Skip to main content
. 2014 Jun 19;15:199. doi: 10.1186/1471-2105-15-199

Table 3.

Misclassification rate of RPMM cluster analysis to find 2 groups using different variable filtering methods (top 1000 features)

  Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Data set 6 Data set 7
Tissue type
Colon cancer
Glioblastoma
Glioblastoma
Kidney
Kidney
Breast
Breast
Platform
HM27
HM27
HM450
HM27
HM450
HM27
HM450
# of samples
20 non-CIMP vs. 6 CIMP
74 non-CIMP vs. 12 CIMP
93 non-CIMP vs. 6 CIMP
50 KIRC vs. 45 non-cancer
283 KIRC vs. 160 non-cancer
37 Breast cancer vs. 20 non-cancer
56 Breast cancer vs. 17 non-cancer
No filter
0.31
0.22
NA
0
NA
0.12
NA
Filter top 1000 by:
 
 
 
 
 
 
 
Random *
0.34
0.27
0.40
0.004
0.005
0.12
0.20
SD-b
0.19
0.07
0.49
0
0.02
0
0.12
SD-m
0.12
0.07
0.42
0.02
0.03
0.12
0.08
MAD
0.38
0.35
0.49
0
0.005
0
0.14
DIP
0.23
0.36
0.45
0
0.005
0
0.14
Precision
0.08
0
0.10
0.03
0.01
0.11
0.22
BQ-GOF
0.19
0
0.07
0
0.01
0.25
0.23
TM-GOF
0.08
0.02
0.06
0.36
0.47
0.44
0.49
TQ-GOF
0.08
0.03
0.06
0.35
0.47
0.44
0.48
BR
0.12
0.02
0.11
0.02
0.02
0.23
0.19
AR
0.08
0.06
0.11
0.02
0.02
0.25
0.19
WAR
0.12
0.07
0.45
0.02
0.01
0.11
0.10
SD-b + TM-GOF** 0.08 0.07 0.20 0.05 0.01 0.26 0.36

NA = not applicable; Too many features for RPMM to run.

*Average from 10 analyses of randomly sampled feature sets.

**Combine top 500 SD-b + top 500 TM-GOF features.