoft Developer Network - Visual Studio .Net
2003 MMX, SSE, and SSE2 Intrinsics 05/03/2013 [http://
msdn.microsoft.com/en-us/library/y0dh78ez(v=vs.71).aspx]
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