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Abstract

Assessing brain activity during complex voluntary motor behaviors that require the recruitment of multiple neural sites is a
field of active research. Our current knowledge is primarily based on human brain imaging studies that have clear
limitations in terms of temporal and spatial resolution. We developed a physiologically informed non-linear multi-
compartment stochastic neural model to simulate functional brain activity coupled with neurotransmitter release during
complex voluntary behavior, such as speech production. Due to its state-dependent modulation of neural firing,
dopaminergic neurotransmission plays a key role in the organization of functional brain circuits controlling speech and
language and thus has been incorporated in our neural population model. A rigorous mathematical proof establishing
existence and uniqueness of solutions to the proposed model as well as a computationally efficient strategy to numerically
approximate these solutions are presented. Simulated brain activity during the resting state and sentence production was
analyzed using functional network connectivity, and graph theoretical techniques were employed to highlight differences
between the two conditions. We demonstrate that our model successfully reproduces characteristic changes seen in
empirical data between the resting state and speech production, and dopaminergic neurotransmission evokes pronounced
changes in modeled functional connectivity by acting on the underlying biological stochastic neural model. Specifically,
model and data networks in both speech and rest conditions share task-specific network features: both the simulated and
empirical functional connectivity networks show an increase in nodal influence and segregation in speech over the resting
state. These commonalities confirm that dopamine is a key neuromodulator of the functional connectome of speech
control. Based on reproducible characteristic aspects of empirical data, we suggest a number of extensions of the proposed
methodology building upon the current model.
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Introduction

Computational neuroscience takes a grounds-up approach to

understand complex neural phenomena by investigating the

underlying activity of neurons themselves. Starting from the basic

neural model of Hodgkin and Huxley [1], which described the

electric activity of a neuron in terms of the cell’s constituent ionic

currents, computational neuroscientists began to study temporal

input-output relations of neural units. One of the most famous

models created during this era was the ‘‘point unit’’ by McCulloch

and Pitts [2]. Among the first modelers who incorporated not only

temporal but also spatial aspects of neural processing was Rall,

who used compartment models to show the strong impact of

dendritic arborization on neural processing of synaptic inputs [3].

His work laid the ground for the first neural network modeling

based on rather complex single neuron models. Next, the so-called

Wilson-Cowan units [4] allowed for simulation of rather

realistically macroscopic responses of entire brain regions on the

scales corresponding to measurements obtained by non-invasive in
vivo human imaging techniques. Indeed, neural simulations did fit

well with data from various human imaging modalities, such as

magnetoencephalography (MEG) [5], positron emission tomography

(PET) [6], and functional magnetic resonance imaging (fMRI) [7,8].

Many neural states have been modeled, resulting in a rich literature on

resting-state brain activity as well as behavior-specific activities, such as

visual [6], memory [9], sensorimotor [10] and auditory [11]

processing. However, while it is generally accepted that differences

may be seen between the resting state and task conditions as well as

between healthy and patient data and models, the fundamental

question in modeling and data analysis methodology, the significance

of differences between modeled conditions, remains unclear [12].

Given that functional activity may be affected by neurotrans-

mitters (see [13] for a review), recent modeling efforts have been

undertaken to integrate neuromodulators, such as dopamine, into

task simulations. Dopaminergic neurotransmission has been

implicated in cognition, learning, motor control, and, more
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generally, sensorimotor integration [14,15,16]. Chadderdon and

Sporns proposed a large-scale computational model of prefrontal

cortex to show the effects of dopamine release on the onset and

performance of working memory tasks, which could be confirmed

by behavioral, single-cell and neuroimaging data [17]. Determin-

ing how dopamine may regulate the functional connectivity

observed during a behavioral task is a critical next step in

addressing the ambiguity of task-specific functional connectivity.

To that end, we present a biologically-informed, large-scale

model, which is based on neurobiological considerations, to

simulate neuronal function and connectivity modulated by

dopamine release in the human brain. The present paper applies

this model to investigate speech production, one of the most

complex human behaviors, which can be studied in a neuroim-

aging setting. Speech production is known to integrate several

neural networks, ranging from auditory processing to motor

control of articulatory movements [18,19]. Our recent study has

demonstrated that dopaminergic modulation may play a role in

left-hemispheric lateralization of functional brain activity and

connectivity during speech production in the absence of lateralized

structural networks [20]. Here, we propose an extension of a non-

linear model presented by Breakspear et al. [21] to allow for the

simulation of brain activity due to dopaminergic modulation. We

introduce the original model, which is a system of stochastic

differential equations (SDEs), and rewrite it in terms of a multi-

dimensional time-continuous stochastic process. Coupling between

the brain regions with respect to regional neural firing rates is

incorporated within the framework of Ito processes [[22], Chap.

7]. A dopamine release model is developed and integrated into the

model linking the basal ganglia and the laryngeal motor cortex

based on previous studies [23]. We further present a mathematical

proof establishing the existence and uniqueness of solutions to the

extended model. Exploiting specific structural properties of the

model, a computationally efficient scheme for numerical approx-

imation of solutions is also presented. We show simulations of

resting-state and dopamine-modulated BOLD signals and analyze

the associated functional connectivity networks as related to

corresponding real fMRI data obtained from healthy volunteers

during the resting state and speech production. Finally, we discuss

merits and limitations of the proposed model.

Materials and Methods

Ethics Statement
All participants provided written informed consent before

participation in the study, which was approved by the Institutional

Review Boards of the Icahn School of Medicine at Mount Sinai

and National Institute of Neurological Disorders and Stroke,

National Institutes of Health.

Modeling Objective
Our goal was to simulate a large-scale neural population using N

coupled small scale local models, each replicating neural activation

in a specific brain region i (i~1, . . . ,N ), while incorporating

neuromodulator release in a region-specific manner. Every regional

subsystem consisted of interconnected excitatory and inhibitory

neurons, which were assumed to be representatives of the local

neural ensemble within a region. Thus, all quantities were

understood as mean values across the considered region. The

dynamics of regional state variables were governed by voltage-gated

ion channels, functional synaptic couplings and neurotransmitter

release. Thus, the temporal evolution of the entire population was

determined solely by the interaction of its regional subsystems. In

contrast to other approaches, the model discussed here was not

based on coupled oscillator systems like the widely-used Kuramoto

model (compare, e.g., [24] or [25]), but was based on neurobio-

logical considerations. Below, we first detail the theoretical aspects

of the model, including the Wilson-Cowan and dopamine

dynamics, then describe the integration of the model with data.

The Breakspear Neural Model
Following Breakspear et al. [21], we denote the average

membrane potential of neurons in region i by Vi, which we

assume to be governed by voltage-gated potassium (K), sodium

(Na) and calcium (Ca) ion channels together with the passive

conductance of leaky (L) ions. Thus, for j[ K,Na,Ca,Lf g let mi
j

denote the fraction of open j-ion channels and let j be the ion

population’s maximum conductance for mi
j~1 (i.e., when all j-ion

channels are open). The basic model describing current flows

across neural membranes in region i is a balance equation of the

form (assuming unit neural capacitance)

d

dt
Vi~{

X
j[ K,Na,Ca,Lf g

jWj(m
i
j) Vi{Vj

� �
, i~1, . . . ,N, ð1Þ

where Vj denote the respective Nernst potentials and Wj[C(R,R)

are neural activation functions. To adequately reflect relaxation

times of potassium channels, WK is characterized by an

exponential decay

WK(mi
K)~(W 0

K{mi
KQ)e{t=tzmi

KQ, ð2Þ

with W 0
K being the value of WK at the initial time t~0, Q denoting

a temperature scaling factor and t being the relaxation time. For

brevity, we introduce the shorthand notation W i
K:WK(mi

K). The

other neural activation functions are defined as WCa~
WNa~id(R) and WL:1.

