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Abstract

Many problems of cooperation involve repeated interactions among the same groups of individuals. When collective action
is at stake, groups often engage in Public Goods Games (PGG), where individuals contribute (or not) to a common pool,
subsequently sharing the resources. Such scenarios of repeated group interactions materialize situations in which direct
reciprocation to groups may be at work. Here we study direct group reciprocity considering the complete set of reactive
strategies, where individuals behave conditionally on what they observed in the previous round. We study both analytically
and by computer simulations the evolutionary dynamics encompassing this extensive strategy space, witnessing the
emergence of a surprisingly simple strategy that we call All-Or-None (AoN). AoN consists in cooperating only after a round
of unanimous group behavior (cooperation or defection), and proves robust in the presence of errors, thus fostering
cooperation in a wide range of group sizes. The principles encapsulated in this strategy share a level of complexity
reminiscent of that found already in 2-person games under direct and indirect reciprocity, reducing, in fact, to the well-
known Win-Stay-Lose-Shift strategy in the limit of the repeated 2-person Prisoner’s Dilemma.
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Introduction

The emergence and sustainability of cooperation constitutes one

of the most important problems in social and biological sciences

[1]. It revolves around the clash between individual and collective

interest, which becomes particularly clear when one considers the

evolution of collective action involving Public Goods Games
(PGG), such as the stereotypical N-person Prisoner’s Dilemma
(NPD) [2,3]. In the absence of additional mechanisms, such as the

presence of thresholds [4,5], risk [6], an embedding network of
interactions [7–12], institutions [13–15], punishment or voluntary
participation [16–19], evolutionary game theory predicts a

population fated to fall into a tragedy of the commons [20].

Collective action problems, however, often involve repeated

interactions between members of the same group [21–23], as

exemplified by the repeated attempts from country leaders to

cooperate in reducing emissions of greenhouse gases [6,24–29] or

in finding a solution to the Euro monetary crisis [30–32]. In such

scenarios, where collective action is more difficult to achieve in

larger groups [6], one is naturally led to question whether a

generalization of the direct reciprocity [33] mechanism to

problems of collective action may provide an escape hatch to

the aforementioned tragedy of the commons. Moreover, N-player

interactions pose many additional difficulties, in particular in what

concerns the emergence of reciprocation: If one interacts

repeatedly in a group of N-players it is hard to identify towards

whom should one reciprocate [3]. In fact, only recently direct

reciprocity has been generalized to PGGs [22,23], studying the co-

evolution of unconditional defectors with generalized reciproca-

tors, that is, individuals who, in a group of size N, only cooperate if

there were at least M (0#M#N) individuals who cooperated in

the previous round. Results show [22,23] that generalized

reciprocators are very successful in promoting cooperation.

Moreover, for a given group size N, there is a critical threshold

level of fairness, M*, at which reciprocation optimizes the

emergence of cooperation [22].

Generalized reciprocators [22] provide an intuitive generaliza-

tion of the TFT strategy to repeated N-player games. However,

and despite the underlying intuition, they constitute but a small

subset of all possible individual (reactive) strategies one can

envisage in a group of size N.

Here we explore the complete set of reactive strategies that

individuals may adopt when engaging in repeated Public Goods
Games with N-1 other individuals, assuming that the decision to
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cooperate or not is based on the behavioral decisions of the group

in the previous round (see below). We find that, in the context of

Public Goods Games, a reactive strategy not belonging to the set of

generalized reciprocators emerges as ubiquitous, ensuring the

emergence and sustainability of cooperation.

Models

Let us consider a finite and well-mixed population of Z
individuals, who assemble in groups of size N randomly formed,

and play a repeated version of the NPD [34]. In each round

individuals either cooperate (C) by contributing an amount c to a

public good or defect (D) by not doing so. The aggregated

contributions of the group are multiplied by an enhancement

factor F and equally divided among the N individuals of the group.

