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Spatial trigger waves: positive feedback gets 
you a long way

Lendert Gelensa,b, Graham A. Andersona, and James E. Ferrell, Jr.a
aDepartment of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174; 
bApplied Physics Research Group, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium

ABSTRACT  Trigger waves are a recurring biological phenomenon involved in transmitting 
information quickly and reliably over large distances. Well-characterized examples include 
action potentials propagating along the axon of a neuron, calcium waves in various tissues, 
and mitotic waves in Xenopus eggs. Here we use the FitzHugh-Nagumo model, a simple 
model inspired by the action potential that is widely used in physics and theoretical biology, 
to examine different types of trigger waves—spatial switches, pulses, and oscillations—and 
to show how they arise.

INTRODUCTION
Multicellular organisms are at times required to quickly coordinate 
behavior over large distances. For example, a human experiencing 
the fight-or-flight response elevates heart rate, dilates pupils, and 
constricts peripheral blood vessels within seconds. Diffusion alone 
could not distribute signaling molecules at significant concentra-
tions throughout even millimeter- or centimeter-scale organisms fast 
enough to account for the coordinated behaviors of physiology. Al-
though the diffusion of a small molecule (with a typical diffusion 
coefficient D in cytoplasm of 300 μm2/s; Allbritton et al., 1992) over 
the distance scale of a cell (d = 10 μm) is extremely fast (t = d2/2D ≈ 
0.2 s), diffusion across a centimeter-scale animal like a bumble bee 
would take ∼2 days, and diffusion across a meter-scale animal like a 
human would take ∼5000 years.

One way in which animals have solved this problem is through 
microtubule-based transport, which, unlike diffusion, does not slow 
down as distance increases. Typical rates of microtubule-based 
transport are ∼1 μm/s (Prahlad et al., 1998, 2000; Fletcher and 
Theriot, 2004), which would make transport over 1 cm take just <3 h 
and transport over 1 m take ∼12 days.

Flow can allow for even quicker communication over long dis-
tances. For example, when the adrenal gland releases epinephrine, 
it can exert its full effect on systems throughout the human body in 
∼1 min, which is the average time it takes for blood to make one 

circulation (Hall, 2010). This is equivalent to a propagation speed of 
∼30 mm/s. Similarly, fungi and plants use flow to distribute biologi-
cal molecules throughout the cytoplasm of some large cells. Acto-
myosin-driven cytoplasmic streaming mixes the contents of Chara 
corallina cells as large as 10 cm in length at speeds of up to  
100 μm/s (Verchot-Lubicz and Goldstein, 2010).

Still, fluid flow is too slow to coordinate the most rapid behaviors 
observed in multicellular life. Placing one’s hand on a hot stove elic-
its muscle action in tens of milliseconds (Malcolm, 1951). In this 
case, action potentials travel to the spinal cord and back at speeds 
of up to ∼100 m/s to accomplish the rapid reflex response (Hursh, 
1939; Swadlow and Waxman, 2012). Waves of calcium ions spread 
across and sometimes between cells at speeds of ∼5–30 μm/s 
(Cornell-Bell et al., 1990; Stricker, 1999). This is slow compared with 
an action potential, but it is still faster than diffusion for large cells 
and tissues, and, like the action potential, a calcium wave spreads 
without slowing down or losing amplitude. Recently the mitotic 
state has been shown to spread at a constant speed of ∼1 μm/s 
through Xenopus cytoplasm in the absence of flow (Chang and 
Ferrell, 2013). This propagation of the mitotic state is believed to 
help spatially coordinate cell division. Finally, in various migrating 
eukaryotic cells in culture, one often sees waves of membrane pro-
trusion and actin polymerization that spread from the front of the 
cell toward the back of the cell at speeds of ∼0.1 μm/s (Machacek 
and Danuser, 2006; Weiner et al., 2007; Bretschneider et al., 2009; 
Barnhart et al., 2011; Allard and Mogilner, 2013).

Each of these phenomena is an example of what are termed trig-
ger waves (Winfree, 1972; Tyson and Keener, 1988). Trigger waves 
do not slow down or lose amplitude as they travel, eliminating two 
problems that come with relying solely on diffusion to move mole-
cules across large distances. Even though the proteins that generate 
action potentials, calcium waves, mitotic waves, and actin waves are 
different, and even though the time scales of the various waves 
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in greater detail. We begin with the most venerable biological trig-
ger wave, the action potential.