Author Summary

Our knowledge of brain activity and network organization
during complex motor behaviors in humans relies mainly
on neuroimaging studies. However, the majority of
available brain imaging methods are not feasible for
quantifying the neural processes that occur on very short
time-scales at the microscopic level. To address this
shortcoming of functional MRI, we designed a mathemat-
ical model, which simulates brain activity using local
ensembles of neurons and physiologically meaningful
variables, such as cellular membrane potentials and ion
channel relaxation times. We further incorporated dopa-
minergic function into our model as a neuromodulator of
the dynamic organization of brain networks. We applied
our model to examine brain networks controlling human
speech and language production. We present a rigorous
mathematical proof, which establishes the theoretical
validity and solvability of the presented model, and we
discuss the influence of dopaminergic transmission on
simulated brain activity. We show that our model
successfully reproduces characteristic changes seen in
empirical data between the resting state and speech
production. Our results indicate that the proposed
mathematical model may be used as a platform for future
studies to investigate the specific impact of certain
pathologies within the dopaminergic pathways and their
effect on global network dynamics.

A Neural Population Model for Dopaminergic Neurotransmission
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Assuming that the ion channel specific opening-thresholds are

normally distributed with mean Tj and variance dj across the

considered neural population, the fraction of open channels in

region i may be computed as

mi
j~

1

2
1ztanh

Vi{Tj

dj

� �� �
, j[ K,Na,Caf g,i~1, . . . ,N:ð3Þ

Note that the basic model (1) consists exclusively of uncoupled

equations, i.e., the membrane potential of neurons in region i is

entirely independent of neural firing in neighboring regions.

Coupling is introduced by considering firing rates of excitatory

and inhibitory neurons across the whole population. Thus let Zi be

the mean membrane potential of inhibitory interneurons in region i,

and define average excitatory and inhibitory firing rates as follows

Qi
V ~

Qmax
V

2
1z tanh

Vi{VT

dV

� �� �
,

Qi
Z~

Qmax
Z

2
1z tanh

Zi{ZT

dZ

� �� �
,

i~1, . . . ,N, ð4Þ

where VT and ZT denote the mean values and dV and dZ are the

variances of membrane threshold potentials of excitatory and

inhibitory neurons, respectively (assuming a normal distribution of

thresholds across the neural population). Regional membrane

potentials are altered by excitatory and inhibitory cell firing via

synaptic feedback loops. Thus, functional synaptic factors aee, aie

and aei are introduced to scale excitatory-to-excitatory, inhibitory-

to-excitatory and excitatory-to-inhibitory couplings, respectively.

Furthermore, to reflect firing rate dependent glutamate neurotrans-

mitter release (opening additional calcium ion channels) a

supplemental scaling parameter rNMDA (the ratio of NMDA to

AMPA receptors) is used. Non-specific input to excitatory and

inhibitory neurons is modeled using random noise, which gives rise

to a system of coupled stochastic differential equations (SDEs). Thus

let g~ gtDt§0f g denote a scalar Wiener process [[26], Sec. 1.6] and

let V~ V t[RN Dt§0
� �

and Z~ Z t[RN Dt§0
� �

be N-dimensional

Ito processes. To avoid notational overhead we understand the

auxiliary quantities (3) and (4) to be obviously adapted to V t (replace

Vi by the components Vi
t of V t in the respective definitions). In the

following we establish a vectorial representation of the basic model

equations given in [21]. Thus, for a vector u[RN let D(u)[RN|N

denote a diagonal matrix with the components of u on its main

diagonal. Further, we introduce the N-dimensional vectors

QV ~ Qi
V

� �N

i~1
, QZ~ Qi

Z

� �N

i~1
, mCa~ mi

Ca

� �N

i~1
, mNa~

mi
Na

� �N

i~1
and WK~ W i

K

� �N

i~1
. With C[½0,1� denoting a (global)

coupling parameter and �QQV ~
1

N

XN

i~1
Qi

V , we define a function

Aorig : ½0,T �|RN|RN?R2N (Tw0) with components Ai
orig[RN

given by

A1
orig t,V t,Ztð Þ~ {D Caz(1{C)rNMDAaeeQVzCrNMDAaee

�QQV

� �
D V t{VCað ÞmCa

{ KD V t{VKð ÞWK

{ L V t{VLð Þ

{D NamNaz(1{C)aeeQV zCaee
�QQV

� �
V t{VNað Þ

zaieD Ztð ÞQZ,

ð5Þ

and

A2
orig t,V t,Z tð Þ~baeiD V tð ÞQV , ð6Þ

such that Aorig~(A1
orig,A2

orig)
T

. Similarly with Bi[RN we introduce

a vector Borig~(B1,B2)
T

defined by

B1~aned1, B2~banid1, ð7Þ

where ani and ane denote synaptic factors corresponding to non-

specific excitatory/inhibitory input, d is a noise scaling parameter

and 1[RN is a vector of ones. Setting Xorig
t ~(V t,Z t)

T
we thus

obtain the SDE

dXorig
t ~Aorig(t,Xorig

t )dtzBorigdgt, ð8Þ

which is the Ito version of the original multi-compartment neural

dynamics model presented by Breakspear et al. [21].

Model Extension 1: Inter-Regional Connectivity
The original model (8) uses a scalar parameter C to

parameterize excitatory coupling between regions. This means,

in the framework considered here, that inter-regional connectivity

strengths constant throughout the entire brain. To relax this

restrictive assumption, we assign each pair of regions i,jf g
coupling parameters ci,j and cj,i representing the connectivity

strengths i?j and j?i, respectively. We collect the inter-regional

coupling parameters in a N|N matrix C~ ci,j

� �N

i,j~1
and

incorporate it in the model (8) as follows. Instead of calculating

excitatory-to-excitatory neural feedback by relying on a mean

firing rate �QQV , we scale neural firing using weight information

from the coupling matrix C . Thus, we assume that firing of brain

areas connected to region k impact the membrane potential in

region k according to
PN

i~1 ck,iQ
i
V . Hence, (5) is modified to be

A1 t,V t,Z tð Þ~ {D CazrNMDAaeeCQVð ÞD V t{VCað ÞmCa

{ KD V t{VKð ÞWK

{ L V t{VLð Þ
{D NamNazaeeCQVð Þ V t{VNað Þ
zaieD Z tð ÞQZ:

ð9Þ

We set ci,i~1 to reflect local excitatory input within a region. Note

that we do not impose any restrictions on the directionality of regional

couplings. Depending on the application considered, the above

formulation allows the use of directed connections (i.e., a non-sym-

metric coupling matrix C ) or undirected connections (C symmetric).

Model Extension 2: A Dopamine Release Model
A second extension to the original model was incorporated to

simulate the effects of speech-induced dopamine release, as shown

previously in real data [20]. We were especially interested in the

effect of dopaminergic neurotransmission on the primary motor

cortex [27] and its direct influence on the activity of the laryngeal

motor cortex (LMC), which is a final common cortical pathway of

speech control [28,29]. Keeping in mind the biologically-inspired

channel model adopted in the present paper, elevated dopamine

levels in the striatum (without a differential effect on either D1 or

D2 type of dopamine receptors) were assumed to increase the

A Neural Population Model for Dopaminergic Neurotransmission
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probability that potassium, sodium and calcium channels of LMC

neurons open, thus making these neurons more likely to fire.

Hence, we simulated both D1- and D2-type modulatory effects on

these channels [30].

We modeled the direct dopaminergic pathway from the

substantia nigra, pars compacta (SNc) to the LMC [28]. Thus, we

assumed that dopamine release was solely driven by neural activity

in the SNc. Hence, let DA~ DAt[R2Dt§0
� �

be a two-dimensional

Ito process with components DA‘
t and DAr

t denoting the dopamine

concentration in the left (‘) and right (r) LMC respectively. We

assume DA is governed by two simple mass balance equations

dDAh
t ~DAsource,h

t dt{DAsink,hdt, h[f‘,rg: ð10Þ

To reflect the positive feedback of neural firing in the SNc on

dopamine release we define

DAsource,h
t ~rQSN,h

V , ð11Þ

where QSN,h
V denotes the neural firing rate in the left/right substantia

nigra as defined in (4), and r : ½0,T �? rmin,rmaxf g is a (time-

defpendent) production rate. We assume that r attains a maximum

value rmax during speech production and is equal to a (positive) mini-

mum value rmin otherwise. The precise value of the uptake rate is

taken to be a reasonable value from previous studies of extracellular do-

pamine levels [31]. Following [32], dopamine re-uptake was presumed

to be governed by a Michaelis-Menten type kinetics equation

DAsink,h~
dmaxDDAh

t D
DDAh

t Dzkmax
, ð12Þ

where dmax denotes the maximal uptake rate and kmax is the Michaelis-

Menten constant. Thus, a closed form representation of the considered

dopamine model is

dDAh
t ~rQSN,h

V dt{
dmaxDDAh

t D
DDAh

t Dzk max

dt, h[f‘,rg: ð13Þ

As mentioned above, dopamine was assumed to affect the firing

of the LMC by altering neural ion channel permeability. Thus, the

effect of dopamine on potassium channels can be seen as a

dependence of the gain in mLMC,h
K on dopamine concentration.