Hence, in each round, Ds achieve a payoff of pD(k)~kFc=N,

while Cs attain pC(k)~pD(k){c where k is the number of

contributions in that round. We consider a repeated PGG with an

undetermined number of rounds, such that at the end of each

round, another round will take place with probability w [3],

leading to an average number of rounds — m — given by m = (12

w)21. At the beginning of each round (with the exception of the

first), each individual decides to contribute (i.e. to play C) or not

(i.e. to play D), depending on the total number of contributions

that took place in the previous round.

Each strategy Si defines how an individual behaves in each

round (i.e. if she/he decides to cooperate or defect) and is encoded

in a string with N+2 bits (b21b0b1…bN21bN). The first bit (b21)

dictates the behavior in the initial round, while the remaining N+1

bits (b0b1…bN21bN) correspond in sequence to the player’s

behavior depending on the number of Cs in the previous round.

In this definition a bit 1 corresponds to a cooperative act and a bit

0 to a defective one. Hence, one obtains a maximum of 2N+2

strategies, corresponding to all possible combinations of 0 s and

1 s in a string of size N+2.

We consider groups of N individuals, randomly sampled from a

finite population of size Z, playing a repeated NPD. Individuals

revise their strategies through the Fermi update rule [35–38], a

stochastic birth-death process with mutations. At each time step a

randomly selected individual A (with strategy SA and fitness fSA
)

may adopt a different strategy i) by mutation with probability m or

ii) by imitating a random member B of the population

(with strategy SB and fitness fSB
) with probability (1{m)

(1zexp½{b(fSA
{fSB

)�){1, where b is the intensity of selection
that regulates the randomness of the decision process. The fitness

of each strategy fSi
is the average payoff attained over all rounds

and possible groups by individuals adopting strategy Si. It is well

known that execution errors profoundly affect the evolutionary

dynamics of repeated 2-person games [39–45]. Consequently, we

shall also consider that, in each round, and after deciding to

contribute or not according to bq, an individual may act with the

opposite behavior (12bq) with a probability e, thus making an

execution error.

Results/Discussion

Let us start by investigating the evolutionary dynamics of the

population in the small mutation limit approximation [46]. This

allows us to compute analytically the relative pervasiveness of each

strategy in time. It is noteworthy, however, that the results

obtained through this approximation remain valid for a wide

range of mutation probabilities, as we show explicitly in the

Supporting Information (SI) via comparison with results from

computer simulations. In a nutshell, and whenever mutations are

rare, a new mutant that appears in the population will either get

extinct or invade the entire population before the occurrence of

the next mutation. Hence, in each time-step there will be, at most,

2 strategies present in the population, which allows one to describe

the evolutionary dynamics of the population in terms of an

embedded (and reduced) Markov Chain with a size equal to the

number of strategies available. Each state represents a monomor-

phic population adopting a given strategy, whereas transitions are

defined by the fixation probabilities of a single mutant [47]. The

resulting stationary distribution ti will then indicate the fraction of

time the population spends in each of the 2N+2 states (or strategies

Si). We shall also make use of ti to compute the fraction of time the

population spends in a configuration/strategy with bi
q = 1, a

quantity we call stationary bit strategy, defined as b
q
~
P2Nz2

i~1 tib
q
i ,

where b
q
i corresponds to the bit q of strategy i. The stationary bit

strategy allows us to easily quantify the relative dominance of each

behavior and extract the most pervasive strategic profiles.

Figure 1 shows the stationary bit distribution, b
q
, for different

group sizes. Colored cells highlight those bits (bq) that retain the

same value more than 75% of the time, with b
q
$0.75 (blue) and

b
q
#0.25 (red). For simplicity, we associate this feature with what

we call dominant bit.
Analysis of the stationary bit distributions for different group

