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Abstract

Extracellular superoxide dismutase (ecSOD) is the major extracellular scavenger of superoxide 

( ) and a main regulator of nitric oxide (NO) bioactivity in the blood vessel wall, heart, lungs, 

kidney, and placenta. Involvement of  has been implicated in many pathological processes, and 

removal of extracellular  by ecSOD gene transfer has emerged as a promising experimental 

technique to treat vascular disorders associated with increased oxidant stress. In addition, recent 

studies have clarified mechanisms that regulate ecSOD expression, tissue binding, and activity, 

and they have provided new insight into how ecSOD interacts with other factors that regulate 

vascular function. Finally, studies of a common gene variant in humans associated with disruption 

of ecSOD tissue binding suggest that displacement of the enzyme from the blood vessel wall may 

contribute to vascular diseases. The purpose of this review is to summarize recent research 

findings related to ecSOD function and gene transfer and to stimulate other investigations into the 

role of this unique antioxidant enzyme in vascular pathophysiology and therapeutics.

Oxidative stress induced by superoxide anion ( ) produced in vascular cells is involved in 

the pathogenesis of cardiovascular and metabolic diseases, including atherosclerosis,1 

ischemia–reperfusion injury,2 diabetes,3 hyperlipidemia,4 and hypertension.5 Moreover, 

may also contribute to pulmonary hypertension,5 erectile dysfunction,6 cerebral vasospasm,7 

and other disorders associated with vascular dysfunction. Consequently, strategies to reduce 

levels of  have emerged as promising approaches to treating cardiovascular diseases and 

other conditions associated with enhanced oxidative stress.

Scavenging of  is performed by a group of anti-oxidant enzymes called superoxide 

dismutases (SODs), which catalyze the dismutation of  to H2O2 and O2 efficiently and 

specifically.
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In mammalian tissues, 3 isoforms of SODs exist: Cu/Zn SOD (SOD1), Mn SOD (SOD2), 

and extracellular SOD (ecSOD or SOD3). SOD1 is an abundant copper- and zinc-containing 

cellular protein that is present in the cytosol, nucleus, peroxisomes, and mitochondrial inner 

membrane. Its primary function is to lower the intracellular steady-state concentration of 

. SOD1 mutations are associated with neural diseases such as amyotrophic lateral 

sclerosis.8 SOD2 is a mitochondrial enzyme that disposes of  generated by respiratory 

chain activity. SOD2 can be induced to protect against prooxidant insults. Conversely, 

SOD2 activity is decreased in physiologic aging and in diseases such as progeria, cancer, 

asthma, and transplant rejection.9 ecSOD, another copper- and zinc-containing dismutase, is 

a primary antioxidant enzyme secreted to the extracellular space. ecSOD is expressed highly 

in selected tissues, including blood vessels, heart, lungs, kidney, placenta, and extracellular 

fluids. ecSOD plays an important role in regulating blood pressure and vascular contraction, 

at least in part, through modulating the endothelial function by controlling the levels of 

extracellular  and nitric oxide bioactivity in the vasculature.10,11 ecSOD has also been 

proposed to play an important role in neurologic, pulmonary, and arthritic diseases.12,13

The relative expression of SOD isoforms in cells and tissues has been investigated 

extensively and provides clues as to the sources of  in pathophysiologic states. Based on 

our observation, in most tissues, SOD1 is the isoform that is expressed at the highest level. 

However, many examples exist in which this general pattern of expression differs among 

tissues and species. For example, ecSOD is expressed highly in vascular tissues, particularly 

in the arterial wall, and its activity constitutes almost half of the total SOD activity in the 

human aorta.14,15 Collectively, these observations suggest that  in the extracellular space 

[released from inflammatory and vascular cells, most likely through nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase activity] contributes significantly to oxidant stress 

in the vascular wall.