Hence we modify the equation governing the fraction of open

potassium channels in the LMC as follows

mLMC,h
K ~

1

2
1z tanh bh

t

VLMC,h
t {TK

dK

 ! !
, h[f‘,rg, ð14Þ

where bh
t denotes a dopamine dependent gain. In the absence of

dopamine we want a gain of unity, i.e., bh
t ~1. Conversely, we also

like to impose an upper bound on the gain. To achieve this,

consider the expression

bh
t ~DAh

t a(bhi{blo)zblo, ð15Þ

where a[½0,1� is an antagonism parameter controlling the overall

impact of dopamine on the gain bh
t . Obviously, if DAh

t ~0 then

bh
t ~blo, thus, by setting blo~1, a unity gain for a dopamine

concentration of zero is established. Since 0ƒaƒ1 and assuming

physiologically meaningful dopamine concentrations, i.e.,

DAh
t ƒ1, bhi sets an upper bound for the gain.

Finally, we modeled the impact of dopamine on calcium and

sodium channels in the LMC using the gain bh
t . We expressed the

dopamine dependence of the permeability of those channels via

varying the LMC’s excitatory-to-excitatory functional synaptic

coupling by introducing

aLMC,h
ee ~aee

bh
t {blo

bhi{blo

z1

 !
, h[f‘,rg: ð16Þ

In the absence of dopamine we have bh
t ~blo and thus

aLMC,h
ee ~aee. Rising dopamine levels increase bh

t and, in turn,

aLMC,h
ee until bh

t reaches its previously established upper bound bhi,

which gives aLMC,h
ee ~2aee. Thus, we have the estimate

aeeƒaLMC,h
ee ƒ2aee: ð17Þ

To establish a closed form representation of the full model, let

A : ½0,T �|RN|RN|R2?R2Nz2 be defined by A~(A1,A2,

A3)
T

, where A1(t,V t,Z t,DAt) is given by the right hand side of

(9) with LMC components ALMC,h(t,V t,Z t,DAt) defined by

ALMC,h~ { CazrNMDA aLMC,h
ee

PN
j~1

cLMC,h j Q
j
V

 !
V LMC,h

t {VCa

� 	
mLMC,h

Ca

{ KWK mLMC,h
K

� 	
V LMC,h

t {VK

� 	
{ L V LMC,h

t {VL

� 	

{ Na mLMC,h
Na z aLMC,h

ee

PN
j~1

cLMC,h j Q
j
V

 !
(VLMC,h

t {VNa)

zaieZLMC,h
t QLMC,h

Z ,

ð18Þ

for h[f‘,rg. Let further A2(t,V t,Z t,DAt) be given by the right

hand side of (6) and define

A3(t,V t,Z t,DAt)~ rQSN,h
V {

dmaxDDAh
t D

DDAh
t Dzkmax

� �
h[f‘,rg

[R2: ð19Þ

Similarly, let B[R2Nz2 be given by B~(B1,B2,B3)
T

with B1

and B2 as defined in (7) and B3~(0,0)
T

. Then with

X t~(V t,Z t,DAt)
T

the full neural dynamics model can be written

as

dX t~ A(t,X t)dtzBdgt,

X0~ XIC,
0vtƒT ,



ð20Þ

where A is called drift (or deterministic force) and B is the diffusion

(or random force) of the model. In the following section we discuss

an efficient strategy to numerically approximate solutions to the

model (20). A rigorous mathematical proof establishing existence

and uniqueness of those solutions is presented later.

A Neural Population Model for Dopaminergic Neurotransmission
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Numerical Approximation
We used time discrete approximation techniques to simulate

sample paths of the SDE system (20). Extensive numerical

experiments revealed pronounced non-linear dynamics of the

model, which motivated the use of a higher order solution scheme.

We encountered numerical instability of the widely used strong

order 1.0 Milstein scheme [33]. Using a strong order 1.5 explicit

Runge-Kutta (RK15) method, however, proved to be reliable. An

explicit strong order 2.0 scheme yielded no notable improvements

over the RK15 method but required a considerably higher

computational effort. Thus, a RK15 scheme was specifically

adapted to the model (20).

To establish a time discrete approximation of the solution to

(20), we started by defining a discretization of the interval ½0,T �.
For K[N, let Dt~T=K be a step-size and define discrete time

points tn~nDt for n~1, . . . ,K . We introduce the Markov chain

Y~ Yn[R2Nz2Dn~0, . . . ,K
� �

to approximate the stochastic

process X that satisfies (20). Thus we set Y0~XIC and

Dgn~gtnz1
{gtn

. Note that (20) is a 2Nz2-dimensional non-

autonomous SDE with constant additive scalar noise. This latter

property is exploited to construct a highly efficient recursive

solution scheme that has a considerably reduced computational

cost compared to a general purpose SDE solver.

The following considerations are based on the family of solution

schemes presented in [[26], Sec. 11.2]. The vector form of an

explicit order 1.5 strong scheme for a non-autonomous SDE with

constant additive scalar noise is given by

Ynz1~ YnzA(tn,Yn)DtzBDgn

z
1

4
A(tnz1,Cz){2A(tn,Yn)zA(tnz1,C{)ð ÞDt

z
1

2
ffiffiffiffiffi
Dt
p A(tnz1,Cz){A(tnz1,C{)ð ÞDqn,

n~0, . . . ,K{1,ð21Þ

where

C+~YnzA(tn,Yn)Dt+B
ffiffiffiffiffi
Dt
p

, ð22Þ

and Dqn is a random variable representing the following double

stochastic integral

Dqn~

ðtnz1

tn

ðs

tn

dgtds: ð23Þ

Rearranging terms, (21) can be simplified to

Ynz1~ YnzA(tn,Yn)
Dt

2
zBDgn

zA(tnz1,Cz)
Dt

4
z

Dqn

2
ffiffiffiffiffi
Dt
p

� �
zA(tnz1,C{)

Dt

4
{

Dqn

2
ffiffiffiffiffi
Dt
p

� �
:

ð24Þ

Note that Dgn*N (0,Dt) and Dqn is also normally distributed

satisfying

E(Dqn)~0, E (Dqn)2
� �

~
(Dt)3

3
, E(Dgn,Dqn)~

(Dt)2

2
,ð25Þ

as shown in [[26], Chap. 10]. These properties play a key role in

practice since they allow us to generate the pair of correlated

random variables Dgn and Dqn in an efficient and straight forward

manner: let rn and sn be independent N (0,1) distributed random

variables, then

Dgn~rn

ffiffiffiffiffi
Dt
p

, Dqn~
1

2
rnz

snffiffiffi
3
p

� � ffiffiffiffiffiffiffiffiffiffi
(Dt)3

q
: ð26Þ

Thus, an approximate solution of (20) was recursively computed

following scheme (24) with auxiliary quantities (22) and (26).

Note that (24) requires three evaluations of the drift term A per

step. In contrast, the Milstein method adapted to model (20)

reduces to

Ynz1~YnzA(tn,Yn)DtzBDgn, ð27Þ

and thus requires only one function evaluation per step. However,

unlike RK15, (27) reduces to an explicit Euler scheme in the

absence of noise (zero diffusion). Thus numerical instability of the

Milstein scheme for a model like (20) exhibiting pronounced non-

linear characteristics in the drift term was predictable. Note that it

is possible to enforce convergence of (27) by substantially reducing

the step-size Dt. However, this in turn dramatically increases the

total number of time-steps making the overall computational

performance of the Milstein method significantly worse than that

of RK15 (24). Hence RK15 was the solver of choice for all

simulations presented below.