sizes under small error probabilities puts into evidence the overall

evolutionary success of strategies that conform with a particular

profile: b0 = bN = 1 and bq = 0 for 0,q,N. A similar trend is

obtained if instead we analyze the stationary distribution ti for all

possible strategies Si: This strategy — or minor variations on this

profile (see below) — shows the highest prevalence for a wide

range of parameters even in the absence of errors of execution (see

SI). The philosophy encapsulated in this strategy is a simple yet

efficient one: cooperating only after a round of unanimous group

behavior (cooperation or defection). Hence we refer to this strategy

as All-Or-None (AoN), highlighting the two situations in which

these individuals are prone to cooperate. As group size increases,

so does the number of expected errors per round, which leads to

an overall reduction of the number of dominant bits found in the

intermediate sector (i.e. bq for 0,q,N) without affecting the ‘‘edge

bits’’, which again reveals the prevalence of AoN behaviour in the

population.

Author Summary

The problem of cooperation has been a target of many
studies, and some of the most complex dilemmas arise
when we deal with groups repeatedly interacting by
means of a Public Goods Game (PGG), where individuals
may contribute to a common pool, subsequently sharing
the resources. Here we study generalized direct group
reciprocity by incorporating the complete set of reactive
strategies, where action is dictated by what happened in
the previous round. We compute the pervasiveness in time
of each possible reactive strategy, and find a ubiquitous
strategy profile that prevails throughout evolution, inde-
pendently of group size and specific PGG parameters,
proving also robust in the presence of errors. This strategy,
that we call All-Or-None (AoN), consists in cooperating
only after a round of unanimous group behavior (coop-
eration or defection); not only is it conceptually very
simple, it also ensures that cooperation can self-sustain in
a population. AoN contains core principles found, e.g., in
the repeated 2-person Prisoner’s Dilemma, in which case it
reduces to the famous Win-Stay-Lose-Shift strategy.

Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas
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A monomorphic population of AoN players can easily sustain

unanimous group cooperation, even in the presence of errors.

Indeed, after an occasional individual defection, a round of full

defection ensues, resuming back to unanimous cooperation in the

following round. Therefore, AoN allows a prompt recovery from

errors of execution, which constitutes a key feature that allows

cooperation to thrive.

To investigate the robustness of AoN we show, in Figure 2, the

effect of execution errors on the stationary bit distribution (bq) for a

fixed group size (here N = 5): Clearly, both b0 and bN remain

associated with cooperation for a wide range of error probabilities

(e#0.2). The internal bits, in turn, remain qualitatively close to the

AoN profile (i.e. bq = 0 for 0,q,N), undergoing changes as the

error rate increases, allowing an efficient resume into full

cooperation, after (at least) one behavioral error. In particular,

for 0.01,e,0.1, evolution selects for defection in bits b1 to bN21,

with particular incidence to adjacent bits of b0 and bN, allowing a

fast error recovery. This feature gets enhanced with increasing e.

For larger values of e (e.0.1), unanimity becomes less likely and

we witness an adaptation of the predominant strategy that acts to

reduce the interval of bits in which defection prevails. In other

words, it is as if execution errors redefine the notion of unanimity

itself or, alternatively, individuals become more tolerant as

execution errors become more likely. It is also noteworthy that

the non-monotonous response to errors shown in Figure 2 has

been previously observed in other evolutionary models of

cooperation [48] where intermediate degrees of stochasticity

emerge as maximizers of cooperation. We confirmed that the

results remain qualitatively equivalent for different group sizes.

In the following we investigate the relevant issue of asserting

whether the introduction of this strategy can efficiently promote

the average fraction of cooperative actions. The level of

cooperation, g, may be defined as the average number of

contributions per round divided by the maximum number of

contributions possible. Denoting by Ci the average number of

contributions per round associated with strategy Si, g reads

g~ 1
N

P2Nz2

i~1 tiCi, where ti is the fraction of time the population

spends in the configuration Si and N is the group size. As shown in

Figure 3, the overall levels of cooperation remain high as long as

the average number of rounds is sizeable (left panel, for different

values of the PGG enhancement factor F).

