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Abstract

Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as
DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between
a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce
a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of
possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as
descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing
sequence distances and the use of descriptors for characterizing DNA fragments.
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Introduction

Genomic signal processing (GSP) refers to the use of digital

signal processing (DSP) tools for analyzing genomic data. Current

GSP methods require a step in which a genomic sequence to be

analyzed S(t) is mapped onto a vector of numerical values (i.e.,

signal) that represents the information contained in the original

sequence [1]. Existing DNA-to-signal mapping methods can be

divided into two groups depending on the origin of the numerical

values employed. The first group corresponds to methods that

assign an arbitrary value to each character t, which represents the

nucleotides that compose the sequence. Examples of this type of

method include 2-bit binary representation (e.g., A = 00, C = 11,

G = 10, T = 01) [2], 4-bit binary encoding (e.g., A = 1000,

C = 0010, G = 0001, T = 0100) [3], 4-dimensional indicator

sequence (Voss representation) (½At Tt Ct Gt� where Xn~1 if

S(t)~X ) [4], use of a tetrahedron structure [5], use of integer

values employing different ranges (e.g., 0 to 3 [6], 1 to 4 [7]), use of

real numbers (e.g., A = 21.5, T = 1.5, C = 0.5, G = 20.5 [8], and

A = 0.25, G = 0.5, C = 0.75, T = 1 [9]), complex number values

(e.g., A = 1zj, C = {1zj, G = {1{j and T = 1{j [6,10]), and

use of quaternions (e.g., A = izjzk, C = i{j{k, T = {izjzk,

and G = {i{jzk [11]).

The second group includes methods for which the numerical

values are defined according to certain biophysical or biochemical

properties of the DNA molecules. Examples of this type of

mapping include the use of electron-ion interaction potentials

(EIIP) (i.e., A = 0.1260, C = 0.1340, T = 0.1335, G = 0.0806) [12]

and the use of single atomic numbers (i.e., A = 70, C = 58, T = 66,

G = 78) [13]. Other examples include paired nucleotide represen-

tations that consider nucleotide complementarity (i.e., A = T = 0,

C = G = 1) [14] and graphical approaches such as the DNA-walk

model, in which a step is taken upwards (+1) if S(t) is a pyrimidine

(C or T) or downwards (21) if it is a purine (A or G). Finally, this

category also includes Z-curve representation [15], which maps a

DNA sequence into a 3-dimensional sequence where Dxt

distinguishes between purines and pyrimidines; Dyt distinguishes

between amino-type and keto-type molecules, and Dzt distin-

guishes between weak and strong hydrogen bonds.

Most GSP methods reported in the literature are focused on the

detection of coding regions (e.g., [11,16–23]). In general, these

methods consist of performing DNA-to-signal mapping and

obtaining the power spectrum of sections of the signal employing

the short time discrete Fourier transform (STFT) using a sliding

window of fixed length. When a period-3 frequency peak is

detected in the power spectra, the section of sequence corre-

sponding to that window is labeled as a coding region. Other

applications of GSP include searching for genomic repeats using

STFT [24] and determining the structural, thermodynamic, and

bending properties of DNA by Fourier analysis [25].

Determining the distance between different genomic sequences

is one of the most common types of analysis. In this scope,

phylogenetic trees are one of the most essential tools in DNA

analysis because they provide structured classification of DNA

sequences and enable organization of our growing knowledge of

biological diversity. Moreover, this method provides insight into
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events that occur during evolution. A phylogenetic tree may be

constructed from a distance matrix M containing a set of values

that represents the pairwise distance d(Si,Sj) of a set of sequences

S~½S1,S2,:::,Sm�. Examples of distance matrix-based methods for

phylogenetic tree construction include neighbor-joining [26] and

the Fitch-Margoliash method [27], among others.