In order to produce measureable changes in extracellular

dopamine levels, which reflect rapid phasic dopamine release

during a behavioral task or a pharmacological challenge, the

dopaminergic axons must be stimulated at frequencies of 10-

20 Hz or greater [34]. Because phasic dopamine release may

reach high concentrations for brief periods due to concerted burst

firing of dopamine neurons [34,35,36], we tested our model at a

neural firing rate.20 Hz with different time-step sizes. We found

that a small step-size of 0.1ms had the highest numerical

robustness and showed the optimal temporal resolution of neural

firing in order for dopamine release/re-uptake to set in gradually,

without jumps.

The simulations shown below have been run on a Mid 2010

Mac Pro (262.66 GHz 6-Core Intel Xeon, 24GB DDR3 ECC

RAM) under OS X 10.9.1. All codes have been written in Python

[37] making extensive use of the packages NumPy, SciPy [38] and

Matplotlib [39]. Computationally expensive sections of the code

have been converted to C extensions using Cython [40].

Integration of Model and Data
Data acquisition. The raw model output was converted to a

blood oxygen level-dependent (BOLD) signal and compared to

functional brain activity data in healthy volunteers. We used fMRI

data of 20 right-handed monolingual English speaking subjects

with no history of neurological, psychiatric, voice, or respiratory

problems (13 females, 7 males, age 53:2+10:1 years [mean+SD])

as reported earlier [20]. Right-handed volunteers were recruited in

order to control for brain activity lateralization differences

between right- and left-handed people. All scanning sessions were

performed on a 3.0 Tesla GE scanner equipped with a quadrature

birdcage radio frequency head coil (Milwaukee, WI). Data were

acquired under two conditions: 1) a resting state, during which the

subjects fixated on a cross, and 2) a task production, during which

subjects were asked to produce meaningful, grammatically-correct,

short sentences. Whole-brain resting-state (rs-fMRI) images were

acquired using gradient-weighted echo planar imaging (EPI) (150

contiguous volumes with TR 2 s, TE 30 ms, FA 90 degrees, 33

sagittal slices, slice thickness 4 mm, matrix 64664 mm, FOV

240 mm, in-plane resolution 3.75 mm, duration 5 min). To assure

(21)
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the resting condition, these images were acquired before the task-

production fMRI within the same scanning session. Physiolog-

ical recordings were carried out using a respiratory belt to

measure respiration volume and a pulse oximeter to monitor

heart rhythm and were sampled at 50 Hz with the recording

onset triggered by the scanner’s selection trigger pulse. For

speech-production fMRI, whole brain images were acquired

using gradient-weighted EPI pulse sequences (TE 30ms, TR

10.6 s (8.6 s task production, 2 s image acquisition), FA 90

degrees, FOV 2406240 mm, matrix 64664 mm, in-plane

resolution 3.75 mm, 33 sagittal slices, slice thickness 4.0 mm)

with BOLD contrast and a sparse-sampling event-related

design. The subjects were instructed to produce short

meaningful grammatically correct English sentences (e.g.,

‘‘We are always away’’, ‘‘Tom is in the army’’) after listening

to an auditory sample. The auditory stimuli were delivered

within a 3.6 s-period and the subjects reproduced the sentences

within 5 s, followed by a 2-s image acquisition. A total of 36 trials

per task (i.e., sentences, resting fixation) were acquired over the

five scanning sessions with the tasks pseudorandomized between

sessions and participants. All fMRI data was pre-processed using

AFNI software package [41]. For rs-fMRI, the anatomy-based

correlation corrections (ANATICOR) model [42] was applied to

remove hardware-related noise; respiratory and cardiac signals

synchronized with the EPI data were used to remove physiolog-

ical noise based on the retrospective image correction (RETRO-

ICOR) model [43]. The resting-state residual time series were

spatially smoothed by a 6-mm Gaussian kernel within the gray

matter and normalized to the standard Talairach-Tournoux

space. Task-production fMRI. For speech-production fMRI, the

first two volumes were discarded, the EPI datasets were registered

to the volume collected closest in time to the high-resolution

anatomical scan using heptic polynomial interpolation, spatially

smoothed with a 6-mm Gaussian filter, normalized to the percent

signal change and the standard Talairach-Tournoux space. The

task-related responses were analyzed using multiple linear

regression with a single regressor for the task convolved with a

canonical hemodynamic response function. Based on empirical

studies [44,45], the whole brain was parcellated into 70 regions of

interest (ROIs), including 64 cortical and 6 subcortical areas

(Fig. 1A).

Coupling Matrix. The coupling matrix C was based on

anatomical connectivity estimated from fiber tractography

using diffusion weighted data from nine out of twenty healthy

subjects described above. A single-shot spin-echo EPI sequence

with TE 80 ms, TR 8.9 s, FOV 240 mm, matrix 120|118
mm, 68 contiguous axial slices, slice thickness 2 mm was used

to acquire whole-brain diffusion-weighted images. A total of 60

noncollinear directions with a b-factor of 1,000 s/mm2 were

used to measure diffusion. One reference image was acquired

with no diffusion gradients applied (b0 scan). Based on the

same 70 ROIs, the DTI data were processed using the

FATCAT Toolbox of AFNI software [46] following standard

steps to construct an averaged 70|70 structural connectivity

matrix. The matrix was normalized with respect to its largest

row-sum and used as coupling matrix C for all simulations

presented below.

Results

Below, we start by showing existence and uniqueness of

solutions to the model (20) (Theorem 1). Once this fundamental

result is established, we present simulations generated by the

model and analyze it with respect to empirical fMRI data.

Existence and Uniqueness of Solutions to the Neural
Dynamics Model

The following result guarantees unique solvability of the model

(20).

Theorem 1. For m [ R and sw0 let X IC*N (m,s). Then the
system (20) has a unique t-continuous solution X t.

Proof. If we show boundedness and Lipschitz continuity of A

and B on R2Nz2, then existence and uniqueness of a solution to

(20) follows from Theorem 5.2.1 in [22].

We start by proving that A and B are Lipschitz continuous.

Obviously B as a constant trivially satisfies a Lipschitz condition.

Since linear and trigonometric functions are differentiable (and

thus Lipschitz continuous), we only have to show that the

Michaelis-Menten kinetics equation (12) is Lipschitz continuous

with respect to dopamine. Thus, for x,y[R a straight-forward

calculation yields

dmax xj j
kmaxz xj j{

dmax yj j
kmaxz yj j

����
����~ dmax xj j(kmaxz yj j){dmax yj j(kmaxz xj j)

(kmaxz xj j)(kmaxz yj j)

����
����

~
dmaxkmax( xj j{ yj j)

(kmaxz xj j)(kmaxz yj j)

����
����

ƒ

dmax

kmax
x{yj j,

ð28Þ

where we used the reverse triangle inequality and the fact that

(kmaxzDxD){1
ƒ1=kmax for all x[R. Hence, DAsink,h is Lipschitz

continuous in DAh
t and thus all component functions of A are

Lipschitz which makes the entire mapping A Lipschitz continuous

on R2Nz2.

Next, we show that A and B satisfy

DA(t,J)DzDBDƒc(1zDJD), VJ[R2Nz2, ð29Þ

where c is a positive constant and D:D denotes some vector norm on

R2Nz2: Since all norms on a finite dimensional linear space are

equivalent, we prove (29) for the maximum norm D:D?. We start by

showing boundedness of all components of A1 given by the right

hand side of (9) with LMC equations (18). First, note that all firing

rates (4) are bounded by Qmax
V ~1 and Qmax

Z ~1 respectively.