Action potentials
Action potentials originate at the axon hillock (Figure 1A) and prop-
agate down the axon at an undiminishing speed and amplitude 
(Figure 1B). Typically, action potentials occur at irregular time inter-
vals, but in some cases, circuits of neurons fire with a regular 
period.

The key protein in the generation and propagation of the action 
potential is the voltage-sensitive sodium channel (Figure 1C). When 
the plasma membrane begins to depolarize, that is, the intracellular 
side of the membrane becomes less negative with respect to the 
extracellular side, stochastic opening of the voltage-sensitive so-
dium channels occurs more frequently. Channel opening allows so-
dium to rush inward down its concentration and potential gradients, 
depolarizing the membrane further. This constitutes a positive feed-
back loop (Figure 1C), and in principle the cycle of depolarization → 
channel opening → depolarization could continue until the inside of 
the cell is positive enough to keep more Na+ from flowing inward. 
The fact that the feedback loop is operating at the level of protein 

range over nine orders of magnitude, the underlying dynamical pro-
cesses are similar.

Here we review the topic of how trigger waves are generated, 
with the goal of explaining in a self-contained way the mechanistic 
basis of these beautiful and important phenomena. For readers in-
terested in more detail on the physics of trigger waves, the classic 
review by Tyson and Keener (1988) and the analysis of propagating 
fronts presented by Rinzel and Terman (1982), Elphick et al. (1997), 
and Hagberg and Meron (1994) are recommended.

We use a set of equations well known to physicists, the 
FitzHugh–Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 
1964). Originally proposed as a simplification of the Hodgkin–
Huxley model of action potentials (Hodgkin and Huxley, 1952), the 
FHN equations can be viewed as a simple and general model of 
interlinked positive and negative feedback loops that can produce 
various types of dynamical responses, including switches, pulses, 
and oscillations. Moreover, by adding diffusion to the FHN model, 
one can produce trigger waves that rapidly propagate these 
switches, pulses, and oscillations over large distances. Before 
beginning with the analysis of the FHN model, it is helpful to ex-
amine some of the circuits that generate biological trigger waves 

FIGURE 1:  Examples of biological trigger waves. (A–C) Action potentials. (A) Action potentials are generated at the 
axon hillock and propagate distally down the axon. (B) Recordings of an action potential traveling down an axon, 
measured by an array of extracellular electrodes. The inward flux of Na+ during an action potential registers as a 
negative deflection of the potential registered by the extracellular electrodes. (Adapted from Bakkum et al., 2013.) 
(C) Schematic view of the circuit that generates the action potential. (D–F) Calcium waves in fertilized eggs. (D) Calcium 
waves are generated at the sperm entry point and spread across the egg. (E) Calcium concentrations as a function of 
time in a fertilized oocyte from the milky ribbon worm, Cerebratulus lacteus, as measured by ratiometric imaging after 
calcium green loading. (Taken from Stricker, 1999.) (F) Schematic view of the circuit that generates calcium waves. 
(G–I) Mitotic waves in Xenopus eggs. (G) About 1 h after fertilization and the postfertilization calcium wave, a wave of 
Cdk1 activation spreads from near the centrosome to the cortex of the cell. (H) Waves of mitosis in Xenopus egg 
extracts. Thin Teflon tubes were filled with cycling Xenopus egg extracts together with sperm chromatin and a nuclear 
localization signal–green fluorescent protein marker. Waves of nuclear envelope breakdown spread from the fastest 
regions of the cytoplasm, near the middle of this section of the tube, outward. (Taken from Chang and Ferrell, 2013.) 
(I) Schematic view of the circuit that generates waves of cyclin B-Cdk1 activation.
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a time-delayed negative feedback loop (Yang and Ferrell, 2013); 
Cdk1 activates APC/CCdc20 complex, a ubiquitin E3 ligase that pro-
motes cyclin B degradation and restores the system to a low-Cdk1-
activity state.

