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Abstract: In this study the first results on evaluation and assessment of 
grafted bioengineered skin substitutes using an optical Diffuse Reflectance 
Spectroscopy (DRS) system with a remote optical probe are shown. The 
proposed system is able to detect early vascularization of skin substitutes 
expressing the Vascular Endothelial Growth Factor (VEGF) protein 
compared to normal grafts, even though devitalized skin is used to protect 
the grafts. Given the particularities of the biological problem, data analysis 
is performed using two Blind Signal Separation (BSS) methods: Principal 
Component Analysis (PCA) and Independent Component Analysis (ICA). 
These preliminary results are the first step towards point-of-care diagnostics 
for skin implants early assessment. 
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1. Introduction 

Bioengineered skin substitutes appeared to solve one of the main problems in the treatment of 
extensive burns as it is the need for early coverage. This technology overcomes surface 
limitations of traditional skin grafts and it is an important help reducing the pain and potential 
complications during the recovery process [1]. Although robust bioengineered skin has been 
developed, an ideal substitute for human skin has not been achieved yet, and more tests are 
required to improve its performance and expand its field of application. Researchers from the 
Regenerative Medicine Unit of the Epithelial Biomedicine Division based at the Centro de 
Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 
have developed a humanized mouse model suitable to the study of bioengineered skin 
engraftment. This model has probed its validity as a preclinical platform for evaluating tissue 
regeneration, faithfully reproducing the functional and structural characteristics of the human 
wound healing process [2]. 

Skin regeneration tests are performed extracting skin from the back of an 
immunodeficient mouse and replacing it with the bioengineered skin substitute. Then, the 
extracted mouse skin is devitalized (by several cycles of freezing and thawing) and placed 
over the implant to ensure its protection during the engraftment process [3]. However, 
although in this manner the grafted tissue is protected, engraftment cannot readily be assessed 
as it is covered by the abovementioned devitalized skin. 

Current implementations of optical techniques for noninvasive characterization of tissue 
cannot be used due to the presence of the protective devitalized skin on top of the 
engraftment. Besides this, such protection gets dehydrated with the pass of the days changing 
its optical characteristics. Only after this devitalized skin slough off, approximately three 
weeks after grafting, the graft recovery state can be confirmed. 

In this study the first results on angiogenesis evaluation and assessment of bioengineered 
skin substitutes using a portable Diffuse Reflectance Spectroscopy (DRS) system [4] with a 
non-contact optical probe are shown. The analysis of the measured reflectances at different 
wavelengths is performed using two Blind Signal Separation (BSS) methods: Principal 
Component Analysis (PCA) and Independent Component Analysis (ICA). The proposed 
sensor is able to assess early enhanced vascularization of skin grafts expressing the Vascular 
Endothelial Growth Factor (VEGF) protein compared to normal grafts through a protective 
devitalized skin with an important change of its optical characteristics during time. These 
preliminary results are the first step towards a point-of-care diagnostics for skin implants 
early assessment. 

2. Materials and methods 

2.1 Experimental protocol 

All experimental procedures involving this paper were approved by the Animal Experimental 
Ethical Committee (IACUC-CEEA) of CIEMAT as part of the project “Molecular, genetic 
and cellular bases of skin diseases: development of experimental models humanized and 
innovative therapeutic procedures”. Four skin humanized mice were employed in the study 
carried out in the Epithelial Biomedicine Division in CIEMAT, Madrid, Spain. Two of the 
mice were grafted with a normal bioengineered skin for control, while in the other two grafts 
the keratinocytes of the bioengineered skins were made to overexpress VEGF protein. 
Vascularization is expected to appear earlier and in higher proportion in the VEGF-expressing 
grafted mice and the aim of this work is to study the viability of noninvasively and remotely 
measure this difference. The mice with VEGF-expressing grafts were labelled as VEGF1 and 
VEGF2 and the control mice as CTL1 and CTL2. 

A control point was selected to be exclusively used to quantify the consistency of the 
measurements of the sensor; this point was located at the nape of the mouse. All the 
measurements to monitor the evolution of the bioengineered skin were carried out in the 
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centre of the grafts. A photograph taken to a mouse is shown in Fig. 1(a)) where the locations 
of the control and measurement points are presented. In this picture it is possible to see the 
devitalized skin avoiding direct optical access to the graft; dehydration, wrinkles, and non-
uniform shape are evident several days after engraftment. A detail of the remote optical head 
performing a measurement on a fresh engraftment (few minutes after surgery) is presented in 
Fig. 1(b)). It is important to note the appearance of the devitalized skin on top of the graft. 
Comparison with Fig. 1(a)) shows the clear degradation of the covering and the change on its 
optical characteristics during the evolution of the experiment. 