Furthermore, the rates of open ion channels defined by (3) and (14)

respectively are bounded by 1. Thus, the neural activation

function for potassium channels (14) satisfies

W i
K

�� ��ƒ W 0
K

�� ��z mi
KQ

�� ��� �
e{0=Tz mi

KQ
�� ��ƒ W 0

K

�� ��z2 Qj j,

i~1, . . . ,N:
ð30Þ

Weights connected to region i may be estimated by

XN

j~1

cijQ
j
V

�����
�����ƒ

XN

j~1

cij

�����
�����ƒ max

1ƒiƒN

XN

j~1

cij

�� ��~ Cj j?, ð31Þ

where C i denotes the i-th row of the matrix C . Thus, let

j~(j1, . . . jN )
T

be a vector in RN and consider the i-th

component A1
i of A1 as given by the right hand side of (9) with

LMC components (18). To simplify notation we introduce a vector

aee~(a1
ee, . . . ,aN

ee)
T
[RN such that
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ai
ee~

aLMC,‘
ee if i~LMC,‘,

aLMC,r
ee if i~LMC,r,

aee otherwise,

8><
>: ð32Þ

with aLMC,h
ee given by (16) for h[ ‘,rf g. Hence, by (17), all

components ai
ee of aee satisfy ai

eeƒ2aee. Thus we obtain the

following estimate for the first term of A1
i

D CazrNMDA ai
ee

XN

j~1

cijQ
j
V

 !
(ji{VCa)mi

CaDƒ D( Caz2rNMDAaeeDC D?)D

: Dji DzDVCaD
� �

ƒ D( Caz2rNMDAaeeDC D?)D

:max DVCaD,1f g 1zDji D
� �

~:a1 1zDji D
� �

,

ð33Þ

where we used (31) and the fact that mi
Caƒ1. Note that all terms

subsumed in the constant a1w0 are independent of t and ji.

Similarly, we establish

Nami
Nazaee

XN

j~1

cijQ
j
V

 !
(ji{VNa)

�����
�����ƒ

Nazaee Cj j?
�� ��max VNaj j,1f g 1z ji

�� ��� �
~:a2 1z ji

�� ��� �
:

ð34Þ

Using (30) we further obtain

D K(ji{VK)W i
KDƒ D KD DW 0

KDz2DQD
� �

Dji DzDVKD
� �

ƒ D KD DW 0
KDz2DQD

� �
max DVK D,1f g 1zDji D

� �
~:a3 1zDji D

� �
:

ð35Þ

Finally, we establish

L(ji{VL)
�� ��ƒ Lj j ji

�� ��z VLj j
� �

ƒ

Lj jmax VLj j,1f g 1z ji
�� ��� �

~:a4 1z ji
�� ��� �

,
ð36Þ

and due to Qi
Zƒ1,

DaiefiQi
Z DƒDaieDDfi DvDaieD 1zDfi D

� �
, ð37Þ

for f~(f1, . . . ,fN )T. Thus combining (33) - (37) yields

DA1(t,j,f,l)D?ƒ

X4

j~1

aj 1zDjD?ð ÞzDaieD 1zDfD?ð Þ, ð38Þ

where l [ R2. Analogously to (37) we compute

Dbaeij
iQi

V DƒDaeiD 1zDji D
� �

, ð39Þ

and hence readily obtain

DA2(t,j,f,l)D?ƒDaeiD 1zDjD?ð Þ: ð40Þ

Finally, by (12) we have DDAsink,hDƒdmax, and thus we get the

following estimate for (13) for any x [ R

DrQSN,h
V {

dmaxDxD
DxDzkmax

Dƒ1zdmax, ð41Þ

where we used rmaxƒ1 and Qi
V ƒ1. Thus we obtain

DA3(t,j,f,l)D?ƒ1zdmax: ð42Þ

Combining estimates (38), (40) and (42) for J~(j,f,l)
T

hence

yields

A(t,J)j j?ƒ max
X4

j~1

ajz aiej j, aeij j,1zdmax

( )

1z Jj j?
� �

~ : ĉc 1z Jj j?
� �

:

ð43Þ

This together with the definition (7) of B eventually gives

DA(t,J)D?zDBD?ƒĉc 1zDJD?ð ÞzDBD?ƒ ĉczDBD?ð Þ 1zDJD?ð Þ, ð44Þ

which establishes (29) with c~ĉczDBD? and concludes the proof.

Having established existence and uniqueness of solutions to the

model (20), we now present simulations corresponding to the

resting state and dopamine modulation and compare them to

empirical fMRI data.

Simulated Temporal Brain Dynamics
Using the coupling matrix described above, brain activity was

simulated corresponding to the resting state and task-induced

dopamine release. A list of all used parameters is provided in

Table 1, which were taken from literature and scaled appropriately

to reflect units used in this work or manually estimated based on

previously published values [21,17,31]. Physiological variations

across simulated brain regions were modeled by normally

distributing inhibitory-to-excitatory and non-specific-to-excitatory

synaptic coupling strengths using a fixed random number generator

seed across simulations. This introduced the possibility of regionally

desynchronized temporal dynamics in the model allowing simulated

neural nodes to evolve non-identically over time in the absence of

inter-regional coupling. Note that all simulations below were run

with the same initial conditions and parameter values, i.e., starting

values and parameters were identical for the resting state and

dopamine-modulated speech-related simulations.

In both resting-state and task simulations, complex spatio-

temporal patterns of activity emerged. Fig. 1B illustrates the

temporal dynamics of the left LMC with and without dopamine

modulation. The left panel shows the time-course of the left

LMC’s excitatory membrane potential overlayed with the

corresponding time-evolution of DA‘
t . While VLMC,‘

t shows similar

behavior during rest and task simulations in the absence of

ð33Þ
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dopamine, the time-course is being visibly altered as soon as

DA‘
t release increases. Thus, increasing dopamine levels in the

task simulation changed LMC membrane potentials noticeably,

which in turn raised the firing rates of LMC neurons. This

increase in QLMC,h
V (h[f‘,rg) was distributed throughout the

entire network, subsequently changing local neural dynamics of

other brain areas. The right panel of Fig. 1B shows the time-

course of QLMC,‘
V for fifty simulated speech cycles. Note that the

propagation of firing rate changes acted as a neural feedback

loop on the SNc itself in that repeated dopamine release caused

different activity patterns than preceding cycles. In the task

simulation, the LMC exhibited on average slightly higher firing

rates than during rest (rest: 0:35+0:07, task: 0:36+0:06,

compare also Fig. 1B) in agreement with the initial modeling

assumption. To highlight that the proposed dopamine release

model indeed shaped the dynamics of the entire neural

population, the following section discusses changes in the

correlative structure of simulated brain activity under dopamine

modulation relative to the resting state.

A Simulated Functional Connectome
The raw model output was converted to BOLD signals as

detailed above. Fig. 2 shows simulated and real BOLD signals for

a selection of speech-related ROIs (Fig. 2A,B). Simulated BOLD

signals with and without dopamine modulation were compared to

empirical resting-state and speech production fMRI data, respec-

tively, in order to assess the global effects of dopamine modulation

on the entire simulated neural population. To do so, we employed

graph theory analysis to quantify variations in functional

connectivity between the resting state and speech production.

Thus, we first had to quantify statistical similarity between two

time-series. We chose the normalized mutual information (NMI)

[47] as statistical metric. Hence, for two random variables X and

Y , let H(X ) and H(Y ) denote their respective Shannon entropies

[48] and define

�II(X ,Y )~
I(X ,Y )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H(X )H(Y )
p , ð45Þ

where I(X ,Y ) denotes the raw mutual information between X

and Y . Hence, unlike the original formulation of the mutual

information I(X ,Y ), which is not bounded from above [[49],

Chap. 2], the NMI is normalized by the geometric mean of the

entropies H(X ) and H(Y ). Thus, �II(X ,Y ) takes values between

zero (two signals are independent) and one (two signals mutually

depend on each other), permitting unambiguous comparison of

values across data sets.

Pairwise interactions in the simulated BOLD signals with and

without dopamine modulation were quantified by computing NMI

coefficients for each pair of ROI time-series. Analogously, NMI

matrices were computed for the group-averaged resting-state and

speech production BOLD data. This gave rise to four 70|70 NMI-

matrices (model rest, model speech, data rest, data speech)

(Fig. 2C,D). Visual inspection of the matrices revealed larger

variability in the model’s correlative structure than in the

corresponding empirical data. This might be partly explained by

the fact that the empirical data were averaged across twenty subjects

in an attempt to minimize subject-specific effects. Averaging a

number of simulation runs would possibly decrease variability in the

model; however, the aim of this study was to establish a qualitative

assessment of the presented dopamine release model with respect to

global effects seen in empirical data. In that respect, the proposed

model, incorporating a single dopaminergic link between the SNc

and laryngeal motor cortex, modulated neural activity of the whole

brain to an extent that differences were observed between the

structure of model’s functional connectivity during dopamine

release and the resting state. In addition, the model’s prediction of

empirical functional connectivity during speech production was in

good alignment with the data.

