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Modularity and predictability in cell signaling 
and decision making
Oguzhan Atay and Jan M. Skotheim
Department of Biology, Stanford University, Stanford, CA 94305

ABSTRACT  Cells make decisions to differentiate, divide, or apoptose based on multiple sig-
nals of internal and external origin. These decisions are discrete outputs from dynamic net-
works comprised of signaling pathways. Yet the validity of this decomposition of regulatory 
proteins into distinct pathways is unclear because many regulatory proteins are pleiotropic 
and interact through cross-talk with components of other pathways. In addition to the deter-
ministic complexity of interconnected networks, there is stochastic complexity arising from 
the fluctuations in concentrations of regulatory molecules. Even within a genetically identical 
population of cells grown in the same environment, cell-to-cell variations in mRNA and pro-
tein concentrations can be as high as 50% in yeast and even higher in mammalian cells. Thus, 
if everything is connected and stochastic, what hope could we have for a quantitative under-
standing of cellular decisions? Here we discuss the implications of recent advances in genom-
ics, single-cell, and single-cell genomics technology for network modularity and cellular deci-
sions. On the basis of these recent advances, we argue that most gene expression 
stochasticity and pathway interconnectivity is nonfunctional and that cellular decisions are 
likely much more predictable than previously expected.

INTRODUCTION
Modularity of a group of biological components is defined as the 
degree to which their collective function is insulated from other 
components and pathways (Hartwell et al., 1999). In the context of 
cellular decisions, a highly modular decision would be determined 
by a single pathway, whereas a nonmodular decision would be 
determined by many interconnected pathways. In general, ge-
nomics and high-throughput studies support the less modular 
view of cell signaling. Specifically, interaction maps based on pro-
tein–protein binding assays, phosphorylation interactions, or syn-
thetic lethality of double mutants exhibit many interactions be-
tween components of different signaling pathways (Ficarro et al., 
2002; Rual et al., 2005; Krogan et al., 2006; Boone et al., 2007). 
Accordingly, when plotted on a network graph, essentially all pro-
teins in a cell are connected through few degrees of separation. If 

many of these proteins contributed equally to a biological decision 
or function, it would be very difficult, if not impossible, to under-
stand how and why a certain input to a particular pathway affects a 
particular outcome.

Although understanding the computation underlying even the 
simplest cellular decisions seems such a formidable challenge in 
light of genomics studies, progress has been relentless in a large 
variety of networks. The past few decades of biological research 
has successfully used an increasingly automated forward-genetic 
framework to identify and classify signaling pathway components 
and their interactions. The success of forward-genetic approaches 
indicates that cellular pathways transmit information mostly uni-
directionally and are relatively modular, that is, isolated from 
other pathways. If this were not the case, we would expect far 
fewer double mutants phenocopying the individual single mu-
tants, and the ordering of genes into pathways would be much 
more difficult.

Moreover, it is likely that there are additional hierarchies of orga-
nization from network to pathway to even smaller groups of signal-
ing molecules known as motifs (Figure 1). This hierarchical organiza-
tion is in part due to the separate time scales of biological 
interactions. For instance, phosphorylation reactions are very fast, 
whereas protein synthesis and corresponding concentration changes 
are relatively slow. This allows analysis of phosphorylation kinetics 
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problem that cells need to overcome to reliably respond to environ-
mental inputs, they might also perform useful functions. Noise can 
allow genetically identical cells to have remarkably different gene 
expression levels when combined with positive feedback–driven 
switches (Losick and Desplan, 2008). Gene expression heterogene-
ity might allow isogenic cells to be better adapted to different or 
fluctuating environments (Kussell and Leibler, 2005; Acar et  al., 
2008; Salathé et al., 2009). Indeed, this phenomenon has been ob-
served in the competence behavior of Bacillus subtilis, as well as in 
the latent phase of human immunodeficiency virus infection, and is 
also thought to underlie the persistence of subpopulations of Es-
cherichia coli (Maamar et al., 2007; Süel et al., 2007; Weinberger 
et al., 2008; Maisonneuve et al., 2013). In eukaryotes, noise deter-
mines the specification of blue-sensitive versus yellow-sensitive 
photoreceptors in Drosophila eyes, blood-cell differentiation in 
mammalian cells, and incomplete penetrance of mutants in 
Caenorhabditis elegans (Wernet et al., 2006; Chang et al., 2008; Raj 
et al., 2010). Moreover, cell-to-cell differences in gene expression 
have been suggested to be further enhanced in tumors due to mi-
croenvironment and genetic differences, which may be related to 
highly variable therapeutic response (Navin et  al., 2011; Burrell 
et al., 2013; Patel et al., 2014). All in all, the stochasticity of cellular 
decisions has been increasingly recognized, emphasized, and per-
haps even celebrated in the past 10–15 years.