A distance-matrix corresponding to a set of DNA, RNA, or

protein sequences is commonly determined by assessing the

distance based on alignment of sequence pairs. Alignment

methods have also been used to identify domains, assemble

genome contigs, and study sequence variations. Techniques for

determining the alignment of a pair of sequences include dot-

matrix, dynamic programming, and k-tuple methods. In dot

matrix-based methods, a recurrence plot is generated by

comparing all elements of both sequences to form a two-

dimensional matrix in which a dot is placed at the intersection

where characters match. Dynamic programming methods com-

pute the optimal alignment between two sequences by considering

possible differences due to mutations, insertions, and deletions.

This method can also be used for global alignments via the

Needleman-Wunsch (NW) algorithm [28] or local alignments via

the Smith-Waterman [29] algorithm. The k-tuple (word) method

attempts to identify sub-sequences of length k in the query

sequence. Although this method does not guarantee an optimal

solution, it is significantly more efficient than dynamic program-

ming, making it suitable for the analysis of large-scale databases.

Two of the most popular local alignment methods are FASTA

[30] and BLAST [31]. A GSP method has also been proposed for

aligning multiple sequences (i.e., MAFFT [32]). In this method,

amino acid sequences of different proteins are converted into two

numerical vectors consisting of values that correspond to the

volume and polarity of the components. The correlation between

the two amino acid sequences is computed by the fast Fourier

transform (FFT) using a sliding window of fixed length. By

assessing the correlation score of both sliding windows, it is

possible to detect regions of matching sequences.

Several alignment-free methods for DNA distance computation

have been proposed. In general, these methods are based on

statistics of word frequencies (i.e., k-tuples) using metrics such as

weighted Euclidean distance, correlation, co-variance, information

theory-based measurements, and angle metrics. [33]. However,

other methods based on graphical DNA representations apply

dinucleotide (doublet) histograms [34], graph theory [35],

trinucleotide (triplet) curves [36], or the average bandwidth of

distance/distance (D/D) matrices [37]. A widely used tool for

computing phylogenetic trees is the phylogeny inference package

(Phylip) [38], which applies different methods such as parsimony,

jackknife, bootstrapping, and consensus trees using molecular

sequences, gene frequencies, restriction sites and fragments,

distance matrices, and discrete characters.

In this paper, we present a novel GSP alignment-free method

(GAFD) for determining the distance between two DNA

sequences. We introduce a new DNA-to-signal mapping tool that

is based on using doublets with a mapping function inspired by K-
strings [39], which increases the number of possible amplitude

values for the generated signal. Additionally, we explore three

GSP distance metrics that may be used as descriptors for

categorizing dissimilarities between pairs of DNA signal fragments,

and that set the basis for developing methods for domain search

and characterizing sections of DNA. Our results demonstrate that

GAFD performs similarly to the NW and Phylip methods for

computing distances among a set of DNA sequences. Moreover,

the results obtained using the proposed descriptors show the

feasibility of this method in characterizing the types of differences

present between sections of sequences. All the methods and

algorithms were implemented in MATLAB R2010b. We em-

ployed the ARfit module for the autoregressive model computa-

tion and signal processing toolbox of MATLAB for FFT

computation. NW analysis and phylogenetic tree construction

was computed using the bioinformatics toolbox of MATLAB.

Source code is available for download at: http://hypatia.cucei.

udg.mx/invteorica/DNASignals/.

Materials and Methods

DNA sequence-to-signal mapping
Our proposed DNA sequence-to-signal mapping method was

inspired by the alignment-free distance method, which employs

the nearest-neighbor method (NN) [40,41]. NN was originally

developed for determining the double strand melting temperature

[42,43] and was based on the rationale that the interaction

between bases on different strands depends to some extent on the

neighboring bases. The model assumes that, under specific

environmental conditions, the stability of hydrogen bridges

between strands of a nucleic acid duplex for a given doublet and

its complementary pairs depends on the identity of its neighboring

bases.

