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Abstract

Natural direct and indirect effects formalize traditional notions of mediation analysis into a 

rigorous causal framework and have recently received considerable attention in epidemiology and 

in the social sciences. Sufficient conditions for identification of natural direct effects were 

formulated by Judea Pearl under a nonparametric structural equations model, which assumes 

certain independencies between potential outcomes. A common situation in epidemiology is that a 

confounder of the mediator-outcome relationship is itself affected by the exposure, in which case 

natural direct effects fail to be nonparametrically identified without additional assumptions, even 

under Pearl's nonparametric structural equations model. In this paper, we show that when a single 

binary confounder of the mediator is affected by the exposure, the natural direct effect is 

nonparametrically identified under the model, assuming monotonicity about the effect of the 

exposure on the confounder. A similar result is shown to hold for a vector of binary confounders 

of the mediator under a certain independence assumption about the confounders. Finally, we show 

that natural direct effects are more generally identified if there is no additive mean interaction 

between the mediator and confounders of the mediator affected by exposure. When correct, this 

latter assumption is particularly appealing because it does not require monotonicity of effects of 

the exposure. Additionally, it places no restriction on the nature of the confounders of the mediator 

which can be continuous or polytomous.

There is a fast growing literature in causal inference concerned with the definition, 

identification and estimation of direct and indirect effects in fully non-parametric models115 

based primarily on ideas developed by Robins and Greenland1 and Pearl.2 The recent 

literature uses the language of potential outcomes to give a non-parametric definition of 

effects involved in mediation analysis known as controlled direct effects, natural direct and 

indirect effects, and path-specific effects. Sometimes, these effects, despite being defined in 

a fully non-parametric way, can nevertheless be sometimes identified and estimated from 

observational data.2

The current paper concerns natural direct effects, also known as pure direct effects, that 

capture the effects of an exposure when one intervenes to set a mediator to the (random) 

level it would have been in the absence of exposure.1,2 Such effects generally differ from 

controlled direct effects, which refer to exposure effects that arise upon intervening to set the 
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mediator to a fixed level that may differ from its observed value.1,2,4 Natural direct and 

indirect effects combine to produce an exposure total effect. As Pearl has previously noted, 

total effects may be more useful than controlled direct effects for understanding the 

underlying mechanism by which the exposure operates.2

Sufficient conditions for nonparametric identification of natural direct and indirect effects 

were given by Pearl,2 under a nonparametric structural equations model that assumes certain 

independencies between potential outcomes. A common situation in epidemiology is that a 

confounder of the mediator is affected by the exposure. In such cases, Avin et al4 have 

established that natural direct effects fail to be nonparametrically identified without 

additional assumptions, even under Pearl's nonparametric structural equations model. In this 

paper, we show that when a single binary confounder of the mediator is affected by the 

exposure, natural direct effects are nonparametrically identified under a monotonicity 

assumption about the effect of the exposure on the confounder. In the Appendix, a similar 

result is shown to hold for a vector of binary confounders of the mediator under a certain 

independence assumption of the confounders, and the result is also shown to like-wise 

extend to an additive hazards model for survival data. Finally, we show that natural direct 

effects are more generally identified if there is no additive interaction between the mediator 

and the confounders of the mediator affected by the exposure in the outcome regression. 

When correct, this latter assumption is appealing because it does not require monotonicity of 

effects of exposure; additionally, it places no restriction on the nature of the confounders, 

which can be continuous or polytomous.

Notation and definitions

We introduce notation and definitions we will use throughout. Let E denote the exposure or 

treatment received by a person, let Y denote a post-treatment outcome, and let M denote the 

value of a post-treatment intermediate variable that may serve as a mediator for the 

treatment-outcome relationship. Let C denote the value of a set of pre-exposure confounding 

variables of the effects of E and M. Throughout, we will assume independent and identically 

distributed sampling of C, E, M and Y . If there is no confounder of the mediator effect on 

the outcome that is itself affected by the exposure, then the relationships between these 

variables may be depicted in the causal diagram in Figure 1.