For both modular and nonmodular networks, stochastic cell-to-
cell variation in regulatory proteins will make cellular computation 
less predictable. However, the effect is expected to be much worse 
in nonmodular networks. In a nonmodular network, by definition, 
many components significantly contribute to a cellular decision. 

of a few pathway components comprising a motif while treating 
protein concentrations as fixed. Thus the motif’s dynamics can be 
studied in depth, and its function can be characterized. Indeed, mo-
tif analysis has made great progress in determining signaling prin-
ciples (Alon, 2007), suggesting a view of biology as tractable, modu-
lar on several scales, and, it is hoped, ultimately predictable. 
According to this view, with sufficient understanding of networks 
and signaling principles, we should be able to understand how cells 
process information and predict what the output of a cellular deci-
sion will be from the measurements of regulatory proteins.

STOCHASTICITY IN CELLULAR DECISIONS
The protein concentrations of key regulatory molecules exhibit cell-
to-cell variation even within genetically identical cells in highly simi-
lar conditions. A study of all budding yeast genes fused to green 
fluorescent protein revealed significant cell-to-cell variability rang-
ing from as low as 10% for some species to nearly 50% for others 
(Newman et al., 2006). Such noise is often even larger in mammalian 
cells (Raj et al., 2006). These studies have increasingly emphasized 
the view in which each cell is unique and its behavior is variable due 
to fluctuations in the expression of individual genes arising from ei-
ther differences in RNA polymerase and ribosome number between 
cells (extrinsic noise) or inherent randomness in the synthesis of 
small numbers of molecules within a cell (intrinsic noise) (Elowitz 
et al., 2002; Blake et al., 2003; Brown et al., 2013).

Perhaps predictably, the less-than-predictable stochastic gene 
expression has been associated with cell-to-cell variability in cellular 
decisions in a wide variety of organisms (Raj and van Oudenaarden, 
2008). Even though these high noise levels are mostly viewed as a 

FIGURE 1:  Hierarchies of organization from network to pathway to motifs. (A) In the network view, pathways are usually 
not readily discernible because of many apparent interactions between pathways from genomic studies (the pathway in 
question similarly colored in all panels). We note that in many network analyses, there is no information about the 
functional significance of interactions. (B) Even though the identity of components (receptors, kinases, transcription 
factors, downstream targets) is usually indicated in the pathway view, it is a static description of a dynamic system. 
(C) The separation of time scales may allow the analysis of groups of network components as functionally distinct motifs. 
The example shown here is idealized because for most pathways; not all components can be so easily broken down into 
motifs. In this example, “fast” indicates the phosphorylation time scale (∼1 min), and “slow” signifies transcription time 
scale (∼15 min to 1 h) typical of yeast.
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However, it was later shown that these fluctuations in Nanog primar-
ily arise from conflicting stimuli present in serum and are unlikely to 
be relevant to development (Smith, 2013).

HISTORY DEPENDENCE AND MEMORY
Cells in different states respond differently to similar inputs. Thus the 
history of various input signals specifies the current discrete cell 
state to indirectly determine the current cellular response. For ex-
ample, positive feedback between the cell division cycle protein ki-
nase Cdk1 and Erk mitogen-activated kinase transforms a transient 
induction stimulus to irreversible oocyte maturation in Xenopus and 
thereby separates two distinct cell states (Xiong and Ferrell, 2003). 
The uninduced state can dramatically respond to hormone signals 
to trigger development, whereas the induced state continues devel-
opment independent of the hormone signal. Similarly, a positive 
feedback loop of G1 cyclin expression separates a G1 phase from a 
post-G1 cycling cell state in budding yeast. Whereas the G1 cell 
responds to pheromone signaling, the cycling cell has largely dis-
mantled this pathway and does not respond (Strickfaden et  al., 
2007; Garrenton et al., 2009).