The success of AoN can also be inferred by assessing its

evolutionary chances when interacting with unconditional defec-

tors (AllD). To do so, we compute the gradient of selection [5] —

G(k) — which provide information on the most likely direction of

change of the population configuration with time. This is given by

the difference between the probabilities of increasing and

decreasing the number of AoN players in a population of k AoNs

and Z-k AllDs. The result is depicted in the right panel of

Figure 3, a profile characteristic of a coordination game, in which

case the AoN strategy dominates whenever the population

accumulates a critical fraction of AoN players. Moreover, the size

of coordination barrier decreases with increasing values of the

enhancement factor F. In the SI we further show that the location

of the coordination point is rather insensitive to other game

parameters, in particular when the number of rounds is large.

Notably, the evolutionary chances of the AoN strategy remain

qualitatively independent from alterations on the first bit (b21).

Similarly, we have checked the robustness of the AoN strategy

when interacting with random strategists (RS), i.e., individuals that

cooperate or defect with equal probability. It can be shown that

both AoN and AllD are advantageous with respect to RS
strategists (regardless of their prevalence in the population), while

these should drive AllC to extinction. Finally, contrary to the

generalized versions of TFT strategies, in the presence of

errors, the AoN strategy is robust to invasion of unconditional

Figure 1. Stationary bit distribution as a function of N. Each bit (square) corresponds to the weighted sum of the fraction of time (i.e. the
analytically computed stationary distribution) the population spends in strategy configurations in which bq = 1. Blue (red) cells identify those bits that
are employed at least L of the time with value bq = 1.0 (bq = 0.0). The analysis provided extends for groups sizes (N) between 2 and 10 (rows). Other
model parameters: Z = 100, b = 1.0, F/N = 0.85, w = 0.96, e = 0.05, m%1/Z.
doi:10.1371/journal.pcbi.1003945.g001
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cooperators (AllC) by random drift, as the former can efficiently

exploit the latter.

To sum up, we have shown that the strategy AoN emerges as

the most viable strategy that leads to the emergence of cooperation

under repeated PGGs. This strategy, despite its remarkable

simplicity, cannot be encoded within the subspace of generalized

reciprocators studied before in this context [22]. When we

consider individuals capable of making behavioral errors, AoN is

dominant as suggested by analyzing both the stationary bit strategy
(Figures 1 and 2) and the stationary distribution in the monomor-

phic configuration space (SI). More importantly, our results

suggest that AoN dominates independently of the group size and

over a wide range of error rates.

Previous works have identified similar strategy principles

in different contexts. For instance, the Win-Stay-Lose-Shift

[39–41,49] strategy discovered in the context of the repeated 2-

person Prisoner’s Dilemma constitutes the N = 2 limit of AoN. In

the context of repeated N-Person games on the multiverse [34],

the strategy entitled generic Pavlov [50] encapsulates a behavioral

principle which is similar to that underlying AoN. In fact, one may

argue that the principles underlying AoN may very well be

ubiquitous: The simplicity of this strategy can be seen as

equivalent — in the context of problems of collective action

[5,6,14] involving Public Goods Games — to the simplicity of tit-
for-tat or Win-Stay-Lose-Shift strategies discovered in the context

of 2-person direct reciprocity, or the stern-judging social norm of

indirect reciprocity [51]. In these cases, we observe a fine balance

between strict replies towards defective actions and prompt

forgiving moves, allowing the emergence of unambiguous decision

rules (or norms) that may efficiently recover from past mistakes.

Figure 2. Stationary bit distribution as a function of the error rate. We plot (log-linear scale) the fraction of time the population spends in a
strategy with bq = 1 for a broad range of error probabilities e. Circles on the left indicate the values obtained for e = 0.0, gray areas show the range of
values for which bits were defined to have a dominant behavior. Note that for e = 0.5 all strategies behave randomly. The bar plot on the right shows
the results for e = 0.06 (vertical dashed line). Other model parameters: Z = 100, b = 1.0, N = 5, F/N = 0.85, w = 0.96 and m%1/Z.
doi:10.1371/journal.pcbi.1003945.g002