We now consider counterfactuals or potential outcomes, under possible interventions on the 

variables.16,17 Let Y (e) denote a subject's outcome if treatment E were set, possibly contrary 

to fact, to e. In the context of mediation there will also be potential outcomes for the 

intermediate variable. Let M(e) denote a subject's counterfactual value of the intermediate M 

if treatment E were set to the value e. Finally, let Y (e, m) denote a subject's counterfactual 

value for Y if E were set to e and M were set to m. Similar definitions hold for Y (e, m, c) and 

M(e, c).
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Identification under a nonparametric structural equations model with no 

exposure-dependent confounding

The exposition is framed around a nonparametric structural equation theory of causal 

inference, described by Judea Pearl.18 Structural equations provide a nonparametric 

algebraic interpretation of the diagram of Figure 1 corresponding to four functions, one for 

each variable on the causal graph:

(1)

(2)

(3)

(4)

Each of the nonparametric functions {gC, gE, gM, gY} represents a causal mechanism that 

determines the value of the left-hand-side variable (known as the output) from variables on 

the right (known as the inputs). The errors (εC, εE, εM, εY ) stand for all factors not included 

on the graph that could possibly affect their corresponding outputs when all other inputs are 

held constant. To be consistent with the causal graph presented in Figure 1, we require that 

these errors be mutually independent, but we allow their distribution to remain arbitrary. If 

they were not independent, we would include an additional unmeasured variable U on the 

diagram with arrows into the relevant variables to induce dependence. Lack of a causal 

effect of a given variable on an output is encoded by an absence of the variable from the 

right-hand side. For example, consider a modification of Figure 1 obtained by deleting the 

arrow E → Y, thus indicating the absence of a direct effect of E on Y. This no-direct-effect is 

encoded by replacing equation (4) with Y = gY (C, M, εY ) in the nonparametric structural 

equation model. The absence of E from the arguments of gY encodes the assumption that 

variations in E will leave Y unchanged, as long as variables C, M and εY remain constant, 

which is also consistent with the assumption that there are no unmeasured common causes 

of Y and E.

As stated by Pearl,18 the invariance of structural equations permits their use as a basis for 

modeling causal effects and potential outcomes. In fact, to emulate the intervention in which 

setting {E = e} for all persons simply amounts to replacing the equation for E with E = e, 

producing the following set of modified equations:
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with {M (e) , Y (e) = Y (e, M (e))} denoting the potential outcomes had the exposure been set 

to e.

Under the above nonparametric structural equations model, the independence of errors εM ⊥ 

εY implies independence of so-called “cross-world” potential outcomes, which are potential 

outcomes for various exposure values:

(5)

where M (e* , c) = gM(c, e* , εM) and Y (e, m, c) = gY (c, e, m, εY ) are obtained upon 

intervening on (E, C) and (E, M, C), respectively, and e, e* take values in f0, 1g. The 

assumption encoded in equation (5) is a strong assumption, because it is not empirically 

verifiable. Unlike the assumption of no unobserved confounding routinely made in causal 

inference19, the assumption encoded in equation (5) cannot be enforced by experimental 

design, such as by randomization. For this reason, Robins and Richardson20 have warned 

against identification results that rely on cross-world independences encoded in an 

nonparametric structural equations model, since no experimental scientific study can ever be 

conducted to validate the findings. Nonetheless, this type of assumption is required to make 

empirical statements about natural direct and indirect effects without adding other 

assumptions.

Robins and Greenland1 and Pearl2 considered the following decomposition of individual 

total effect of exposure:

where e* indicates a reference or baseline value of E. For instance, it is common to choose 

e* = 0 for binary E, where e represents an active value of treatment. The first contrast on the 

right-hand side of the second line displayed above defines the natural direct effect of 

treatment E on outcome Y in a given person. The potential outcome Y (e* , M (e*)) captures 

the behavior of Y under the baseline treatment value, while Y (e, M (e*)) describes the 

behavior of Y under the active treatment value, in a hypothetical situation where the 

mediator behaves as if treatment were set to baseline. Conceptually, for e = 1 and e* = 0, the 

potential outcome Y (e, M (e* )) could be obtained if it were possible in an intervention to 

deactivate the component of the exposure that affects solely the mediator, so that the 

mediator would take the value M (e* ), while at the same time leaving active the component 

of the exposure, which affects only the outcome, so that we would observe Y (1, M (0)). The 
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second contrast on the right-hand side of the expression in the display above corresponds to 

the natural indirect effect of treatment E on outcome Y . The potential outcome Y (e, M (e)) 

describes the behavior of Y under the active treatment value, while the second “subtracts 

off” the behavior of Y under the active treatment value, in a hypothetical situation where the 

mediator behaves as if treatment were set to its baseline value. In graphical terms, the 

individual natural indirect effect quantifies for the person, the effect of E on Y along the 

indirect causal pathway E → M → Y , but not along the direct arrow from E to Y . Because 

potential outcomes under confficting exposure status are never jointly observed, individual 

causal effects are generally not identified. However, one can hope that, under certain 

assumptions, population average causal effects would become identified. It is well known 

that the average total effect of E on Y is identified given data on (C, E, Y ) in the causal 

diagram of Figure 1, and is given by the g-formula of Robins19 :