Our mapping tool requires that numerical values for all possible

combinations of two consecutive bases (doublets) are defined. Let

S(t) indicate the nucleotide at position t with respect to the

beginning of a sequence S of length m. For each doublet, we

define a numeric value H(S(t), S(tz1)). Then, a one-dimen-

sional discrete signal ŜS(t) is generated in a manner similar to the

K-strings approach [39] by combining the values generated by

doublets inside a window of magnitude 2az1:

ŜS(t)~
1

(2az1)

Xtza

i~t{a

H(S(t), S(tz1)): ð1Þ

After mapping the DNA sequence to a discrete signal, a noise

reduction method is applied. A typical solution for noise reduction

from non-stationary signals is the wavelet denoising method.

Wavelet-based noise decomposition of a signal using orthogonal

discrete wavelet transform (DWT) can ‘‘concentrate’’ the infor-

mative signal into a few wavelet coefficients with large absolute

values without modifying the random distribution of noise. Then,

DWT-based denoising can be achieved by limiting the number of

wavelet coefficients that represent the signal. Consider the model

ŜS(t)~c(t)zn(t), ð2Þ

where ŜS(t) represents the original discrete signal, c(t) represents

the noiseless unknown version of ŜS(t), and n(t) represents the

noise. Since DWT is a linear transformation, the wavelet

coefficient vectors for each term in Eq. (2) (i.e., wŜS , wc, and wn)

are related by:

wŜS~wczwn: ð3Þ

Denoising is performed by computing the wavelet transform of

a signal and then removing the coefficients that correspond to high

frequencies by applying a threshold T . The wavelet coefficients

corresponding to low frequencies remain unchanged. The main

GSP Alignment-Free Distances
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challenge of this denoising method is determining the T value

between small and large wavelet coefficients. To determine this

threshold, several algorithms have been proposed recently [44,45].

In this work, we employed the SureShrink algorithm (i.e., Stein’s

unbiased risk estimator [46]) because this wavelet denoising

method has been successfully applied to biological signals without

the loss of important information [47].

Alignment-free distance computation

Each de-noised signal ŜSi corresponding to a DNA sequence in a

set was converted into its frequency representation by applying

discrete Fourier transform (DFT) followed by computation of its

power spectrum F̂Fi. To perform a direct comparison of sequences

of different length, we employed zero padding to compute the

DFT using the maximum length of all DNA signals in the set.

Subsequently, for a given pair of DNA signals, we calculated the

alignment-free distance d(i,j) by computing the mean squared

error (MSE) of their corresponding power spectrum:

d(i,j)~
X

x

F̂F i(x){F̂F j(x)
� �2

: ð4Þ

Finally, a distance matrix M was created by performing

pairwise comparison of all sequences in the set.

Cluster overlapping score
Because the distance matrices generated with GAFD and NW

cannot be directly compared, we evaluated these methods by

employing a modified version of the cluster overlapping score [48],

which is based on the splitting method by Robinson and Foulds.

An NJ tree is a dichotomic hierarchic classifier that can be defined

by a set of leaves T~ l1,l2, . . . ,ltf g and a set of branches

B~ B1,B2, . . . ,Bt{1f g. Every branch of the tree is represented in

the subset B~ l1,l2, . . . ,lbf g, where t~b for the root, and

twb§2 for all other branches of the tree. In this report, a cluster

G is defined as a branch that is not the root and lies beyond the

immediate vicinity of a leaf twg§3. Note that the set of clusters

G~ G1,G2, . . . ,Gg

� �
is a subset of B.

Given two clusters from two different trees (T1~T2 ^G1=G2)

where GT1
\GT2

=0=, cluster overlapping can be measured using

the Dice coefficient as:

ki~
2DGi

T1
\Gi

T2
D

DGi
T1

DzDGi
T2

D
: ð5Þ

The cluster overlapping similarity score k is calculated from the

arithmetic mean of all k occurrences. Comparison of a tree against

itself yields a value of 1.