Figure 3. Left: Level of cooperation as a function of average number of rounds. m for three different values of the enhancement value F (4,
3 and 2) with N = 5 and in the absence of behavioral errors. Right: Gradients of Selection [5] for the evolutionary game between ALLD and AoN
(b21 = 0, N = 5, w = 0.96 or m = 25; other model parameters: Z = 100 and b = 1.0).
doi:10.1371/journal.pcbi.1003945.g003
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Thus, despite the inherent complexity of N-person interactions

and the individual capacity to develop complex strategies, it is

remarkable how evolution still selects simple key principles that

lead to widespread cooperative behaviors.

Supporting Information

Text S1 Supporting text. (containing 4 additional figures)

provides additional details concerning the methodology adopted

and investigates the impact of i) mutation rates and ii) the

evolution in the absence of execution error rates in the

evolutionary dynamics of the N-Person repeated Prisoner’s
Dilemma.
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37. Szabó G, Tőke C (1998) Evolutionary prisoner’s dilemma game on a square

lattice. Phys Rev E 58 (1): 69.

38. Sandholm WH (2010) Population games and evolutionary dynamics. Cam-

bridge, MA, USA: MIT press.

39. Nowak M, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms

tit-for-tat in the Prisoner’s Dilemma game. Nature 364 (6432): 56–58.

40. Posch M (1997) Win Stay – Lose Shift: An Elementary Learning Rule for

Normal Form Games. Working Paper No. 97-06-056e, Santa Fe Institute.

41. Imhof LA, Fudenberg D, Nowak MA (2007) Tit-for-tat or win-stay, lose-shift?

J Theor Biol 247 (3): 574–580.

42. Fundenberg D, Maskin E (1990) Evolution and cooperation in noisy repeated

games. Am Econ Rev 80 (2): 274–279.

43. Gale J, Binmore KG, Samuelson L (1995) Learning to be imperfect: The

ultimatum game. Game Econ Behav 8 (1): 56–90.

44. Boyd R (1989) Mistakes allow evolutionary stability in the repeated prisoner’s

dilemma game. J Theor Biol 136 (1): 47–56.

45. Nowak MA, Sigmund K, El-Sedy E (1995) Automata, repeated games and noise.

J Math Biol 33 (7): 703–722.

46. Fudenberg D, Imhof L (2005) Imitation Processes with Small Mutations. J Econ

Theory 131: 251–262.

47. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation

and evolutionary stability in finite populations. Nature 428 (6983): 646–650.

48. Pinheiro FL, Santos FC, Pacheco JM (2012) How selection pressure changes the

nature of social dilemmas in structured populations. New J Phys 14 (7): 073035.

49. Kraines D, Kraines V (1995) Evolution of learning among Pavlov strategies in a

competitive environment with noise. J Conflict Resolut 39 (3): 439–466.

50. Hauert C, Schuster HG (1997) Effects of increasing the number of players and

memory size in the iterated Prisoner’s Dilemma: a numerical approach.

Proc R Soc B 264 (1381): 513–519.

51. Pacheco JM, Santos FC, Chalub FAC (2006) Stern-judging: A simple, successful

norm which promotes cooperation under indirect reciprocity. PLoS Comput

Biol 2 (12): e178.

Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas

PLOS Computational Biology | www.ploscompbiol.org 5 November 2014 | Volume 10 | Issue 11 | e1003945

http://www.ipcc.ch/
http://www.ecfr.eu/content/entry/commentary_two_challenges_for_europes_politician
http://www.ecfr.eu/content/entry/commentary_two_challenges_for_europes_politician
http://blogs.ft.com/the-a-list/2011/07/20/eurozones-problems-are-political-not-economic/-
http://blogs.ft.com/the-a-list/2011/07/20/eurozones-problems-are-political-not-economic/-
http://www.social-europe.eu/2013/04/a-european-solution-to-the-eurozones-problem/
http://www.social-europe.eu/2013/04/a-european-solution-to-the-eurozones-problem/