Differences and commonalities
These three examples of spatiotemporal signaling are different in 
many respects. For one thing, the proteins involved are unrelated: 
sodium and potassium channels in the case of action potentials; 
phospholipases, IP3 receptors, and pumps in the case of calcium 
waves; and kinases, phosphatases, and ubiquitin ligases in the case 
of mitotic waves. The wave velocities and the distances over which 
the waves typically propagate are different as well. Finally, some of 
these waves recur in an oscillatory manner, and some are solitary 
pulses.

In all three cases, however, the outputs (membrane depolariza-
tion, intracellular Ca2+, or cyclin B-Cdk1 activity) spread through 
space and time via trigger waves. Trigger waves are made possible 
by the coexistence of two essential processes. The first is a local 
reaction process, which typically exhibits bistability, excitability, or 
relaxation oscillations. The FHN model is a particularly simple and 
well-studied ordinary differential equation model with interlinked 
positive and negative feedback loops that can exhibit, for the 
appropriate choice of parameters, all three of these behaviors. It is 
not necessarily the best or most realistic model of any of these pro-
cesses, but it contains the basic ingredients needed for generating 
trigger waves, and for this reason, we will use this model for the re-
action portion of our trigger wave model. The other essential pro-
cess is some sort of spatial coupling mechanism. Here we assume 
that diffusion provides the spatial coupling and use Fick’s second 
law to describe it.

The FHN model
Because of its simplicity, richness, and relevance to biology, the FHN 
model has been the subject of hundreds of papers (Rocsoreanu et 
al., 2000), including much work on waves and spatial propagation 
(Rinzel and Terman, 1982; Hagberg and Meron, 1994; Elphick et al., 
1997; Neu et al., 1997). The model is a modification of the van der 
Pol oscillator model, which was originally inspired by vacuum tube 
circuits (van der Pol and van der Mark, 1928).

The FHN model consists of two ordinary differential equations in 
two time-dependent variables:

= − −du
dt u u v3

	
(1)

dv
dt u bv a( )= ε − +

 	
(2)

The first equation includes all of the fast reactions; the second, 
the slow ones (because the parameter ε is generally taken to be 
<<1).

In its original context as a model for the action potential, the vari-
able u represents the membrane potential, and the three terms on 
the right-hand side of Eq. 1 represent three ways that the mem-
brane potential is rapidly regulated. The first term, du/dt ∝ u, is the 
positive feedback, where depolarization linearly promotes more de-
polarization through the voltage-gated sodium channel. The sec-
ond term, du/dt ∝ − u3, is a fast negative feedback loop, which 
roughly corresponds to the autoinactivation of the sodium chan-
nel. The third term represents a recovery process like the outward 
potassium currents that oppose depolarization. The functional forms 
and coefficients were chosen such that the u-nullcline is shaped like 

conformation changes and ion flows, both of which are very rapid 
processes, allows the peak of the action potential to be attained in 
<1 ms.

The action potential is terminated by two processes: the delayed 
opening of voltage-sensitive potassium channels, which allows K+ to 
flow out of the cell and restore the net negative charge of the inside, 
and the autoinactivation of the voltage-dependent sodium channel 
(Figure 1C). Taken together, the circuit is a system of interlinked 
positive and negative feedback loops.

Calcium waves
Calcium waves occur in many species and cell types (Gilkey et al., 
1978; Busa and Nuccitelli, 1985; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; Stricker, 1999; Codazzi et al., 2001; Choi et al., 2014). 
One particularly striking example is the calcium wave that occurs 
when a sperm fertilizes an egg (Figure 1, D and E). Typically, the 
wave initiates at the sperm entry point, sweeps across the egg at 
∼5–30 μm/s, and results in a filling of the whole egg with high (ap-
proximately micromolar) concentrations of free Ca2+ (Stricker, 1999). 
The high intracellular calcium helps prevent the refertilization of the 
egg by a second sperm. In some species, a single calcium wave oc-
curs; in others, there is a succession of waves (Stricker, 1999). Cal-
cium waves also occur in numerous other cells and tissues and can 
occur as solitary pulses, trains of pulses, or sustained pulsatile oscil-
lations (Meyer and Stryer, 1988; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; De Young and Keizer, 1992; Straub et al., 2000; Lewis, 
2003).