, ecSOD, AND EXPERIMENTAL GENE TRANSFER

Decreasing -associated oxidative stress by enhancing ecSOD has been applied 

successfully in various experimental disease models16–34 (Table I). For example, ecSOD has 

been shown to restore erectile function in streptozotocin-induced diabetes,33 protect against 

vascular dysfunction with aging,19 blunt ischemia/reperfusion-induced liver injury,32 reduce 

systemic vascular resistance and arterial pressure in spontaneously hypertensive rats,21 

improve endothelial dysfunction in hypertension and in heart failure models,23,35 and 

ameliorate inflammatory arthritis.28,29 In most of the aforementioned studies, human ecSOD 

gene transfer was employed to augment ecSOD activity in animal models. Regarding the 

behavior and fate of the delivered foreign gene in recipient hosts, most studies showed an 

increase of ecSOD activity, with a corresponding decrease in  levels, after gene transfer 

(Table I). Conversely, in other cases, ecSOD gene therapy failed to protect against 

cardiovascular diseases (Table I). For example, Laukkanen et al18 reported that short-term 

overexpression of ecSOD in vivo did not affect atherogenesis in LDL receptor−/− mice. 

Yamaguchi et al24 showed that human ecSOD gene transfer failed to prevent cerebral 

vasospasm in a canine model of subarachnoid hemorrhage. Zimmerman et al36 reported that 

adenoviral-mediated delivery of human ecSOD to the subfornical organ failed to prevent the 
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development of angiotensin II-induced hypertension in mice. The subfornical organ is a 

region of the brain lying outside the blood– brain barrier and is known to be a primary 

sensor for blood-borne angiotensin II. The mechanisms associated with the apparent failure 

of ecSOD gene transfer are still unknown. Note that most successful studies with ecSOD 

overexpression have been performed in rats, possibly because the level of expression of 

endogenous vascular ecSOD is lower in rats as compared with many other species of 

animals.37 Therefore, the relative degree of enhancement of ecSOD activity after gene 

transfer is typically higher in rats as compared with other species such as dog,24 which 

makes it easier to demonstrate a therapeutic effect.

Please note that in this review, we will not discuss methods or approaches commonly 

employed to optimize delivery of SOD genes. Such information is provided elegantly in a 

recent review by Heistad.38 Also, basic information about the biochemical properties and 

biology of ecSOD will not be included here but is available from several comprehensive 

reviews.39,40 Instead, we will focus on factors known to regulate expression, activity, and 

function of ecSOD, with special emphasis placed on those relevant to the cardiovascular 

system.

It is also necessary to point out that in addition to serving as an injurious radical specie,41 

 can, under some circumstances, serve as a signal transduction molecule that is important 

to cellular homeostasis.42,43 Thus, therapies that reduce  levels below a certain threshold 

may actually be harmful. In addition, the balance between extracellular and intracellular 

levels may be another important factor. Considering that it is not possible to measure 

levels in vivo with sufficient special and temporal resolution, it may be difficult to deliver 

precisely the appropriate amount of ecSOD to the proper location at the correct time. 

Moreover, we do not have complete information about how this dismutase is regulated in 

vivo and in vitro. Such challenges underlie the field of free radical biology in general and 

complicate interpretation of basic and clinical research data regarding the role of oxidative 

stress in vascular diseases.

FACTORS INVOLVED IN THE REGULATION OF ecSOD EXPRESSION AND 

ACTIVITY

Copper and copper transport pathways

Copper, which is a redox active metal, is an essential element that is required for normal 

cellular function. During the past decade, our understanding of the factors that regulate 

cellular copper distribution and transport has improved greatly. First, intracellular copper 

availability is extraordinarily restricted, as the intracellular milieu has a great capacity to 

chelate copper.44 Second, in the cytoplasm, copper is distributed among several proteins, 

known as copper chaperones, which include antioxidant protein 1 (Atox1) synthesis of 

cytochrome c oxidase 2, and copper chaperone for superoxide dismutase 1. Copper 

chaperones compete with chelators for copper and directly insert the cofactor into the target 

apo-cuproenzymes, such as cytochrome C oxidase, SOD1, and Menkes ATPase, thus 

converting the latter from an inactive to an active state (holo-cuproenzymes).45 Third, the 

metallochaper-one Atox1 directly interacts with the Menkes ATPase and plays a critical role 
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in perinatal copper homeostasis.46 Menkes ATPase serves as a copper efflux pump that 

regulates the amount of copper leaving the cell and supplies copper to secreted 

cuproenzymes, including ecSOD.47 These findings provide a basis for understanding how 

ecSOD biosynthesis could be modulated by copper transport pathways.