(6)

where E stands for expectation. Pearl2 proved that under the nonparametric structural 

equations model for the causal graph of Figure 1, the average natural direct effect is 

identified by

Therefore the average natural indirect effect is obtained under the nonparametric structural 

equations model by NIE (e, e* ) = T E (e, e* ) NDE (e, e* ) . Numerous statistical methods 

for estimating NDE (e, e* ) and NIE (e, e* ) have been proposed in recent literature.6,915 

Tchetgen Tchetgen and Shpitser14 compare several of these methods and develop a 

semiparametric approach with attractive robustness and efficiency properties.

Non-identifiability under a nonparametric structural equations model with 

exposure-dependent confounding

Next, we consider a common setting in epidemiology as displayed in Figure 2. In this causal 

diagram, a common cause N of the mediator and outcome is directly affected by exposure. 

In other words, N is simultaneously a confounder of the effects of the mediator M on Y, and 

on the causal pathway from exposure to outcome.

Similar to Figure 1, we suppose the nonparametric structural equations model for this causal 

diagram is given by:

(7)

(8)
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(9)

(10)

(11)

where, as before, {gC, gE, gN, gM, gY} are nonparametric functions, and the errors (εC, εE, 

εN, εM, εY ) are mutually independent. The total effect of E on Y remains identified by 

equation (6) using data (C, E, Y ) only, so that the presence of N brings no new difficulty. 

The situation is quite different if identification of natural direct effect 

 is in view. In particular, according to a 

result by Avin et al,4 a causal effect along a specific path is not identifiable in a fully 

observable nonparametric structural equations model if and only if there is no so-called 

firecanting witness,flnamely a random variable that mediates the causal pathway of interest 

from E to Y , while at the same time mediating another causal pathway from E to Y that is 

not of interest.4 Note that the direct effects of E on outcome Y with respect to the mediator 

of interest M, in Figure 2, consists of the two pathways E → Y and E → N → Y. But the 

variable N also mediates the indirect effect E → N → M → Y, which is not of interest when 

direct effects are in view, and therefore the exposure-dependent confounder N is a recanting 

witness for the direct-effect path E → N → Y . This in turn implies that NDE (e, e* ) is not 

nonparametrically identified without an additional assumption under nonparametric 

structural equations model defined by the equations (7)-(11) for the causal diagram in Figure 

2. As shown, the recanting witness is an exposure-dependent confounder of the mediator-

outcome relation. Thus, we can conclude that if there is such a variable present in a given 

application, the NDE (e, e* ) is not identifiable even under a nonparametric structural 

equations model without an additional assumption.

To understand why identification fails, it is useful to consider the following expression for 

the average of the potential outcome , under the nonparametric structural 

equations model given by Robins and Richardson20:

(12)

Therefore, although , Pr(M = m| e* , n′, c) and Pr(C = c) are identified from 

data (Y, E, M, N, C), identification of NDE (e, e* ) fails because it requires the conditional 

joint density Pr(N (e) = n, N(e* ) = n′|c) that involves the potential outcomes of the recanting 

witness N for confficting exposure values, and therefore is not identified even under the 

nonparametric structural equations model. The rest of this paper will consider various 

assumptions that make the unidentified term in this equation identified.

Robins and Richardson20 show that equation (12) becomes identified under either of the fol 

lowing two assumptions:
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i. if N(e) ⫫ N(e* ), then  is identified by the following formula

ii. or if N(e) is a deterministic function of N(e* ), say N(e) = h(N(e* )), in which case, 

 is given by

For scalar N taking values in a continuous state space, Robins and Richardson20 showed 

that, under a condition of rank preservation, there will always exist a function h such that (ii) 

holds. However, rank preservation is often not biologically plausible, and even if the 

assumption holds, it is not clear whether h can be determined empirically. Likewise, 

assumption (i) seems unrealistic for applications in the health sciences. In such applications, 

it is usual that potential outcomes under various exposure values are correlated because of 

unknown behavioral or environmental risk factors, or unknown genetic risk factors for the 

outcome. In the following sections, we will explore somewhat less stringent assumptions for 

identification of NDE (e, e* ) under an nonparametric structural equations model.