Like action potentials, calcium waves are generated by a circuit 
with positive feedback (Figure 1F). In this case, an increase in free 
intracellular Ca2+ activates phospholipase C (PLC), which cleaves the 
phosphatidylinositol 4,5 bisphosphate (PIP2) and generates the sec-
ond messenger inositol trisphosphate (IP3). IP3 then binds to IP3 re-
ceptors (IP3R) on the calcium-filled endoplasmic reticulum (ER), al-
lowing Ca2+ to flow into the cytoplasm and bringing about further 
activation of PLC (Figure 1F). Thus an increase in intracellular cal-
cium brings about a further increase. In addition, cytosolic Ca2+ 
more directly stimulates the release of ER Ca2+ by regulating IP3 re-
ceptors and ryanodine receptors on the ER. There are therefore two 
interlinked positive feedback loops operating on similar time scales. 
The increase in cytosolic Ca2+ is limited by the finite capacity of the 
ER and then reversed by membrane-bound calcium pumps, consti-
tuting a negative feedback loop (Figure 1F).

Mitotic waves
About 1 h after the postfertilization calcium wave passes through a 
Xenopus egg, a wave of mitosis spreads through the cell (Hara, 
1971, 1980), beginning in the vicinity of the centrosome and con-
gressed pronuclei and progressing to the cell cortex at a constant 
speed of ∼1 μm/s (Figure 1G; Hara, 1971; Rankin and Kirschner, 
1997; Perez-Mongiovi et al., 1998; Chang and Ferrell, 2013). This 
wave can be visualized by putting cycling Xenopus egg cytoplasm 
mixed with nuclei in a Teflon tube and watching the nuclei disappear 
as mitosis spreads through the cytoplasm (Figure 1H; Chang and 
Ferrell, 2013). Mitotic waves are believed to help spatially coordi-
nate mitosis and cell division in the huge (1.2 mm) Xenopus egg.

The circuit that generates this wave of mitosis is shown in Figure 
1I. It is centered on the cyclin B–cyclin-dependent kinase 1 (Cdk1) 
complex, the master regulator of mitosis. The protein kinase Cdk1 in 
turn is regulated by fast, interlinked positive and double-negative 
feedback loops (Cdk1 activates its activator Cdc25C and inactivates 
its inactivator Wee1), which constitutes a bistable switch (Pomerening 
et al., 2003; Sha et al., 2003). The switch is then turned back off by 
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steady states (filled circles), and one is an unstable saddle point 
(open circle). This means that the system is bistable.

Some initial conditions produce trajectories that approach the 
negative-potential steady state (Figure 2, A and B, blue region) and 
others that approach the positive-potential steady state (Figure 2, A 
and B, pink region). A separatrix (dashed curve) divides the basins of 
attraction for the two stable steady states.

Excitability in the FHN model
As b is decreased, the slope of the v-nullcline decreases. This moves 
one of the stable steady states from the upper limb of the u-nullcline 
to the middle limb, and it changes from being stable to unstable. 
This leaves a single remaining stable steady state—the low-mem-
brane-potential steady state (Figure 2D). The system is now monos-
table but excitable. For some initial conditions, u and v will proceed 
more or less directly to the remaining stable steady state (Figure 2D, 
blue curve), whereas for others, the trajectory first shoots to the 
u-nullcline, circles around the unstable steady state, and only 

a backward S, which is critical to the model’s behavior (see later 
discussion), and not because they correspond exactly to the situa-
tion in nerves or other biological oscillators.

The second variable, v, is related to the potassium gradient. The 
resting situation, where the extracellular concentration of K+ is lower 
than the intracellular concentration, corresponds to a negative value 
of v. The processes that regulate v are all assumed to occur on a 
slow time scale. The first term represents the activation of the volt-
age-gated potassium channel by the membrane potential u, which 
increases the value of v. The second term, –εbv, represents the 
pumping of K+ out of the neuron. The third term on the right-hand 
side, εa, roughly corresponds to a potassium leak current.