Although the current cell state determines much of the cell-to-
cell variability in signaling response, cells of the same type may re-
spond differently to similar input signals. For example, in budding 
yeast, the cell-cycle inhibitor Far1, whose level determines the 
length of mating arrest, accumulates more rapidly at high phero-
mone concentrations. Therefore current Far1 levels reflect a history 
of exposure to pheromone. As a result, cells in the same G1 state 
that experienced different histories of pheromone signal will re-
spond differently to future pheromone input signals (Doncic and 
Skotheim, 2013). However, this history dependence would not be 
readily observable in single-cell RNA-sequencing studies because 
mRNAs quickly reach steady-state values due to their rapid turn-
over. In contrast to rapidly degraded mRNAs, proteins are mostly 
long-lived, so their accumulation will mark how long ago a particular 
cell adopted its current fate. In fact, a protein that was produced 
even in a previous state can still be present and affect decisions in 
subsequent cell cycles (Doncic, Atay, Grande, Bush, Valk, Loog, 
Colman-Lerner, and Skotheim, unpublished data). Thus the pro-
teome will contain memories of previous states and input signals, 
which can be used to inform subsequent decisions. This may at least 
partially explain the cell-to-cell variability in the response to input 
signals without having to refer to noise in gene expression.

Of importance, novel mass cytometry tools that allow quantifica-
tion of >30 protein markers in single cells have started to be used to 
describe the gene expression trajectory of state transitions, includ-
ing multistep differentiation processes (Bendall et al., 2011, 2014). 
By combining these tools with more focused approaches such as 
fluorescence tagging and tracking of important cell type markers 
across transitions, we can begin to understand not only the mecha-
nisms of cellular decisions that specify distinct cell types, but also the 
history dependence of these decisions. We anticipate that history 
dependence of cell signaling will be an emerging theme in this de-
cade, as even the classical vertebrate morphogen TGF-β signal, pre-
viously thought to statically read out a gradient, likely depends on 
the dynamics of ligand stimulation (Warmflash et  al., 2012; Sorre 
et al., 2014). It is hoped that this line of research will reveal why de-
velopment is so robustly reproducible.

HIGHLY PREDICTABLE CELLULAR DECISIONS
Perhaps one of the most fundamental state transitions in yeast is the 
commitment to cell division. After commitment, yeast is insensitive 
to even high levels of mating pheromone (Hartwell et  al., 1974). 

Fluctuations in each of these components would combine to affect 
the outcome in a manner not unlike how measurement errors in dif-
ferent parts of a computation propagate to the final result. Of 
course, the time scales at which these components fluctuate will 
determine the extent to which fluctuations affect the decision. If 
fluctuations were fast relative to system response, we would only 
expect the mean level to affect the decision. However, in general, 
the more components involved, the more we expect noise to de-
crease the predictability of a cellular decision.

SINGLE-CELL GENOMICS AND THE DEFINITION 
OF CELL STATE
Terms such as cell state or type have a long history of usage. How-
ever, their definition was based either on morphological features or 
the expression of single marker genes. Therefore it was not known 
to what extent cell types corresponded to distinct categories of cell 
states. Although earlier single-cell studies examining expression of 
single genes emphasized stochasticity, more recent studies measur-
ing transcription genome-wide in single cells emphasize the coher-
ence of distinct cell states or types. For instance, in a recent study, 
the clustering of RNA profiles of cells from splenic tissue was deter-
mined to be sufficient to classify thousands of cells into a few, well-
defined cell types (Jaitin et  al., 2014). In a similar study, another 
complex tissue—distal lung epithelium—was shown to consist of 
five distinct types of cells associated with previously known marker 
genes (Treutlein et  al., 2014). Given the inherent stochasticity of 
gene expression, it is surprising that these studies found only a few 
distinct, but not intermediate, cell types, and different cells could 
unequivocally be categorized simply by their expression of a few 
markers. Thus transitions between states must be rapid relative to 
time spent within states because if the time scale of the transition 
were slow, then states would not appear well defined in single-cell 
transcriptome studies. Taken together, these results argue that the 
decision-making networks determining cell types have only a few 
output states and that the idea of cell state is well defined on the 
level of gene expression. The clustering of cells extracted from com-
plex tissues into discrete types represents an extraordinary simplifi-
cation in the description of a cell from a vector of thousands of pro-
tein concentrations to a single integer number corresponding to a 
particular cell type.

In developmental contexts, stochasticity does not seem desir-
able, because patterns must be formed reliably. Boundaries be-
tween groups of different cell types must appear nearly in the same 
place from organism to organism within a species. For instance, in 
Drosophila embryos, for neighboring cells to have distinct fates as 
dictated by developmental patterning, neighboring nuclei need to 
distinguish a 10% difference in a Bicoid gradient that sets up the 
anterior–posterior axis. This is very difficult to achieve, as it is close 
to the physical limits of noise imposed by the absolute number of 
Bicoid molecules. Nevertheless, it was shown that this level of preci-
sion is achieved (Gregor et al., 2007). Moreover, information trans-
ferred from Bicoid to the downstream Hunchback gradient is nearly 
90% of the theoretical maximum (Tkacik et al., 2008). These results 
indicate that patterns of morphogens are reliably read out by signal-
ing pathways, and decision-making networks perform accurate 
computations based on these signals to specify the correct cell 
type.