Measurements were performed on anesthetized mice on days 0, 2 and 6 after grafting and 
were followed by biopsies on day 7. To ensure the consistency of the data acquisition, three 
measurements were performed and averaged in each location. 

 

Fig. 1. a) Photograph of a mouse several days after engraftment. Note the devitalized skin on 
top on the engraftment, avoiding direct optical access to it. b) Detail of the optical remote 
probe performing a measurement on a fresh engraftment. 

2.2 Sensor design 

The block diagram of the sensor is shown in Fig. 2. In the architecture of the instrument it is 
possible to differentiate between the electronic and optical subsystems. As mentioned in the 
introduction, as a part of the optical system, a non-contact remote optical probe is to be used 
in this study. It was decided to cover all the wavelength range of the therapeutic window and 
the sensor was equipped with four different laser diodes with 532 nm, 635 nm, 850 nm and 
1064 nm (PD-LD Inc., New Jersey, USA) wavelengths. The light of the four lasers is 
combined in a multimode fiber by means of optical couplers to carry the light to a fiber 
collimator (F220FC-780, Thorlabs Inc., New Jersey, USA) that is used for illumination of the 
area of interest. The measurement head is completed by a silicon photodiode (FDS100, 
Thorlabs Inc., New Jersey, USA) and two polarizers (LPVIS050-MP, Thorlabs Inc., New 
Jersey, USA) attached to the collimator and the photodetector to eliminate the effect of the 
Fresnell reflection in the surface of the tissue. 

The four lasers are amplitude modulated at four different frequencies (3800, 4500, 5100 
and 6000 Hz respectively) and the single photodiode is used to simultaneously measure all the 
signals. This is done taking advantage of parallel lock-in detection implemented on a 
multipurpose Field Programmable Gate Array (FPGA) (Cyclone III, Altera Corporation, 
California, USA) based system that embedded a four channel lock-in amplifier. With the 
exception of the laser diode drivers and the photodetector amplification stage, all the 
electronic subsystem is implemented into the FPGA. This multi-channel design was 
developed in the Electronic Technology Department of the Universidad Carlos III de Madrid 
(Spain). A Nios II Embedded Processor is used to control the lock-in amplifiers and to 
generate the modulation and control signals. By means of a RS-232 interface, the instrument 
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is connected to a PC where a Graphic User Interface (GUI) allows the control of the different 
parameters, the triggering of measurements, and data saving. 

 

Fig. 2. Block diagram of the sensor. 

2.3 Diffuse reflectance data analysis 

The presence of the devitalized skin and the evolution of its optical characteristics (as shown 
in Fig. 1(a) and 1(b)) make standard reflectance spectrum analysis procedures like analytical 
models for the propagation of light in tissue or Monte-Carlo simulations difficult to apply. 
Likewise, it is not possible to extract valuable information from the direct analysis of the 
values of reflectances at the different wavelengths, given that these values are affected by 
many factors, like the distance from the optical head to the tissue or the movements of the 
mouse during the measurements. In this situation, different BSS techniques offer a better 
performance. In the biological problem addressed by this paper, BSS methods allow us to 
recover the spectral shape of several contributors (like the devitalized skin or hemoglobin) 
from the measurement of their mixes, relying only on the assumption of mutual independence 
between such contributors. There are several BSS methods each having particular 
characteristics, for this study PCA and ICA have been selected. 

PCA has recently been evaluated to classify multispectral noncontact diffuse reflectance 
data both for imaging reconstruction [5] and real time evaluation of quantitative blood 
concentrations [6]. This technique linearly transforms data into an orthogonal coordinate 
system whose axes correspond to the principal components. The new coordinates of the data 
are the linear combination of the initial data. Each succeeding principal component is 
calculated in a way in which accounts for the largest possible variance, being possible to 
reduce the dimensionality of the data by exploiting any existing redundancy of information. 
Principal components and coordinates have been calculated applying the Singular Value 
Decomposition algorithm. 
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On the other hand, ICA [7] can separate the spectra of a series of constituents from the 
measurements of their mixtures and, besides this, estimate the concentration of the different 
constituents. This method has also been previously employed to classify spectroscopic data 
[8] and also in biomedical applications [9]. ICA calculations have been performed using the 
Fixed Point Algorithm for ICA from Hyvärinen [10]. 