The FHN model is less directly related to calcium signaling and 
Cdk1 activation, but one can still draw analogies: for calcium signal-
ing, u can represent the free cytosolic calcium, and v can represent 
the pumps and leaks that regulate calcium concentration more 
slowly. For mitosis, u can represent cyclin B-Cdk1 activity and v can 
represent the more slowly varying cyclin B concentration. Note, 
however, that the enduring significance of the FHN model for biolo-
gists does not come from a precise correspondence between the 
individual terms of the two equations and any particular biological 
process. Instead, it lies in the fact that the model is a simple way of 
generating bistability, excitability, and relaxation oscillations, three 
systems-level behaviors known to arise in a number of biological 
contexts.

Bistability in the FHN model
Here we assume a = 0.1 and e = 0.01 and change the behavior by 
varying the parameter b. Note that all parameters and variables are 
dimensionless throughout. When b is relatively large (b > 1.8), the 
system is bistable. Depending on the initial conditions, the system 
will settle down into one of two alternative stable steady states, one 
with a negative membrane potential (Figure 2A) and one with a 
positive membrane potential. For the initial value of v assumed here 
(v = −0.3), all trajectories that start with u > −0.3 (the threshold shown 
by the dashed line in Figure 2A) will approach the positive-potential 
steady state (Figure 2A, red curve), and all trajectories that start with 
u < −0.3 will end up at the negative-potential steady state (Figure 
2A, blue curve). Thus a small perturbation that pushes the system 
across the threshold will be amplified into a large difference in the 
system’s ultimate fate.

The origin of the bistability can be understood by examining a 
phase plot of the two-variable system, where the values of u and v 
(each of which is a function of time) are plotted in the uv-plane 
(Figure 2B). Stable steady states are attained when both du/dt and 
dv/dt are equal to zero:

− − =u u v 03
 	 (3)

u bv a( ) 0ε − + = 	 (4) 

Equation 3 defines a curve in the uv plane, the u-nullcline, and it 
can be thought of as the steady-state response of u to various con-
stant levels of v (Figure 2B, gray curve). The positive feedback and 
cubic negative feedback terms give the nullcline a characteristic 
backward-S shape that is critical for the behavior of the model. 
Equation 4 is the v-nullcline, a straight line that describes the steady-
state response of v to u (Figure 2B, black line). Wherever the two 
nullclines intersect, both time derivatives (Eqs. 1 and 2) are equal to 
zero and the system is in steady state. For the particular value of b 
chosen in Figure 2, A and B (b = 2), the two nullclines intersect at 
three points (Figure 2B). Two of the intersection points can be shown 
through linear stability analysis (Strogatz, 1994) to represent stable 

FIGURE 2:  Different types of dynamics from the FHN model. 
(A, C, E) Time course; (B, D, F) phase plots. (A, B) Bistability. For b = 2, 
the system is bistable, with two stable steady states (B, filled circles) 
and one saddle point (B, open circle). For the value of v(t = 0) 
assumed here (v(t = 0) = –0.3), trajectories beginning above a 
threshold value of u (A, dashed line) go to the high-u stable steady 
state, whereas those beginning below the threshold go to the low-u 
stable steady state. In the phase plane, a separatrix (dashed curve) 
divides the starting points that approach the high-u stable steady 
state (pink area) from those that go to the low-u steady state. 
(C, D) Excitability. For b = 1.5, there is a single stable steady state plus 
a saddle point and an unstable steady state. Trajectories beginning 
above the threshold (C) or the separatrix (D) yield a pulse of u and 
circle the unstable steady state before settling down to a low 
steady-state value of u. Those beginning below the threshold do not 
yield a pulse of high u. (E, F) Oscillations. For b = 1.0, the single 
steady state is unstable. From all initial conditions (except starting 
right on the unstable steady state), the trajectories approach the 
same stable limit cycle, although from above the threshold, they go 
first to the upper limb of the u-nullcline, and below the threshold, 
they go first to the lower limb. A, C, and E are time courses; B, D, and 
F are phase plots. In each case, a = 0.1, ε = 0.01, v(t = 0) = −0.3, and 
u(t = 0) = −0.25 (red trajectories) or −0.35 (blue trajectories).
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where the system has a higher membrane potential (u(t = 0) = 1). In 
Figure 3D, the oscillatory case, we also assumed that the frequency 
of the oscillations is higher in the middle of the tube than in the 
other regions. We then assumed that either there was no diffusive 
coupling (top, D = 0) or there was diffusive coupling (bottom, D = 1) 
and examined how the systems evolved with time. We represent the 
value of u at each point in space and time by a heat map color 
scale.