Finally, while stochasticity was initially thought to be very impor-
tant for embryonic stem cells, recent reports indicate that previously 
documented heterogeneity might be an artifact of experiment con-
ditions. Earlier research found that Nanog, a key determinant of 
pluripotency, alternates stochastically between low and high states. 
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note that the use of measurements after a 
step change to “predict” previous cell state 
is not really a prediction, as is commonly 
done (e.g., Spencer et al., 2013), but rather 
a postdiction.

It seems unlikely that Whi5 and Cdk2 are 
the only special markers that can predict 
commitment. Whi5, in particular, is neither 
essential nor a hub in interaction networks. 
However, both Whi5 and Cdk2 activities 
correlate with the abrupt activation of posi-
tive feedback loops driving commitment 
(Skotheim et al., 2008; Yao et al., 2008). Be-
cause the transition is very rapid relative to 
the time spent in states, there will be rela-
tively few cells near the separatrix—the hy-
pothetical boundary dividing different states 
of distinct expression patterns. This likely 
makes it relatively easy to predict with high 
accuracy what the current cell state is and 
the final state will be in response to a given 
input. Indeed, any protein that significantly 
changes during a transition is a good candi-
date for a predictor of the current cell state. 
Because transitions from one cell state to 
another are often extensive and likely some-
what similar from cell to cell, we expect that 
the changes in concentration or localization 
of many proteins will be sufficient to predict 
cell state. Of course, as previously discussed, 
two cells of the same type might have differ-
ent histories of proteins from their previous 
states. For these two cells, if the protein that 
we choose for prediction is sensitive to con-
centrations of these historic proteins, its 
threshold value that determines the cell 
state would not be the same. In this case, 
the measurement of such a protein would 
be expected to be less predictive of cell 
state. Therefore, for the measurement of a 
single protein to be predictive of cell state, 
either that protein must be insensitive to 
other protein concentrations or the cells 
must have a shared history of initial states. 
Nevertheless, the fact that two proteins that 
were chosen for predicting commitment to 
the cell cycle in two different organisms 
were both similarly accurate suggests that 

these conditions are not rare. Thus it might be possible to predict 
the final state of a cell with only a few measurements, even when 
cellular decisions involve multiple pathways.

POTENTIAL RECONCILIATION OF NOISE, 
INTERCONNECTED NETWORKS, AND PREDICTABILITY
The success of forward genetics, the distinct clustering of cell types, 
and the reproducibility of development all favor the tractable view 
of biology. However, it is unclear why this might be, given the high 
degree of interconnectivity between pathways and the stochasticity 
associated with each network node. In fact, naively, one would ex-
pect that the measurement of levels of tens of proteins would be 
required to be able to predict and understand any nontrivial cellular 
decision. However, the examples of cell cycle commitment in yeast 

When this commitment point was investigated quantitatively, it was 
found that the measurement of cell size or time after the previous 
cell division is a poor predictor of whether a cell has committed to 
cell division, that is, whether it would not arrest upon pheromone 
exposure. However, the measurement of the nuclear localization of 
a single protein, Whi5, could predict the subsequent divide-or-arrest 
decision in >97% of cells (Doncic et al., 2011; Figure 2). That is, al-
most all cells that have inactivated more than a threshold level of 
Whi5 do not arrest upon pheromone exposure, whereas cells that 
have inactivated less Whi5 arrest immediately. Of interest, the cor-
responding cell division commitment decision in mammalian cells 
could be similarly predicted by the measurement of only Cdk2 activ-
ity (Johnson, 2014). Note that in both cases, the prediction relies 
only on information gathered before the step change in inputs. We 

FIGURE 2:  Predictability of the proliferation decision in budding yeast. (A) Cells that are 
committed to the cell cycle do not arrest upon exposure to mating pheromone. Whi5 activity 
was measured up until pheromone addition, and this information was used to predict whether a 
cell would arrest or divide when exposed to pheromone. (B) Histograms and logistic regression 
curve showing the ability of a single Whi5 measurement at the time of pheromone exposure to 
predict cell state. The shaded region in the logistic regression indicates 95% confidence interval 
(by bootstrapping). Data from Doncic et al. (2011).
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Finally, whereas most protein–protein interactions, phosphoryla-
tion events, and stochasticity do not seem to significantly affect 
many aspects of cellular decisions, some are likely to influence when 
a cell switches from one cell state to another. This is because the 
timing of transitions is sensitive to where the separatrix between two 
states is located. Small changes in protein activity or abundance due 
to mutation can affect separatrix location and thereby alter transi-
tion timing. Similarly, close to a separatrix, dynamical systems are 
sensitive to stochastic fluctuations in protein concentrations, which 
can be amplified by positive feedback loops to abruptly trigger a 
transition. Thus, whereas the precise timing of future transitions may 
be variable and difficult to predict, we emphasize that we can likely 
determine a cell’s current state and predict many aspects of a cel-
lular decision from the measurement of a few, judiciously chosen 
proteins.