Identification under monotonicity of the effect of E on N

Suppose that N is binary. Then consider the following monotonicity assumption.

This type of monotonicity assumption is often used in recent epidemiologic literature, 

particularly in the context of causal inference.21 – 24 The monotonicity assumption is 

particularly easy to interpret for binary exposure and counfounder E and N. Then it simply 

states that there is no one in the population with counterfactual response type N(0) = 1 but 

N(1) = 0. That is, if a person experienced the confounder when unexposed, i.e. N(0) = 1, 

then he or she must also experience the confounder when exposed, that is N(1) = 1. 

However, for a person without the confounder when unexposed, that is N(0) = 0, the 

potential outcome N(1) can either be 0 or 1. In the eAppendix, we use this assumption to 

show the following result.

Result 1: Assuming the nonparametric structural equations model (7) – (11), suppose that N 

is binary, and E N Monotonicity Assumption holds, then  is 

nonparametrically identified by the following formula

(13)

where
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The theorem states that under the nonparametric structural equations model (7) – (11) for 

which E – N monotonicity holds, the joint conditional density Pr(N(e) = n, N(e*) = n′|c) of 

potential outcomes for conflicting values E = e, e* is identified by f (n, n′, e, e*, c), and 

therefore, by equation (12),  is nonparametrically identified by equation 

(13). Note that because of monotonicity Pr{N = 1|e, c} ≥ Pr{N = 1|e* , c} and therefore Pr(N 

(e) = 1, N(e* ) = 0|c) = f (1, 0, e, e* , c) = Pr{N = 1|e, c} – Pr{N = 1|e* , c} ≥ 0. In addition, 

since E {Y (e* , M (e* ))} is nonparametrically identified by the g-formula given in equation 

(6), we conclude that NDE (e, e* ) is nonparametrically identified. Likewise, it follows that 

NIE (e, e* ) is also nonparametrically identified by T E (e, e* ) – NDE (e, e* ).

As we show in the Appendix, Result 1 generalizes somewhat beyond the simple case of a 

single binary recanting witness. Specifically, we show with Result 2 that a similar result 

continues to hold if N consists of multiple independent binary variables. However, we 

recognize that the assumption of independent confounders is quite stringent, as it requires 

that the baseline covariates C also include all common causes of each pair of variables in N, 

as illustrated in Figure 3 of the Appendix. Crucially, we note that the above Result 1 and its 

multivariate extension, Result 2, place no restriction on the functional form of the regression 

function , and therefore interactions are easy to accommodate as well as 

nonlinearities in the effect of covariates, but also in terms of the link function defining the 

regression. In the Appendix, the results obtained above are further extended to the survival 

context under an additive hazards model. The mononiticity assumption again suffices for 

identification of direct and indirect effects (Result 3).

Recall that NDE(e, e* ) captures the aggregate effect along the following two pathways, E 

→ Y and E → N → Y. In the Appendix, we further establish that under monotonicity, one 

can identify the respective contribution of each path-specific effect to NDE(e, e* ). There we 

derive formulae for the portion of the direct effect not mediated by N, i.e. E → Y , and the 

portion of the direct effect mediated by N, i.e. E → N → Y. These path-specific effects may 

be of independent scientific interest, as they further clarify the extent to which the exposure 

directly affects the outcome without involving any other pathway on the graph.

Next, we brieffy describe analogous expressions for conditional natural direct effects 

NDE(e, e* , c) = E {Y (e, M (e* )) – Y (e* , M (e* )) jc} . Similar to marginal effects, the 

challenge in identification of such effects lies in the need to identify E fY (e, M (e* )) jcg , 

which can be shown under the non-parametric structural equations model to be equal to:
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Under monotonicity, it essentially follows from the proof of Result 1 for binary N that the 

above formula is identified by

In epidemiologic applications, confounders (including the mediator-outcome confounders 

included in Figure 2) are routinely measured as polytomous factors, or as continuous factors, 

in which case Results 1 and 2 may not be particularly useful. In the following section, we 

give an alternative assumption that identifies NDE (e, e* ) even if the exposure dependent 

confounder N, i.e. the recanting witness, is polytomous or continuous.