If there is no reaction and no diffusion, then the middle region 
remains red and the outer regions remain blue indefinitely (Figure 
3A, top). Adding diffusion makes the high-potential region both 
spread out and decrease in amplitude with time (Figure 3A, bot-
tom), as would be expected intuitively. The high-u region has a sig-
nificant effect only on the regions close to it and only for a limited 
period of time.

Bistable, excitable, and oscillatory 
trigger waves
The situation is very different when we assume that the reactions of 
u and v are described by the FHN model. If the system is bistable 
(b = 2), so that in the absence of diffusion the two regions settle into 
the two different stable steady states (Figure 3B, top), then adding 
diffusion of the appropriate strength allows the high-u state to prop-
agate up and down the tube at constant speed (Figure 3B, bottom). 
Eventually the entire tube flips from the low-u state to the high-u 
state. If the system is excitable (Figure 3C), diffusion allows a pulse 
of high u to spread up and down the tube at constant speed 
(Figure 3C, bottom). If the tube is oscillatory, with the phase ad-
vanced and frequency higher in the center of the tube relative the 
rest of the tube, the fast oscillations spread up and down from the 
center at constant speed until they meet up with the delayed oscil-
lations (Figure 3D, bottom). With each successive oscillation, the 
trigger wave of fast oscillations spreads further up and down the 
tube (Figure 3D, bottom). In each of these cases, a dynamical phe-
nomenon—bistable switching, excitable spikes, or oscillations—
propagates through space via trigger waves.

To get an idea of why the combination of FHN reactions and 
diffusion allows for the generation of trigger waves, first ignore 
diffusion and recall that there is a separatrix or threshold built 
into the reactions (Figure 2). For a given initial value of v, if you 
begin with a value of u above the threshold, the trajectory will 
have one sort of fate, and if you begin below it, another. In the 
bistable case (Figure 2, A and B), the threshold separates the 
trajectories that approach the high-u steady state from those that 
approach the low-u steady state; in the excitable case (Figure 2, 
C and D), it separates the trajectories that include an upward 
pulse of u from those that do not; and in the oscillatory case 
(Figure 2, E and F), it separates the oscillations that initially head 
toward the upper limb of the u-nullcline from those that head 
toward the lower limb.

Diffusion provides a mechanism for crossing the threshold. This 
is illustrated in Figure 4 for the case of the bistable FHN system. Dif-
fusion mixes nearby values such that a point in space within the 
low-u region will have its value of u initially increase as the high-u 
region mixes with it and then eventually fall back down (Figure 4, 
A–C). The higher the diffusion coefficient, the faster is the initial in-
crease, but the fall back down is faster as well (Figure 4, A–C). Diffu-
sion can therefore allow the value of u to increase above the thresh-
old (or, in phase space, to cross the separatrix) for some period of 
time. If the time is sufficient, the FHN reactions can convert that re-
gion of space into an even higher level of u (Figure 4, C and D). The 
entire process is repeated in the next region of space and then the 

then heads toward the stable steady state (Figure 2D, red curve). 
The result is that some initial conditions will result in pulses of 
depolarization (Figure 2C, red curve), whereas others will not (Figure 
2C, blue curve). The separatrix dividing the trajectories that pulse 
from those that do not is similar in shape to that which divided the 
basins of attraction in the bistable case (Figure 2B).

Oscillations in the FHN model
When b is decreased below ∼1.2, so that the v-nullcline intersects 
the middle limb of the u-nullcline rather that the lower limb, there is 
only one steady state, and it is unstable (Figure 2F). The result is that 
the system is now oscillatory rather than excitable, and this type of 
oscillation in which the trajectory switches back and forth between 
the two limbs of the u-nullcline is termed a relaxation oscillation. 
From some initial conditions, the trajectories aim upward (Figure 2F, 
pink region), and from others, they aim downward (blue region), but 
they always approach the same stable limit cycle (Figure 2F). This 
yields an unending succession of alternations between high and low 
membrane potentials (Figure 2E), which are very similar to repeated 
trains of the pulses that were generated when the model was in its 
excitable regime (Figure 2C, red curve).