The central region of human ecSOD contains the essential amino acid residues involved in 

the coordination of Cu(II) and Zn(II) ions, which is termed the copper, zinc binding domain. 

Fukai and colleagues48,49 recently determined that copper delivery to ecSOD modulates its 

enzymatic activity. The investigators found that ecSOD-specific activity in the conditioned 

medium from cultured fibroblasts isolated from Atox1−/− mice or Menkes ATPase mutant 

mice was decreased markedly and was restored partially by the addition of copper to the 

conditioned medium.48,49 Co-immunoprecipitation and in vitro pull-down assays 

demonstrated a direct interaction between ecSOD and Menkes ATPase, and confocal 

immunoflurescence microscopy showed co-localization of ecSOD with Menkes ATPase in 

the trans-Golgi network.49 These observations suggest that Menkes ATPase transports 

copper to ecSOD in the trans-Golgi network through a direct physical interaction.49 In 

keeping with these in vitro observations, the aortas of Menkes ATPase mutant mice revealed 

a decrease in activity of ecSOD in association with a robust increase in  levels in vivo.49

Zinc

The essentiality of zinc for human health is well established, and the consequences of severe 

zinc deficiency have been documented in population studies worldwide.50,51 Although zinc 

is not redox active, zinc supplementation has been shown to reduce oxidative damage.52–54 

Zinc has also been observed to have an antiatherosclerotic effect.55–58 Epidemiologic 

studies revealed that zinc was associated inversely with cardiovascular disease.59–61 Olin et 

al62 observed that juvenile rats fed zinc-deficient diets exhibited low plasma zinc levels and 

low ecSOD activity. The enzymatic activity of ecSOD, however, was not restored by in vitro 

addition of zinc to the plasma samples. Furthermore, adolescent rhesus macaques fed diets 

that contained a marginal amount of zinc also had low plasma zinc levels and low ecSOD 

activity compared with control animals fed diets containing sufficient zinc.62 In another 

study in rats fed a zinc-deficient diet, a trend toward decreased ecSOD activity was also 

observed.63,64

Although positive correlations between zinc levels and ecSOD activities were observed in 

the animal studies, such correlations have not been observed consistently in humans. Paik et 

al65 reported that in healthy adult Koreans, ecSOD activity correlated positively with 

increasing serum zinc concentrations. Interestingly, SOD1 activity correlated negatively 

with zinc, which suggests that SOD1 and ecSOD are regulated differentially by this cation. 

The same group also conducted a clinical trial to evaluate the effects of prenatal zinc 

supplementation on pregnancy outcome in African-American women.66 Although a positive 

effect of zinc supplementation on birth weight was observed, plasma ecSOD activities in 

these subjects were lower than reported previously for healthy adults,65 which suggests that 

plasma ecSOD activity is not a sensitive marker for marginal zinc deficiency. These results 

are not surprising given the complex interactions of dietary zinc with other factors that 

regulate ecSOD in vivo. For example, dietary zinc deficiency can cause tissue iron 
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accumulation,67 which in turn may regulate ecSOD function (as discussed in the next 

section). In future study, the effect of zinc transport pathway on ecSOD function may also 

need to be evaluated.