Identification assuming no mediator-recanting-witness interaction

To state the identification result, we require additional notation. Let (c* , m* , n* ) denote a 

reference value of (c, m, n) and define

βm (e, m, c) and βn (e, n, c) encode, on the additive scale, the average main effects of M and 

N on Y within levels of E and C, when n = n* and m = m* , respectively. βm,n (e, m, n, c) 

encodes the interaction between m and n on the additive scale, within levels of E and C, and 

 is the average outcome within levels of E and C. The average outcome can be 

decomposed on the additive scale in terms of βm, βn, βm,n, :

(14)

Crucially, note that this decomposition is fully nonparametric. Consider the following “no-

M -N average interaction assumption” on the additive scale.

No M-N average interaction: The average additive interaction between M and N is zero, that 

is

Result 4: Assuming the nonparametric structural equations model (7)-(11), if “no M -N 

average interaction” assumption also holds, then  is identified by the 

following formula
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The “no- M-N average interaction” assumption is testable, since the assumption places a 

restriction on the observed data distribution. In principle, a nonparametric test of interaction 

could be performed to assess this restriction as long as the observed data are not too highly 

dimensional. In practice, a simple parametric test of interaction could be used, or, 

alternatively, a semiparametric multiply robust test of additive interaction could be used to 

accommodate high-dimensional data, which also utilizes simple parametric models while 

minimizing the risk for bias due to modeling error.25 The above result, which we prove in 

the eAppendix, states that when the assumption of no interaction holds,  is 

identified under the nonparametric structural equations model and therefore NDE (e, e* ) is 

identified by the following simple expression

Comparison with the approach of Imai and Yamamoto

Imai and Yamamoto26 have recently considered the issue of identification of NDE(e, e* ) in 

the context of exposure-dependent confounding of the mediator, and have proposed an 

alternative approach for inference. Brieffy, Imai and Yamamoto26 relax the independence 

assumptions encoded in the nonparametric structural equations model defined by equations 

(7)-(11) corresponding to the causal diagram in Figure 2.

Specifically, using potential outcomes to encode their identifying assumptions, those authors 

assume that,

(15)

(16

(17)

These assumptions would be satisfied, for instance in a sequential randomized trial, in which 

E is randomized conditional on C, subsequently N is randomized conditional on (C, E), and 

finally M is randomized conditional on (C, E, N). Note that these assumptions are satisfied 

under the non-parametric structural equations model (7)-(11), however, as mentioned before, 

the nonparametric structural equations model encodes additional independence assumptions 

such as (5), which are not implied by assumptions (15)-(17).

In their paper, Imai and Yamamoto26 adopt a linear-model specification with random effects 

for the outcome and the mediator, and establish that NDE(e, e* ) becomes identified under 

as sumptions (15) – (17), and an additional assumption that a nonidentified sensitivity 

parameter is known. They then obtain a sensitivity analysis by varying the sensitivity 

parameter and propose to report inferences about NDE(e, e* ) over a range of values of the 
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nonidentified parameter. In the Appendix, we show that in the simple case of a binary 

mediator, which renders the linear-model specification of Imai and Yamamoto26 

unnecessary, NDE(e, e* ) is identified up to the unknown parameter:

(18)

The above parameter is not identified because it is a sum of the expectation of terms that 

involve counterfactuals under confficting exposure values, which are of general form 

, and are not identified under assumptions (15) – (17). In the 

Appendix, we show that the above sensitivity parameter is closely related to the sensitivity 

parameter of Imai and Yamamoto,26 which can be written

for e = 0, 1, in fact, we also have that χ (1) = ν (1). We establish that using χ (e) as a 

sensitivity parameter is a more parsimonous approach, since only assumptions (15) and (16) 

are needed, and since χ (0) = 0, only χ (1) would need to be varied. Imai and Yamamoto 

require not only a linear-model specification and assumptions (15) – (17), but also that one 

vary both ν (0) and ν (1) .26

As previously established by Robins and Greenland,1 NDE(e, e* ) is identified under 

assumptions (15) and (16) and the additional assumption

of no individual causal additive interaction between E and M. The result holds because this 

latter assumption clearly implies that χ (e) is then known to be identically zero. In contrast, 

the approach of Imai and Yamamoto26 allows for inferences about direct and indirect 

effects, without necessarily making the no-interaction assumption of Robins and 

Greenland1, however as mentioned above, it requires that χ (e) takes on a known, albeit non-

null value, which is subsequently varied to produce a sensitivity analysis.