Thus the FHN model can exhibit three types of behavior: bista-
bility, excitability, and oscillations. When combined with a spatial 
coupling mechanism like diffusion, each of these responses can be 
propagated as a trigger wave.

Reaction-diffusion dynamics in the FHN model
The ordinary differential equations of the FHN model describe ei-
ther the behavior of a well-stirred, spatially homogeneous system 
or a spatially inhomogeneous system with no coupling between 
points in space. To generate trigger waves, we need the system to 
be both inhomogeneous and spatially coupled. Action potentials, 
calcium waves, and mitotic waves all arise out of spatial inhomoge-
neities in either the initial conditions of the system or the parame-
ters of the system. Because they all occur within a shared cyto-
plasm, we will assume here that diffusion provides the spatial 
coupling.

In the absence of any local reaction process, a locally elevated 
concentration of molecules will spread through a cell and eventually 
approach a homogeneous spatial distribution. Fick’s second law de-
scribes how the concentrations change in time through diffusion. 
For one spatial dimension (e.g., for diffusion in a thin tube like an 
axon) this is

∂
∂ = ∂

∂
u x t

t D u x t
x

( , ) ( , )2

2
	

(5)

where D is the diffusion coefficient, typically ∼300 μm2/s for a small 
molecule like IP3 and ∼10 μm2/s for a rapidly diffusing cytosolic pro-
tein or for Ca2+, which spends most of its time bound to proteins 
(Allbritton et al., 1992). We can add diffusion terms to the FHN 
model to yield a system of partial differential equations:
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These can be solved numerically for some choice of parameters 
and initial conditions. For each of the simulations shown in Figure 3, 
we assumed that we have a long, one-dimensional tube (like an 
axon) with the system in a low-u state (u(t = 0) ∼ –0.6, v(t = 0) ∼ –0.3) 
everywhere except for a small region in the middle of the tube, 
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region to a high-u region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u state that 
would spread into, and eventually take 
over, the high-u region.

The time scales of reaction 
versus diffusion
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

= τs D2
	

(8)

where D is the diffusion coefficient and τ is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ∼0.034 m2/s and τ ≈ 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D ≈ 10 μm2/s and τ ≈ 1 s, yielding 
a wave speed of ∼6 μm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u regions is negative, so that the low-u region is close to the 
threshold and the high-u region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u 

FIGURE 3:  Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) = 1) and a low initial value of u elsewhere (u(t = 0) = –0.6). 
The initial value for v is the same everywhere (v(t = 0) = –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b = 0.5) than 
in the rest of the tube (b = 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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shown in Figure 5B, mitotic waves become apparent after a couple 
of cell cycles and self-organize so that they emerge from three dis-
crete foci by cycle 4, two foci by cycle 5, and 1 focus by cycle 6 
(Figure 5B, arrows). Thus trigger waves do not just propagate infor-
mation relatively quickly; they can also make noisy events become 
more orderly.

Concluding remarks
Here we examined the FitzHugh–Nagumo model with one-dimen-
sional diffusion and showed how three types of trigger waves can be 
generated: waves of switching from one stable steady state to an-
other, wave-like pulses, and oscillatory waves. These trigger waves 
propagate without slowing down or petering out and tend to be 
self-organizing. Pulsatile trigger waves (Figure 3C) can be thought of 
as models for solitary action potentials and calcium waves. Oscilla-
tory trigger waves (Figure 3D) are relevant to mitotic waves and to 
repeated trains of action potentials and calcium waves.

The trigger waves examined here are made possible by the fact 
that the u-nullcline of the FHN model is shaped like a backward S, 
which makes it possible for diffusion to push the system across a 
threshold that separates qualitatively distinct dynamical responses. 
Other models whose reactions are different from those used in the 
FHN model (see, e.g., Novak and Tyson, 1993; Yang and Ferrell, 
2013) can yield trigger waves as well, provided that one variable in 
the model is an S-shaped function of another.

So far we have only considered trigger waves operating within a 
single cell, with diffusion providing the spatial coupling mechanism. 
In principle, other mechanisms can provide this spatial coupling. For 
example, with actin waves, as Allard and Mogilner (2013) pointed 
out, diffusion, mechanical stress, and polymerization may all be in-
volved in spatial coupling.