Iron

Like copper, iron is a redox active metal that is critical to cellular homeostasis.68 Stralin et 

al69 reported that the addition of FeCl2 to smooth muscle cell (SMC) cultures induced a 

marked dose-dependent increase in ecSOD expression. In addition, low concentrations of 

iron increased secretion of ecSOD to the medium, whereas higher concentrations inhibited 

both ecSOD expression and secretion. The mechanisms by which iron may modulate ecSOD 

are unknown currently. One possibility is that iron-dependent  production may modulate 

directly ecSOD secretion in the vasculature. However, removal of external iron by desferal 

and bathophenanthroline disulfonate did not affect ecSOD expression in smooth muscle 

cells, and the addition of SOD1 or catalase to suppress Haber–Weiss chemistry did not 

influence the effects of iron on ecSOD expression.69 A second possibility is that iron 

interferes with the proper functioning of the Golgi apparatus and the endoplasmic reticulum 

involved in secretion of ecSOD. It has been reported that the subcellular distribution 

(cytosolic vs microsomal) of some proteins is affected by cellular iron status.70 The third 

possibility is that iron interferes with the proper functioning of copper and modulates 

indirectly the ecSOD secretion, because the metabolic fates of copper and iron are linked 

intimately. For example, systemic copper deficiency is associated with cellular iron 

deficiency.71

TISSUE BINDING OF ecSOD: DISPLACEMENT BY HEPARIN

Heparin is a highly sulfated glycosaminoglycan that is best known for its antithrombotic 

effects. Heparin also inhibits proliferation and migration of SMCs and regulates the 

synthesis of proteins in SMCs72 and fibroblasts.73,74 Moreover, heparin displaces 

lipoprotein lipase bound to the endothelial surface, which thus affects lipoprotein 

metabolism.72 ecSOD also has a high affinity to heparan sulfate proteoglycans located on 

endothelial cell surfaces and in the connective tissue matrix.

Intravenous injection of heparin displaces ecSOD from proteoglycans and leads to a prompt 

increase in plasma ecSOD activity in humans75 and other mammals.76,77 For example, 1000 

IU of heparin/kg body weight produces a maximal release of ecSOD in pigs. Injection of 50-

IU heparin/kg body weight into healthy human volunteers led to an immediate 2.4–2.8-fold 

increase in serum ecSOD levels. Thus, heparin is highly potent at displacing ecSOD into the 

circulation. The ecSOD was released from endothelial cells, not from the blood cells.75 The 

half-life of ecSOD release into the serum after heparin injection was about 90 min.78 

Furthermore, in vivo and in vitro experiments suggested that the ecSOD released into the 

plasma by heparin reestablished its binding to glycocalyx on the vascular endothelial cell 

surface in proportion to the elimination of heparin from the vascular system. In addition, 

heparin was shown to induce both ecSOD mRNA and protein expression in cultured skin 

fibroblasts.79 The extent of ecSOD induction seems to be dependent on the level of 

glycosaminoglycan sulfation and may involve either receptor binding or a direct effect on 

promoter elements.79 Only a portion of the tissue-bound ecSOD is displaced by heparin 
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injection,75 which suggests that other ligands for ecSOD such as collagen type I80 or 

fibulin-581 may also play an important role in regulating levels of tissue bound ecSOD.

The pathophysiologic significance of heparin-induced ecSOD release has been investigated 

in a clinical trial, which showed that the levels of ecSOD released by heparin were 

significantly lower in patients with atherosclerosis as compared with controls. Moreover, the 

coronary artery disease score was correlated inversely with heparin-induced ecSOD release. 

As for factors affecting the level of heparin-induced ecSOD release, high-density lipoprotein 

cholesterol levels and age were correlated positively.82 Because heparin is a common 

therapeutic drug for pulmonary embolism and deep vein thrombosis, an interesting question 

is whether heparin-induced ecSOD release also facilitates the therapeutic effect of heparin.