In the following, we discuss simulated and empirical functional

connectivity using the framework of graph theory. Interpreting

Figure 1. (A) Schematic overview of the whole-brain parcellations and (B) temporal evolution of LMC membrane potentials and
firing rates. (A) The whole brain was parcellated into 70 regions of interest, including 64 cortical and 6 subcortical areas. (B) The left panel shows the
time-course of excitatory membrane potentials VLMC,‘

t with (red) and without (blue) dopamine modulation overlayed with the corresponding time-

evolution of DA‘
t (orange) during one dopamine release cycle. The right panel illustrates the evolution of QLMC,‘

V with (red) and without (blue)
dopamine modulation for fifty simulated cycles (each 10.6 s). Boxes indicate mean firing rate values averaged across a cycle, errorbars show
corresponding standard deviations.
doi:10.1371/journal.pcbi.1003924.g001
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functional connectivity matrices as graphs allowed us to not only

reveal the functional topology and connectivity architecture of

data and model but to also rigorously quantify the observed

differences using well-established network metrics (see Supporting

Information). By interpreting the 70 ROIs as nodes ui of a

network with the associated NMI-coefficients representing the

weights of the graph’s edges, we constructed four weighted

undirected graphs. Note that with the NMI being always non-

negative (contrary to the classical zero-lag Pearson correlation

coefficient) a graph-theoretical analysis of NMI networks is

straight-forward. Without the need to either extend classical

metrics to negatively weighted graphs or consider negative and

positive edges separately, most graph measures can be readily

applied to NMI networks.

Graph Theoretical Analysis
The four weighted, undirected networks were analyzed

following the concepts of functional integration, segregation, and

influence [50]. As a measure of integration, we considered the

local efficiency ei of a node ui, i~1, . . . ,N , quantifying a node’s

local communication performance in terms of inverse shortest path

lengths within its neighborhood [51]. The degree of functional

segregation was estimated using the weighted local clustering

coefficient ci, which was calculated as the average geometric mean

of edge weights in triangular motifs around ui [52]. Nodal

influence was approximated based on nodal strength si and nodal

degree ki . A node’s strength is the sum of attached edge weights,

while its degree is defined as the number of connected edges.

Clustering coefficient and efficiency were also compared to

corresponding values of 100 conservatively-configured, null-model

random networks. Normalized clustering coefficient �cci and

efficiency �eei were computed by dividing ci and ei by the respective

random network values. Statistical significance of differences in

network metrics between the resting state and task production was

determined using a paired two-sample permutation test at pv0:05
adjusted for family-wise errors (FWE) using the maximal statistic

Tmax [53]. All graph metrics were calculated based on the full

networks in their original density without applying any threshold-

ing strategy. Since density-reduction techniques may severely deter

network topology [54,55,56,57] and might thus dilute subtle

differences between simulated and empirical functional connec-

tivity patterns, the presented analysis is focused on the full un-

thresholded NMI networks as suggested by [58]. Graph metrics

were computed using a Python port (pypi.python.org/pypi/bctpy)

of the Brain Connectivity Toolbox for MATLAB [59].

Nodal influence. Figure 3 shows nodal strengths of the

networks. We found a significant increase in strength when

comparing resting state to task production in both data and model

(both pv1e{4). While the simulated networks showed a higher

average strength than the data in the resting state (model:

43:84+1:36; data: 38:88+0:52), the difference was less pro-

nounced during task production (model: 57:12+0:89, data:

55:58+0:83). Examining the distribution of nodal strengths in

the data, we observed a marked right-shift of the distribution

during speech as compared to the resting state, clearly reflecting

overall elevated strength in the speech production network. This

right-shift was seen in the simulated networks too, although to a

lesser extent. The data showed a narrower strength distribution

than the model in the resting state, reflecting higher variability of

NMI coefficients for the simulated BOLD signal without

dopamine modulation (compare also the corresponding NMI

matrices shown in Fig. 2C,D). Nodal degrees of the networks did

not reveal any particular structure. All networks (model and data)

were maximally connected, i.e., all nodes had maximum degree

N{1, which means all pairwise NMI coefficients were non-zero.

Note that, unlike Pearson’s correlation coefficient (PCC), the

mutual information does not only reflect linear correlation, but

also dependencies in higher moments [60]. While a zero PCC

only indicates that there is no linear relationship between the

observed quantities, two time-series have to be approximately

statistically independent for the NMI to be zero (compare, e.g.,

[61]). In other words, two signals have to show a stronger kind of

independence to yield an NMI coefficient of zero. Given that

fMRI-based functional networks are largely composed of high-

strength nodes, are fully-connected, and may be indistinguishable

from random networks if unthresholded [62], it was not

surprising to see overall positive NMI coefficients for the data.

It was also expected that simulated BOLD signals generated by a

system of coupled but structurally identical equations show large

NMI coefficients.

Network segregation. As mentioned above, the local

clustering coefficient ci quantifies the average weight of connected

neighbors of the node ui. The networks considered here had

maximal connection density, i.e., each node was connected to all

other nodes in the graph. In this case, ci is not influenced by the

presence or absence of edges and is thus given by the geometric

mean of N{1 edge weights adjacent to ui. Hence, the local

clustering coefficient is solely dependent on the nodal strength.

Thus, ci (Fig. 4A) exhibited qualitatively the same characteristics

as si (compare to Fig. 3B). In both data and model, we observed a

significant increase in clustering during task production as

compared to rest (pv1e{4) (data: rest: 0.56+0.01, speech:

0.81+0.01; model: rest: 0.63+0.01, speech: 0.83+0.01) Inter-

estingly, compared to the data, the model showed on average

higher values of ci in the resting-state simulation, while the

dopamine-modulated run exhibited very similar clustering char-

acteristics. To assess differences in network topologies in contrast

to random graphs, we compared ci to the corresponding random

network values and computed the normalized clustering coefficient

�cci (Fig. 4C). We found �cci to be greater than one in the dopamine

modulated simulation and the empirical speech production

networks, while both data and model failed to show values larger

than one during rest (data: rest: 0.81+0.01, speech: 1.16+0.01;

model: rest: 0.91+0.02, speech: 1.19+0.01). This indicated an

overall elevated segregation of simulated as well as empirical

speech production networks in relation to random networks.

Furthermore, for both simulated and empirical networks the

difference in values of �cci between rest and task was found to be

significant (pv0:0001). Interestingly, with and without dopamine

modulation the model showed a very similar variability in both ci

and �cci compared to the empirical networks. However, while the

data exhibited similar peak frequencies during rest and speech, a

decrease in the most prevalent values of both ci and �cci was found

in the simulated networks (Fig. 4A,C). This was indicative of a

slightly lower variability of ci and �cci in the dopamine modulated

simulation.

Network integration. We considered functional integration

of the NMI networks by evaluating values of local efficiency ei

(Fig. 4B). For fully connected networks, ei, similar to the clustering

coefficient, is completely determined by the nodal strength, since

the shortest path between two nodes is always given by their

connecting edge. Thus, ei showed similar characteristics as si. We

saw a statistically significant increase during task production as

compared to the resting state (all pv1e{4) with the model

showing on average higher values of ei (data: rest: 0.06+0.001,

speech: 0.17+0.005; model: rest: 0.08+0.005, speech:

0.18+0.006). We normalized ei to analyze differences in network

integration compared to a set of comparable random graphs. We

A Neural Population Model for Dopaminergic Neurotransmission

PLOS Computational Biology | www.ploscompbiol.org 9 November 2014 | Volume 10 | Issue 11 | e1003924



found significant differences in local efficiency between both data

and model during rest and speech (all pv1e{4). However, similar

to the clustering coefficient, simulated as well as empirical

networks showed on average a normalized efficiency smaller than

one during the resting state, while data and model exhibited values

larger than one during task production (data: rest: 0.51+0.01,

speech: 1.50+0.04; model: rest: 0.73+0.05, speech: 1.62+0.05).