Moreover, if a system possesses an intercellular coupling mecha-
nism, mediated, for example, by paracrine signaling or direct cell–
cell interactions, then trigger waves can mediate and organize com-
munication within multicellular tissues. The classic example is the 
pacemaker circuitry of the heart, where the fastest oscillators (in the 
sinoatrial node) keep the slower oscillators (in the rest of the myocar-
dium) in step through trigger waves. Similarly, the slime mold 
Dictyostelium discoideum uses intercellular cAMP trigger waves to 
organize its aggregation into a multicellular organism (Palsson and 
Cox, 1996). We suspect that many other examples of intercellular 
trigger waves remain to be discovered. For example, Trusina and 
colleagues conjectured that inflammatory responses spread through 
tissues via trigger waves (Yde et al., 2011a,b). It seems likely that a 
number of wave-like developmental phenomena, like the propaga-
tion of the morphogenetic furrow during Drosophila eye develop-
ment (Tomlinson and Ready, 1987; Sato et al., 2013), may also be 
mediated by trigger waves, here acting as an intercellularly propa-
gating bistable switch.

The prerequisites for a trigger wave are 1) a system of reactions that 
includes strong positive feedback and nonlinearity, and 2) a spatial 
coupling mechanism. Given how commonplace these basic ingredi-
ents are in cell signaling and how important it is that cellular regulation 
be coordinated both spatially and temporally, we suspect that trigger 
waves will prove to be important in many other contexts as well.

diffusion coefficient is higher (∼300 μm2/s), but the PIP2 hydrolysis-
mediated feedback is probably slower, yielding a similar wave speed 
(Meyer, 1991; Allbritton et al., 1992). For mitotic waves, assuming 
that the diffusion coefficients for the proteins involved are ∼10 μm2/s 
and the flipping time for the bistable switch is ∼10–100 s, we obtain 
a wave speed of ∼0.6-2 μm/s (Novak and Tyson, 1993), again in 
good agreement with experimental observations (Chang and Ferrell, 
2013).

Note that there is a limit to how much speed one can obtain by 
increasing the diffusion coefficient D; if the diffusion is too fast for 
the reactions, the activity will dissipate before the trigger wave can 
be initiated (Figure 4D). Thus, to generate a trigger wave, the time 
scale for diffusion cannot be too fast relative to the time scale of the 
reactions.

Trigger waves tend to self-organize
Figures 3 and 4 show trigger waves emerging out of a spatially inho-
mogeneous system, with a small central region that differs from the 
rest of the domain. Within each of these spatial domains, however, 
the systems are perfectly homogeneous. However, real biological 
systems tend to be less than perfectly homogeneous. What would 
happen if we assumed that the initial conditions and model param-
eters were noisy, varying over some reasonable range over space?

This question is addressed for an oscillatory FHN system in 
Figure 5A. Rather than starting with two discrete domains with dif-
ferent initial conditions, we assume that there are small, random 
variations in initial conditions and parameter values throughout the 
system. As the system begins to oscillate, the noise makes it unclear 
whether there are trigger waves or not (Figure 5A). Eventually, dis-
crete foci from which oscillations emerge become apparent, and 
eventually a single focus, where the oscillation frequency happened 
to be highest, dominates the behavior of the whole tube. Similar 
behavior is seen in biological trigger waves. In the experiment 

FIGURE 5:  Trigger waves tend to self-organize. (A) Self-organizing 
trigger waves in an oscillatory FHN model with the model’s 
parameters assumed to be inhomogeneous in space. A single focus of 
oscillations eventually dominates the whole system. (B) Self-organizing 
mitotic waves in Xenopus egg extracts in Teflon tubes. The red circles 
mean that a reporter nucleus at that position entered mitosis at that 
time. The blue circles denote mitotic exit. In cycle 1, there is no 
obvious relationship between position and time of mitotic entry or 
exit, but by cycle 6, a wave of mitosis starting near the top of the 
tube dominates the whole system. The arrows denote positions from 
which waves apparently originate. (Adapted from Chang and Ferrell, 
2013.)
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