POTENTIAL INTERACTIONS OF ecSOD WITH OTHER FACTORS THAT 

MODULATE CARDIOVASCULAR FUNCTION

Estrogen and progesterone

Estrogen and progester-one are 2 steroid hormones that regulate several aspects of 

cardiovascular function. For example, estrogen acts as an antioxidant83 by enhancing nitric 

oxide (NO) bioavailability and by inhibiting the reactive oxygen species (ROS)-generating 

NADPH oxidase.84,85 The impact of progesterone on oxidative stress is not as well 

established as that of estrogens. Strelow et al86 and Wassman et al87 studied the effects of 

estrogen and progesterone on ecSOD expression and activity.86,87 They reported that in 

SMCs, estrogen upregulated ec-SOD expression (mRNA and protein level) and enzymatic 

activity.86 Conversely, progesterone downregulated basal ecSOD expression and activity 

and reversed ecSOD induction by estrogen.87 Moreover, ovariectomy led to a 

downregulation of ecSOD expression in mice, which was associated with increased levels of 

vascular ROS. These effects were blunted by estrogen replacement or treatment with 

pegylated-SOD.86 Conversely, administration of progesterone to ovariectomized mice 

abrogated the antioxidant effects of estrogen replacement, including the enhancement of 

ecSOD expression.87 In humans, increased estrogen levels correlated with enhanced ecSOD 

expression in circulating monocytes.86

Angiotensin II

Angiotensin II is the major effector hormone of the renin-angiotensin system (RAS), which 

regulates blood volume, arterial pressure, and cardiac and vascular function. Angiotensin II 

binds to 2 distinct receptors, angiotensin type 1 (AT1) and angiotensin type 2 (AT2). AT1 

receptors are distributed widely and mediate most biologic responses of angiotensin II, 

whereas AT2 receptors antagonize several AT1 receptor-mediated responses; together, these 

2 subtypes seem to coregulate blood pressure homeostasis and sodium excretion. Many 

hypertensive effects of angio-tensin II have been attributed to increased oxidative stress in 

blood vessels and to the central nervous system. Recently, angiotensin II has been found to 

upregulate ecSOD expression acutely in murine blood vessels in vivo,88 in cultured human 

aortic SMCs,88 and in human uterine arterial SMCs.89 The upregulation of vascular ecSOD 

may counterbalance the increased vascular  production and the decreased total SOD 

activity90 stimulated by angiotensin II.
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Although angiotensin II upregulated ecSOD expression in vascular tissues in vivo, the 

peptide produced opposite effects on ecSOD expression in the kidney. Chabrashvili et al91 

and Welch et al92 reported that angiotensin II infusion in rats decreased ecSOD mRNA 

levels in the kidneys, and this effect was reversed by candesartan, which is an AT1 receptor 

antagonist,91 or by Tempol, which is an SOD mimetic.92 These results suggest that ecSOD 

may contribute to the protective effects of AT1 receptor blockade on oxidative stress in the 

kidneys.93 The reason for the differences between vascular and renal expression of ecSOD 

in response to angiotensin II is unclear but may relate to differences in redox signaling, 

vasoactive effects, and/or function of AT2 receptors in kidneys versus blood vessels (for 

review, see Johren et al94).

Modulation of the RAS by angiotensin converting enzyme (ACE) inhibitors and AT1 

receptor antagonists in humans produces many beneficial effects on the cardiovascular 

system. Hornig et al95 randomized patients with coronary artery disease to 4 weeks of 

ramipril, which is an ACE inhibitor, or losartan, which is an AT1 receptor antagonist. Flow-

dependent, endothelium-mediated vasodilation (FDD) of the radial artery was increased 

significantly after ramipril or losartan; in particular, the portion of FDD mediated by NO 

was increased by greater than 75%. Concomitantly, therapy with ramipril or losartan 

increased ecSOD activity by greater than 200%. These findings suggest that long-term 

inhibition of the RAS in humans may increase ecSOD activity, thereby reducing oxidative 

stress in the arterial wall.