CONCLUDING REMARK
At first glance, apparent interconnectivity of pathways and inherent 
stochasticity of gene expression paint a bleak picture for the under-
standing of quantitative principles underlying cellular decisions. 
However, recent advances in single-cell studies indicate that such 
interconnectivity and stochasticity may be largely nonfunctional. In-
deed, cellular decisions are likely much more predictable than previ-
ously expected or even imagined.

and mammalian cells suggest that the measurement of even a sin-
gle protein can be enough. However, how can we reconcile this high 
degree of predictability with the high degree of interconnectivity in 
protein and genetic networks and the known stochastic nature of 
gene expression?

Although most protein–protein interactions or phosphorylation 
interactions are unlikely to be experimental artifacts, many of them 
may not be functionally significant. In particular, studies that com-
pare transcription factor–target gene interactions across species 
find evidence of high levels of rewiring even at short evolutionary 
time scales, likely through nonadaptive neutral evolution (Lynch, 
2007; Tuch et al., 2008). Similarly, protein–protein interactions rap-
idly evolve, as even interactions between homologues are usually 
lost across species (Lewis et al., 2012). Anecdotally, many unpub-
lished studies were unable to find phenotypes by mutating phos-
phorylation sites. Of course, it is possible that some of these phos-
phorylation sites may be important in conditions not yet tested or in 
ways that are not assayed. However, consistent with the notion that 
most phosphorylation sites are nonfunctional and evolve neutrally, 
they tend not to be conserved even among closely related yeast 
species (Holt et al., 2009).

Similarly, cell-to-cell concentration variations of each network 
component are unlikely to be functional. Outputs of cellular deci-
sions may be robust to fluctuations in all but a few components of a 
network (Kitano, 2004; Masel and Siegal, 2009). It seems that single 
copies of >95% of all genes in diploid S. cerevisiae and Drosophila 
are sufficient for near-wild-type fitness and normal development 
(Lindsley et al., 1972; Deutschbauer et al., 2005). Moreover, this lack 
of fitness cost does not stem from any dosage compensation mech-
anisms that adjust the level of proteins in yeast deletion strains. In 
the vast majority of tested genes, single-copy deletions in diploid 
yeast resulted in 50% decrease in protein expression without a cor-
responding fitness cost (Springer et al., 2010). This result is in stark 
contrast to double-knockout screens, which typically find all biologi-
cal processes connected with each other. However, double knock-
outs are severe perturbations that completely remove nodes from a 
network. They alter network architecture and completely eliminate 
information flow from dozens of other nodes. Therefore, whereas 
severe perturbations such as double knockouts may result in genetic 
interactions, stochastic fluctuations normally experienced by a cell 
will be much smaller and often be nonfunctional.

Moreover, even functionally significant components shared be-
tween two pathways do not necessarily indicate cross-talk between 
pathways. This is because these functional components may be in 
excess, so that use by one pathway does not limit the other. For 
example, in budding yeast, pheromone and hyperosmotic stress 
pathways share upstream components that are essential for signal 
transduction. Nevertheless, the amplitude of pheromone-induced 
transcription is nearly unaffected by the presence of osmotic stress. 
That is, pheromone signals and osmotic stress signals are insulated 
(Patterson et al., 2010). Moreover, even when the signal to one path-
way affects the output of another pathway, it does not necessarily 
mean that these two pathways cross-talk. For instance, although ad-
dition of mating pheromone can trigger osmotic stress response in 
cells adapted to high osmolarity, this signal does not reflect a loss of 
insulation. Instead, the pheromone signal induces morphological 
changes as an output, which leads to activation of the cell wall integ-
rity pathway, which in turn activates the osmotic stress kinase Hog1 
(Baltanás et al., 2013). This analysis shows that even when two path-
ways appear to cross-talk molecularly, a careful temporal analysis 
may order their activities to reveal that the output of one pathway 
serves as an input to activate the second pathway.
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