In this paper we have also shown that NDE(e, e* ) is identified under the nonparametric 

structural equations model (7)-(11), assuming either monotonicity about the effects at the 

individual level of E on N, or no average interaction between N and M within levels of E and 

C. Thus, one should expect that either of our identifying assumptions also identifies χ (e) . 

We show in the Appendix that this is in fact the case. We emphasize that our result holds 

without the linearity assumption made by Imai and Yamamoto,26 and without the untestable 

no-interaction assumption of Robins and Greenland,1 and therefore our identifying 

assumptions are in fact distinct from these other conditions. Note, however, that our result 

relies on the nonparametric structural equations model independencies, which are 

themselves not experimentally enforceable nor verifiable. An instructive interpretation of the 

no-interaction assumption, is presented in the Appendix. The as sumption in essence states 

that, while the average causal main effect of the mediator may depend on N, the average 

exposure-mediator causal interaction does not, i.e.
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Estimation of NDE (e, e*)

For estimation under the monotonicity assumption, first suppose that the vector of covariates 

C is of sufficiently low dimension to allow nonparametric inference. Focusing on the 

expression for , needed to estimate NDE(e, e* ), with e = 1 and e* = 0, the 

following estimator is obtained using Result 1 according to the plug-in principle of 

maximum likelihood theory,

where , ,  are empirical versions of 

, Pr (M = m| e, n, c) , Pr (N = 1|e, c) , obtained, say, using saturated models.

In applications, C will often have too many levels for nonparametric inference to be 

practical, in which case a straightforward parametric approach is described below. To 

ground the discussion, consider a setting with continuous Y and M, and binary E, N. Suppose 

one posits the following regression models:

(19)

(20)

(21)

where for simplicity we allow for a potential interaction between M and N in the model for 

Y, and all covariates are otherwise assumed to enter the models linearly. These assumptions 

could of course be relaxed to accommodate additional interactions and possible 

nonlinearities. Closed-form expressions for NDE(e, e* ) and NDE(e, e* , c), upon taking e = 

1 and e* = 0 for models (19)-(21) are:

where
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Above, αe captures the effect of E along the direct path E → Y in Figure 2, whereas

captures the effect of E along the path E → N → Y accounting for interaction between M 

and N. Regression parameters in (19) and (20) can be estimated via ordinary least squares 

using standard statistical software, and the parameters in (21) can similarly be obtained via 

maximum likelihood estimation of logistic regression. The estimator of NDE(1, 0) is then 

obtained upon replacing unknown parameters by their estimates. A standard application of 

the delta method can be used to compute standard errors, or, alternatively, one could apply 

the nonparametric bootstrap. In the Appendix, we provide SAS code (SAS, Cary, NC) and a 

simple data illustration of the methods described in this section using Proc NLMIXED in 

SAS, which also delivers valid standard error estimates and 95% confidence intervals.

Inference about NDE(1, 0) and NDE(1, 0, c) can likewise be obtained even when the 

monotonicity assumption does not apply, provided that the no-interaction assumption of 

Result 4 holds. Specifically, if N is now continuous, assume:

(22)

(23)

The regression model for Y in the above display differs from the previous model in that it 

now includes possible interactions between E and M, and between E and N, but no 

interaction between M and N. Additionally, suppose that M is modeled as in Equation (20), 

which implies that

where

Applying Result 4, we obtain the following simple expressions:
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As was the case under monotonicity, the coefficients in the above regression models for Y , 

M and N can be obtained using ordinary least squares estimation. NDE(1, 0) and NDE(1, 0, 

c) are estimated using the expression in the above display, evaluated at the estimated 

parameter values. In principle, the delta method could be used to derive analytical estimates 

of standard errors. Alternatively, the nonparametric bootstrap could be used and may be 

more convenient in practice. In the Appendix, we provide SAS code illustrating how these 

estimators and their standard errors can be obtained using Proc NLMIXED in SAS.