Homocysteine

Homocysteine is an intermediate sulfur-containing amino acid that is formed during the 

metabolism of methionine. An increased level of homocysteine in the plasma has been 

implicated as a risk factor for cardiovascular disease.96,97 Autoxidation of homocysteine can 

generate  and can lead to peroxynitrite formation, thereby promoting oxidative 

stress.98,99 The resultant increase in  levels may in part be counterbalanced by 

homocysteine-dependent increases in ecSOD.100 For example, Wilcken et al101 reported a 

positive correlation between plasma levels of homocysteine and ecSOD in patients with 

coronary artery disease, and therapy that lowered plasma homocysteine also decreased 

ecSOD levels.101 ecSOD levels were correlated inversely with the incidence of 

cardiovascular disease in these patients, and risk factors for coronary artery disease, such as 

male gender and smoking, were associated with decreased levels of ecSOD in a previous 

study.102 The mechanisms by which homocysteine may modulate plasma ecSOD levels are 

unknown currently. One possibility is that homocysteine modulates the binding of ecSOD to 

endothelial cells through direct modification of heparan sulfate proteoglycans on cell 

surfaces. This mechanism is supported by the work of Yamamoto et al,103 who reported that 

the binding of recombinant ecSOD to immobilized heparin was decreased markedly by 

pretreatment of the heparin-bound surface with homocysteine. Also, Nihei et al104 showed 

that in patients with coronary artery disease, hyperhomocysteinemia is associated with 

increased release of ecSOD from the endothelium. Another potential mechanism is that 

homocysteine may perturb endoplasmic reticulum function, thereby disrupting disulfide 

bond formation or glycosylation of ecSOD, which is required for normal protein assembly 

and association with cell membranes.105
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Other factors

Increased oxidative stress is thought to underlie the cardiovascular complications associated 

with diabetes mellitus. In Japanese patients with diabetes, serum ecSOD levels were 

correlated positively with the severity of microvascular complications, which may reflect 

decreased binding of the enzyme to the endothelium and enhanced susceptibility to vascular 

oxidative stress.106 Navab et al107 demonstrated that levels of ecSOD in aorta were 

decreased in a rat model of diabetes and that treatment with D-4F, which is an 

apolipoprotein A1 mimetic with anti-inflammatory properties,107 restored aortic ecSOD 

protein levels without affecting either Cu, ZnSOD, or MnSOD.108 The mechanism was 

suggested to be related indirectly to upregulation of the antioxidant enzyme heme 

oxygenase.108 Furthermore, prooxidants such as xanthine oxidase, paraquat, and tert-butyl 

hydroperoxide decreased ecSOD expression in fibroblasts in a dose-dependent manner.109 

In vascular SMCs and lung alveolar type 2 cells, ecSOD expression was upregulated by 

IFN-γ and IL-4 and downregulated by TNF-α.110 Finally, growth factors such as TGF-β, 

PDGF, and FGF depressed ecSOD mRNA levels in fibroblasts and SMCs.111 Moreover, 

ecSOD activity is modulated by hydrogen peroxide because of its peroxidase activity.112,113 

The patho-physiologic relevance of in vitro alterations in ecSOD expression induced by 

oxidants, cytokines, and growth factors remains to be determined.

ecSOD GENE VARIANTS

Substitution of arginine-213 with glycine (R213G), which is located in the center of the 

carboxyl-terminal cluster of positively charged amino acid residues of the heparin binding 

domain, is a common human gene variant of ecSOD.114–117 Although this variant does not 

affect ecSOD enzymatic activity,115,116 plasma concentrations of ecSOD are increased 

dramatically in the 2% to 5% of the population that carries the gene variant. The increased 

concentration of ecSOD in the plasma of R213G carriers is in part caused by impaired 

heparin and collagen binding affinities, which leads to a 50-fold decrease in binding of the 

variant gene product to endothelial cells in vitro.115,116,118 In addition, the R213G gene 

product is resistant to proteolysis by trypsin and neutrophil-derived proteases.119 In 

spontaneously hypertensive rats, overexpression of the R213G variant of ecSOD did not 

improve blood pressure, vascular function, or vascular oxidant stress, which suggests that 

disruption of the heparin binding domain negates the protective effects of ecSOD in the 

vasculature.20

The clinical significance of ecSOD(R213G) has been investigated in several association 

studies. Patients with diabetes and end-stage renal disease carrying ecSOD(R213G) had an 

increased 5-year mortality rate, with significantly higher death rates from ischemic heart 