In this study, PCA and ICA calculations have been made using Matlab (MathWorks Inc, 
Massachusetts, USA). 

3. Results and discussion 

3.1 Results of the biopsies 

The results of the histology of the tissues extracted from the engraftments on day 7 (after 
measurements were performed on days 2 and 6) are shown in Fig. 3, two sections of the a) 
control and b) VEGF-expressing grafts are presented. The analysis confirmed that the amount 
of vascularization in the VEGF-expressing grafts was bigger than that of the control grafts 
while the rest of the skin structure is similar. 

 

Fig. 3. Histological appearance of engrafted bioengineered skins seven days after grafting. a) 
Control graft. b) VEGF-producing graft. Note the hemorrhagic blood vessels (H) invading the 
fibrin dermal matrix (FM). 

3.2 PCA analysis 

PCA has been directly applied to the reflectance values at each wavelength for the four mice 
on the measurements carried out on days 2 and 6. The high values of variance (92% and 98% 
on day 2 and 6 respectively) obtained for the first principal component lead to the conclusion 
that only the coordinates of each mouse for this first component are relevant in the separation 
between graft types. Besides this, the first principal component was found to be practically 
equal on both days, with a mean difference of 3.2%. This invariability in the principal 
components with time was also found by Kanierstorfer et al. [6] in a skin chromophore 
mapping study. 

On day 6 there is a clear difference between coordinates for the first principal component 
of the mice from each group as shown in Fig. 4(a)). This difference is well in agreement with 
the histological study previously presented where significant differences in vascularization 
levels were obtained. As it was said before, due to the small value of variance explained the 
rest of components, their coordinates are not relevant in the separation. The results of the 
PCA analysis showed that separation on day 2 is not possible mainly because not enough time 
has passed for any significant change to appear in the grafts. The evolution of the coordinates 
for the first principal component from day 2 to day 6 is shown in Fig. 5(a)). 
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3.3 ICA analysis 

The ICA method was, as before, applied to the reflectance values measured at each 
wavelength for the four mice on days 2 and 6. Three constituent components together with the 
estimation of their concentrations were obtained for each day. The concentrations of the three 
constituent components obtained for day 6 are shown in Fig. 4(b)). It is possible to see how 
the concentrations for the first constituent component (CC1) are clearly separable for the two 
types of grafts, with values of 0.043 and 0.041 for the VEGF-expressing grafts and 0.123 and 
0.102 for the control grafts. The concentrations of the rest of constituent components are not 
distinguishable for the different groups and hence, given the results of the histology, it is 
possible to conclude that the concentration of CC1 is related to the level of vascularization. 
As in the case of the PCA analysis, as shown in Fig. 5(b)), there is no possible differentiation 
between VEGF-expressing and control grafts on day 2, but in day 6 such differentiation is 
obvious. 

 

Fig. 4. a) PCA coordinates for each engraftment on day 6. Note the clear differentiation 
between graft types for the first principal component. b) Concentration obtained in the ICA 
analysis for the three constituent components. It is possible to clearly differentiate between 
graft types for the constituent component 1. 

 

Fig. 5. a) Evolution of the coordinates of the first principal component of the PCA analysis for 
each mouse for days 2 and 6. b) Evolution of the concentration for the constituent component 1 
obtained in the ICA analysis for days 2 and 6. 
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4. Conclusions 

In this work the design of a DRS system that uses a remote optical probe to assess and 
evaluate the evolution of bioengineered skin substitutes covered by a devitalized skin has 
been described. Since the particularities of the biological problem addressed make difficult 
the application of standard spectroscopic procedures, the classification of the reflected spectra 
was done taking advantage of Blind Signal Separation. Spectroscopic data was analyzed 
using PCA and ICA being possible to differentiate, in both cases, between the early 
vascularization of skin substitute grafts expressing the VEGF protein and normal grafts. 
These preliminary results are the first step towards a point-of-care diagnostics for early skin 
engraftment assessment. 
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