Final Remarks

Natural direct effects have previously been shown not to be nonparametrically identified 

under a nonparametric structural equations model when a variable affected by exposure 

confounds the mediator effects on the outcome. The primary contribution of this paper has 

been to show that natural direct effects are nonparametrically identified in the simple case of 

a binary recanting witness, but also in the case where the recanting witness is a vector of 

binary variables that satisfy a certain independence condition, provided that the exposure is 

known to have a monotonic effect on the recanting witness. For more general settings 

outside of these special cases, the situation of no additive interaction between exposures, 

mediator and recanting witness assumptions is required for identification. For instance, we 

have established that if the average interaction between the exposure and the mediator is 

independent of the recanting witness, natural direct effects are identified under a 

nonparametric structural equations model. Sample SAS code is provided to facilitate the use 

of proposed methods, together with the analysis of a simulated data set that confirms good 

finite-sample performance of the proposed methods.

These results are relevant to questions of mediation in observational epidemiology in the 

context of an exposure-induced mediator-outcome confounder. In addition, the results are of 

relevance to a broad class of intervention trials. Particularly within the context of 

experiments in psychology and the behavioral sciences, an intervention (e.g. cognitive 

behavioral therapy) is randomized to evaluate whether it improves some outcome (e.g. 

depressive symptoms). Often the theory behind the intervention is motivated by a belief that 

the intervention will principally operate through some intermediate process (e.g. attitudes 

toward negative life experience), and the intervention is often designed so as to target this 

intermediate. In the context of such trials, it is then of interest to assess mediation. Typically 

these trials involve some degree of non-compliance. Compliance to treatment is itself, of 

course, affected by the treatment, but compliance will likely affect both the intermediate and 

the outcome. Compliance in these trials serves as a mediator-outcome confounder affected 

by treatment. Our results are relevant to assessing mediation in such trials whenever 

compliance is all-or-none (i.e. a binary mediator-outcome confounder), or when compliance 

status and the mediator do not interact in their effects on the outcome (though the treatment 
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and the mediator or the treatment and compliance status, would still be allowed to interact). 

The methods developed here provide useful tools for mediation analysis in such settings.

Finally, we should note that the methods described herein assume that the exposure-

dependent confounder is observed. If this is not the case, one can still report a sensitivity 

analysis for unob served exposure-dependent confounding of the mediator-outcome relation 

using the semiparametric sensitivity analysis technique of Tchetgen Tchetgen and 

Shpitser.14

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

APPENDIX

Technical details of comparison to the approach of Imai and Yamamoto26

Focusing on binary exposure and mediator variables, we begin by stating a key 

counterfactual representation of the natural indirect effect similar to that given in 

VanderWeele and Tchetgen Tchetgen27:

Thus, we have that

It is well known that assumptions (15) and (16) are sufficient to identify 

and ,19 and therefore assumptions (15)-(17) clearly suffice to 

identify these two terms.

The term  is, however, not 

identified under assumptions (15) (17). This parameter is closely related to the sensitivity 

parameter of Imai and Yamamoto,26 who, under a linear model specification, recover 

identification of the direct and indirect effects, upon fixing the sensitivity parameter:

where
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is not identified under assumptions (15) – (17), while  and Var (M (e)) are 

identified.

Then, we note that Imai and Yamamoto26 essentially vary the nonidentified parameters ν 

(e), e = 0, 1, in a sensitivity analysis. In contrast, we have shown that (for binary M) it 

actually suffices to fix χ (1) = ν (1) in order to recover identification of natural direct and 

indirect effects, since χ (0) = 0, resulting in a more parsimonous sensitivity analysis than that 

suggested by Imai and Yamamoto.26

Furthermore, next we show that χ (1) is identified under the nonparametric structural 

equations model defined by equations (7) – (11) and the no-average N M interaction 

assumption, which allows for an alternative proof of the identification result in Result 4, 

which is more clearly related to Imai and Yamamoto.26

Consider the nonparametric structural equations model defined by equations (7)-(11), then 

one can verify that

Therefore, the no-average N –M interaction βm,n (e, m, n, c) = 0, is equivalent to

Furthermore,

(by nonparametric structural equations model independence)

(by interaction independence)

Next, we have
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and likewise

proving the identification result.

Under the nonparametric structural equations model defined by equations (7) – (11) and the 

monotonicity assumption, we have that

Note that

which is identified by monotonicity (see the proof of Result 1) and the nonparametric 

structural equations model assumptions. Likewise,
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is identified by the nonparametric structural equations model assumptions.
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Figure 1. 
No confounder of M-Y relation is affected by E.
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Figure 2. 
A setting where N is a confounder of M-Y relation that is affected by E.
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