disease and cerebrovascular disease than did those of noncarriers.120 Also, the R213G gene 

variant was suggested to accelerate the progression of renal failure and atherosclerosis in 

uremic patients.121 Finally, a study in Denmark detected a 2.3-fold increase in risk of 

ischemic heart disease in heterozygotes carrying ecSOD(R213G), with a 9-fold increase for 

plasma levels of ecSOD,122 presumably because of increased  in the vasculature of 

ecSOD(R213G) carriers.
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Several other variants of the ecSOD gene have also been described in humans, including a 

threonine-to-alanine substitution at position 40 in the amino terminus and a silent 

substitution at amino acid 280. Table II summarizes newly identified variants in the human 

ecSOD gene.123,124 The functional significance of these variants, however, remains 

unknown.125

CONCLUSIONS AND FUTURE DIRECTIONS

ecSOD has emerged as an important endogenous regulator of oxidative stress. Moreover, 

ecSOD gene transfer represents a promising approach to reduce extracellular and to 

protect against oxidative stress, particularly in the cardiovascular system. In this review, we 

have discussed possible factors affecting endogenous ecSOD expression and activity, tissue-

binding, as well as interaction with other factors. Figure 1 illustrates the proposed 

mechanisms of modulation of ecSOD by endogenous mediators. Understanding the potential 

therapeutic role of ecSOD in cardiovascular diseases, however, requires fundamental 

knowledge of how the enzyme is regulated under normal and pathophysiologic conditions. 

In this regard, several important questions remain to be answered before modulation of 

ecSOD can be translated into human therapeutics:

How do alterations in cellular copper, zinc, and iron levels modulate the efficacy of 

ecSOD gene transfer?

Do endogenous angiotensin II, estrogen, progesterone, and/or homocysteine influence 

the activity of ecSOD expressed by gene transfer?

Is endogenous SOD activity altered by ecSOD gene transfer?

To what extent does upregulation of ecSOD by pharmacologic agents (ie, estrogens, 

ACE inhibitors) contribute to the cardiovascular effects of these agents?

Is displacement of ecSOD from the vasculature by heparin of clinical importance, 

particularly in the setting of acute coronary syndromes?
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Abbreviations

ACE angiotensin converting enzyme

AT1 angiotensin type 1

AT2 angiotensin type 2

Atox1 antioxidant protein 1

ecSOD extracellular superoxide dismutase

FDD flow-dependent, endothelium-mediated vasodilation

NADPH nicotinamide adenine dinucleotide phosphate
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NO nitric oxide

superoxide anion

RAS renin–angiotensin system

ROS reactive oxygen species

R213G arginine-213 with glycine

SMC smooth muscle cell

SOD superoxide dismutase
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Fig 1. 
Proposed mechanisms of modulation of ecSOD by endogenous mediators. Angiotensin II, 

estrogen, and progesterone modulate ecSOD mRNA levels. Cu and Zn incorporate into the 

de novo protein in the Golgi secretion pathway and are necessary to maintain enzymatic 

activity. Heparin modulates binding of the secreted ecSOD enzyme. ER, endoplasmic 

reticulum.
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Table II

Newly identified variants of the human ecSOD gene

Mutation Type Country Findings Reference

Ala40Thr Missense mutation Japan Frequency of Thr allele, and the number of subjects with Thr allele 
(Ala/Thr + Thr/Thr), was higher in type 2 diabetic patients; patients with 
Thr allele also exhibited earlier age of onset of diabetes and decreased 
insulin sensitivity

123

Leu53Leu Silent mutation Japan No differences in allele frequencies were found between diabetic and 
nondiabetic subjects

123

T40A Missense mutation Italy Allele frequency 43% 124

F131C Missense mutation Italy Allele frequency 5% 124

V160L Missense mutation Italy Allele frequency 0.25% 124

R202L Missense mutation Italy Allele frequency 0.84% 124

32 (GCG > GCT)* Silent mutation Italy Allele frequency 0.34% 124

*
Based on codon position.
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