Simulated and empirical networks showed a significant (pv0:001)

increase in normalized efficiency when transitioning from rest to

task, which was indicative of larger nodal integration in the

networks.

Discussion

We presented an extension of a model of neural assemblies

proposed by Breakspear et al. [21] to simulate dopamine release in

the human brain during complex voluntary behaviors. In contrast

to other large-scale neural modeling techniques based on coupled

oscillator systems, our approach was grounded in neuroanatomy

and physiology and thus allowed us to design a dopamine release

model guided by biological considerations. We established unique

solvability of the proposed model and demonstrated a computa-

tionally efficient strategy to numerically approximate its solutions.

In the context of the model, we assumed the difference between

the resting state and speech production to be solely given by a

modulation of dopamine levels in the LMC via a direct input from

the SNc. Thus, the model was oblivious to task-related effects

caused by any neurotransmitter other than dopamine. Important-

ly, we observed pronounced differences between the resting state

and task production in simulations. This finding may be

interpreted as an indication of the profound physiological impact

of dopamine on brain dynamics.

It is remarkable that altered neural firing rates within the

bilateral LMC only were sufficient for the entire simulated neural

population to exhibit changes in its temporal dynamics. We

attribute these observed task differences to dopamine driving

neural dynamics via the coupling matrix C . Given real structural

connectivity data as input, the strength of the model lies in its

ability to reproduce observed properties of connectivity during a

dopamine-modulated activity with a biophysical prescription for

dopamine neurotransmission.

To quantify the impact of dopamine release on the entire neural

mass, we used functional connectivity and graph theory analysis

and interpreted the results as a stationary synopsis of the global

effects of dopamine modulation. The graph theoretical analysis of

the functional connectomes revealed a number of similarities

between the model and data. Due to the slightly higher variability

of NMI coefficients, especially during the rest, (Fig. 2) nodal

strengths of the model without dopamine modulation showed

more fluctuations than corresponding values for the data.

Nonetheless, strength values of simulated and empirical networks

were in good agreement with the model exhibiting slightly larger

values. Clustering coefficients of both model and data also showed

qualitatively similar attributes, when comparing the resting state to

dopamine modulation. Thus, the model showed characteristics

comparable to those of the data with respect to functional

segregation and nodal influence.

Similarly, local efficiency showed good qualitative agreement

between simulated and empirical connectomes, thus the model

mimicked functional integration patterns seen in the experimental

data. However, both model and data failed to show increased

network segregation and integration compared to random graphs

during rest but showed consistently larger values than null model

networks during speech production (all �eei and �cci greater than one

for i~1, . . . ,N). This may support earlier findings indicative of

pronounced changes in network organization for speech control

[63,64]. It should be emphasized that normalized efficiency is

computed using the notion of shortest paths within a network. Due

to the absence of zero-weighted edges in the considered networks,

the shortest path between any two nodes in the graphs was given

by their connecting edge, effectively side-stepping the notion of

paths in a graph. A thresholding strategy to eliminate ‘weak’ edges

(i.e., edges corresponding to small NMI coefficients) may have

somewhat remedied this problem. It should be noted, however,

that interpreting efficiency values obtained from functional

networks that are based on statistical similarity between brain

areas is not an immediately evident approach. Indeed, since NMI

networks express not only direct but also all indirect couplings

between regions, a path-based metric, like efficiency, may yield

ambiguous results (see, e.g., [65,66]).

Nevertheless, decreasing connection densities in the networks

would also yield non-trivial nodal degree distributions, opening

another perspective on nodal influence within the networks.

However, weight-based thresholding must be performed with

considerable precautions so as to not deteriorate topological

properties of a network. Since this work was mainly concerned

with establishing a biologically-informed, large-scale model with

optional dopamine neuromodulation, no thresholding strategy was

applied to the constructed functional networks. A future study

focused exclusively on the graph-theoretical analysis of functional

networks should address this issue.

Limitations
A visual inspection of the simulated and empirical functional

connectomes (Fig. 2) revealed that the model tended to slightly

overestimate regional pairwise interaction during both resting state

and dopamine modulation. This finding was not surprising

considering the fact that the simulated BOLD signals were

generated by 140 structurally identical equations that only differed

in some parameter values. This is an apparent limitation of the

presented approach. However, one of the advantages of the

presented model is that the employed strategy enabled us to

perform large-scale simulations of brain activity based on

considerable neurobiological detail without becoming too complex

to be practically unfeasible.

Coupling between regions in the model was achieved via scaling

excitatory neural firing rates by entries of the coupling matrix C
(compare eqn. (9)). Thus, all modeled axonal connections were

excitatory, which is a simplification that ignores the effects of

feedforward inhibition. In particular, firing of connected areas

impacted a region’s membrane potential through excitatory

projections targeting local populations of NMDA and AMPA

receptors. In other words, inter-regional coupling was not modeled

as an explicit consequence of changes in neural voltages of

neighboring areas. Instead, the influence of other regions on the

local membrane potential was mediated by changes in neural

firing rates. In this context it should be noted that the proposed

model did not include an explicit representation of inter-regional

axonal conduction delays. To some extent, however, the employed

form of indirect coupling in the model may be interpreted as a

lumped representation of conduction time delays.

Future Directions
Having tested the model for its efficacy in reproducing essential

features of real data from healthy humans during speech

production, the next step should be an examination of clinical

relevance of the proposed neural population model. This may be

achieved by incorporating ‘lesions’ into a simulated network of
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interest to investigate the extent of inter-regional influences

coupled with dopaminergic transmission in a range of neurological

and psychiatric disorders, such as Parkinson’s disease, dystonia,

schizophrenia, etc.

Furthermore, the model’s use is not limited to human

applications [67] and may be applied equally well to animal

models of disease and normal behavior, taking into account

appropriate modifications for differences in animal and human

dopaminergic innervation [68].

Since most parameters used here were taken from literature,

some inferences about trajectories of isolated regions can be

formulated based on the exhaustive analytical treatment of the

original model [21]. In the original model, inter-regional coupling

is introduced using a scalar parameter C that acts on the spatially

Table 1. All parameters used in the model (including the neural and dopamine components) are provided according to their
notation used in the paper, with their description, their value, and their basic units.

Parameter Description Value Units

TCa Mean opening threshold of Ca channels 20.01 mV

dCa Variance of of number of open Ca channels 0.15 mV

Ca Average conductance of Ca channels 1.1 mS/ms

VCa Nernst potential of Ca channels 1.0 mV

TK Mean opening threshold of K channels 0.0 mV

dK Variance of number of open K channels 0.3 mV

gK Average conductance of K channels 2.0 mS/ms

VK Nernst potential of K channels 20.7 mV

TNa Mean opening threshold of open Na channels 0.3 mV

dNa Variance of number of open Na channels 0.15 mV

gNa Average conductance of Na channels 6.7 mS/ms

VNa Nernst potential of Na channels 0.53 mV

VL Nernst potential of leak channels 20.5 mV

gL Average conductance of leaky ions 0.5 mS/ms

VT Mean potential of firing excitatory neurons 0.54 mV

ZT Mean potential of firing inhibitory neurons 0.0 mV

dV Dispersion of potential of firing excitatory neurons 2.0 mV

dZ Dispersion of potential of firing inhibitory neurons 0.7 mV

d Noise current amplitude 0.3 ms21

aee Excitatory-to-excitatory strength 0.4 mS

aei Excitatory-to-inhibitory strength 2.0 mS

aie Inhibitory-to-excitatory strength *N ({2,0:1) mS

ane Excitatory noise input strength *N (2:5,0:9) mS

ani Inhibitory noise input strength 0.4 mS

Q Temperature scaling factor of K channels 0.7

t Relaxation time of K channels 1.0 ms

rNMDA NMDA-to-AMPA strength 0.25

dmax Maximum rate of dopamine re-uptake 0.004 mM/ms

kmax Michaelis–Menten constant 0.125 mM

DA0 Tonic dopamine level 0.05 mM

rmin Minimum dopamine production rate 0.0005 mM/neural
firing

rmax Maximum dopamine production rate 0.01 mM/neural
firing

a Dopamine antagonist strength 0.2 mM21

bhi Maximum dopamine gain 50

blo Minimum dopamine gain 1.0

Qmax
V Maximum firing rate of exitatory neurons 1 kHz

Qmax
Z Maximum firing rate of inhibitory neurons 1 kHz

b Inhibitory noise current scaling factor 0.1

Abbreviations: mV = Millivolt, mS = Millisiemens, ms = Millisecond, mM = Millimole, kHz = Kilohertz.
doi:10.1371/journal.pcbi.1003924.t001
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averaged excitatory firing rates of all modeled nodes, i.e.,

C
PN

j~1 Q
j
V . The approach presented here uses not a scalar, C,

but a matrix, C~fci,jgN
i,j~1, to introduce coupling and thus

expands the scaled mean field firing to be
PN

j~1 ci,jQ
j
V . This can

be seen as a weighted average of firing rates. Thus, in the absence

of dopamine and for a diagonal coupling matrix C the dynamic

behavior of an isolated node can be reduced to the cases discussed

by Breakspear et al. [21]. However, for a general non-diagonal

coupling matrix, the dynamics become increasingly more com-

plex. Moreover, as our simulation results indicated, dopamine

modulation also had a pronounced impact on the overall behavior

of the model. Thus, the extensions proposed here changed the

dynamics of the original model in a non-trivial way. Thus, a

rigorous dynamical analysis of the presented model would require

a thorough study of the non-linear relation between DAh
t and

QLMC,h
V (h[f‘,rg) and an assessment of the influence of dopamine-

related parameter choices on the temporal evolution of the LMC

nodes in terms of a full sensitivity analysis [69,70,71]. It was not

within the scope of this work to present such an exhaustive

analytical treatment of the model. Nonetheless, this poses an

interesting direction for future studies.

Given the demonstrated differences in functional connectivity

across the entire experimental time in simulations of resting versus

speech conditions, the question arises as to what extent dopamine

altered function on small versus long time scales within the tasks.

Our results indicate that dopamine may influence dynamics on

long time scales. This may suggest that rapid temporal release of

dopamine, as evidenced by the spontaneous dopamine release

incorporated during each time-step in the model, may be involved

in slow plastic responses. Thus, it is tempting to speculate that a

future adaption of the proposed dopamine model might yield

further insight into the learning and adaptation involved in

voluntary behaviors, particularly given dopamine’s involvement in

learning and motivational behavior in other tasks.

Finally, models simpler than the one considered in this paper

are capable of reproducing empirical functional connectivity. In

fact, a recent study showed that a stationary model of resting-sate

functional connectivity explains functional connectivity better than

more complex models [72]. In modeling empirical functional

connectivity as accurately as possible, the application of a

complexity reduction technique [73] to the introduced highly

non-linear model should be considered in order to derive a set of

considerably simpler equations of statistical moments. On the

other hand, it has been shown [73] that functional connectivity is

essentially state-dependent and that local changes of activity in a

set of cortical areas (due to external inputs, attention, neuromo-

dulation, or learning) change the dynamical state of the brain

network, thus modifying the correlations between the brain areas

and introducing various levels of complexity. Along this line, while

simpler models have a number of computational advantages (e.g.,

reduced computational load, easier estimation of parameters,

simpler relationship between structure and function), their ability

to simulate complex temporal activity patterns at various cognitive

Figure 2. Simulated and empirical BOLD signal during (A) rest and (B) speech and NMI matrices of (C) data and (D) model in resting
state and during speech production. The colored lines show time courses of simulated BOLD signals during resting state (A) and for dopamine
modulation (B) for regions of the brain associated with speech production. Experimental BOLD time courses are shown in gray. The labels ‘left’ and
‘right’ indicate left and right hemispheres respectively. Pairwise interactions within the signals were quantified by computing NMI coefficients for
each pair of regional time-series corresponding to the simulated and real BOLD time-courses. This gave rise to four 70|70 NMI-matrices (pairwise
interactions of data (C) and model (D) in the resting state and during speech production). Because a normalized variant of the mutual information
was employed, all matrix entries were bounded by zero and one. The parcellated brain regions used for the construction of matrices are provided in
top (C) for both left and right hemispheres; the magnified inset shows the brain regions per hemisphere. Abbreviations: ACC/ICC/MCC/PCC =
anterior/isthmus/middle/posterior cingulate cortex, Cu/PCu = cuneus/precuneus, ETC = entorhinal cortex, FG = fusiform gyrus, FP = frontal pole,
IFGop/IFGor/IFGtr = pars opercularis/pars orbitalis/pars triangularis of the inferior frontal gyrus, IPC/SPC = inferior/superior parietal cortex, ITC/STC
= inferior/superior temporacl cortex, LG = lingual gyrus, LMC = laryngeal motor cortex, LOFC/MOFC = lateral/medial orbitofrontal cortex, MFG =
middle frontal gyrus, mFG = medial frontal gyrus, MTG = middle temporal gyrus, OC = occipital cortex, PCAC = pericalcerine cortex, PHip =
parahippocampal cortex, PreCG/PostCG = pre/postcentral gyrus, Put = putamen, SFG = superior frontal gyrus, SMG = supramarginal gyrus, SNc =
substantia nigra pars compacta, TP = temporal pole, TTC = transverse temporal cortex, Th = thalamus.
doi:10.1371/journal.pcbi.1003924.g002

A Neural Population Model for Dopaminergic Neurotransmission

PLOS Computational Biology | www.ploscompbiol.org 12 November 2014 | Volume 10 | Issue 11 | e1003924



Figure 3. (A) Empirical and simulated functional networks in the resting state and during speech production and (B) nodal strength
for experimental (left column) and simulated (right column) functional networks in resting state (gray) and during speech
production (red). (A) 3D visualizations of data- and model-based NMI networks (top and bottom rows, respectively) during rest (left column) and
speech production (right column). Edge colors represent NMI coefficient values and nodal color illustrates strength (normalized to the interval ½0,1�).
(B) Nodal strength of data- and model-based NMI networks. The top row shows the nodal strength per node, the bottom row illustrates the
distribution of si-values. The 3D networks were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/). Abbreviations: MFG =
middle frontal gyrus, Cu = cuneus, FP = frontal pole, FG = fusiform gyrus, IPC/SPC = inferior/superior parietal cortex, LMC = laryngeal motor
cortex, OC = occipital cortex, PreCG = precentral gyrus, IFGop/IFGor/IFGtr = pars opercularis/pars orbitalis/pars triangularis of the inferior frontal
gyrus, PostCG = postcentral gyrus, STC = superior temporal cortex, mFG = medial frontal gyrus, SFG = superior frontal gyrus, SMG =
supramarginal gyrus.
doi:10.1371/journal.pcbi.1003924.g003

Figure 4. Non-normalized and normalized segregation and integration metrics for experimental and simulated functional
networks in resting state (gray) and during speech production (red). Distributions of (A) non-normalized clustering coefficient, (B) non-
normalized local efficiency, (C) normalized clustering coefficient, and (D) normalized local efficiency in the data- and model-based NMI networks.
doi:10.1371/journal.pcbi.1003924.g004
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scales (and in the context of simulated dopamine modulation) may

be somewhat limited. This motivated the development of the

proposed complex model to better understand empirical data and

to make predictions about the different states of dopamine-

modulated brain activity during voluntary behavior. Future work

should be directed to a possible simplification of this model, while

assuring its ability to accurately reproduce the complex biological

patterns of voluntary behaviors.

Summary
We conclude that a regional model that includes dopamine

release, reuptake, and modulation of ion channels significantly

alters the behavior of an otherwise unmodulated, resting state

neural population model. This work thus combines a small-scale

basic cellular biology understanding of dopamine to alter

macroscopic behavior of neuronal systems with nontrivial

structural circuity, and presents meaningful global simulated

fMRI network behavior. Region-specific analysis warrants the

identification of specific effects of neuromodulation on task-based

networks for speech and other dopamine-modulated voluntary

behaviors.
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