GSP distance descriptors
This proposed method for distance computation can determine

the global similarity of two DNA sequences. However, this metric

may not be capable of determining local differences between the

sequences. Therefore, we explored three DSP-based metrics used

to generate descriptors that may be useful for characterizing and

classifying differences between sections of the sequences.

Correlation coefficient. Correlation can be used to measure

the dependency of a signal on itself or another signal. For two

signals si and sj with the same length n, the correlation coefficient

is defined as:

Figure 1. Examples of the resulting DNA sequence-to-signal
tool employing different values of a and its effects on single
sequence changes.
doi:10.1371/journal.pone.0110954.g001
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r~

Pn
k~1 (si(k){�ssi)(sj(k){�ssj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 (si(k){�ssi)
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k~1 (sj(k){�ssj)

2
q : ð6Þ

Depending on the data to be evaluated, the correlation

coefficient will be r*1 for signals that are highly correlated,

r*0 for non-correlated signals, and r*{1 for signals that are

inversely correlated. Because we were only concerned with the

degree of correlation and not its type, we discarded the sign and

defined the descriptor as R~DrD.

Coherence. Coherence, a relationship measurement used to

estimate the degree of linear association between two signals is

defined as:

cij(t)~
Dsij Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dsii(t)DDsjj(t)D
p , ð7Þ

where sij is the cross-spectral density that describes the common

power distribution between the two signals, while sii and sjj denote

the auto-spectral density of si and sj respectively, at a frequency t.

We defined the descriptor C as the mean of the coherences

c(t) Vt). A C value close to 0 indicates that signals at this

frequency are linearly independent, whereas a value close to 1

represents a very high linear correlation. In this work, the spectral

densities used for determining the coherence between two signals

were computed using an autoregressive (AR) model, which is one

of the most widely used tools in DSP [49]. For a given interval, the

multidimensional AR model is given by:

x(t)~
Xp

k~1

A(k)x(t{k)ze(t), ð8Þ

where A(k)~ a1(k),a2(k), . . . ,an(k)½ �T is the n|n AR coeffi-

cients matrix, n the number of channels, x(t{k) the time-delayed

values vector, p the model order, and e(t) the error vector. To

solve Equation 8, it is necessary to fit p (smaller than the sequence

length) and then estimate the AR coefficient matrix [50].

Derivative comparison. Given that our proposed DNA

sequence-to-signal mapping accounts for neighboring nucleotides,

small differences between si and sj due to indels and mutations

produce a shift in the intensity of the resulting signal (Fig. 1). To

account for these changes, we compared the derivatives of the two

signals by using finite differences and computed the mean slope D

as a descriptor representing the degree of similarity between the

two signals. A value D*0 indicates strong similarity.

Similarity space. For a given pair of sequences, the three

descriptors were used to generate a point with coordinates

(R,C,D) in a three-dimensional space. We hypothesize that it

may be possible to characterize sub-sequences by employing

clustering or classification methods in this space.

Table 1. Values employed for DNA sequence-to-signal mapping.

Doublet Value Doublet Value

AA 0 GA 8

AT 1 CA 9

TA 2 GT 10

AG 3 GG 11

TT 4 CT 12

TG 5 GC 13

AC 6 CG 14

TC 7 CC 15

doi:10.1371/journal.pone.0110954.t001

Figure 2. Similarity score for a sequence compared with
modified versions of itself using different values of a. A
10,000 nt random sequence was created. Using this sequence as a
template, a second was created that included one random substitution.
The remaining sequences were built based on the last created
sequence, adding new random substitutions. The result was an original
sequence and four mutated sequences bearing 1, 3, 5, and 10
cumulative substitutions. The original sequence was then compared
with each mutated sequence using different a values.
doi:10.1371/journal.pone.0110954.g002
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Results and Discussion

DNA sequence-to-signal mapping
Our DNA sequence-to-signal mapping tool requires that

different values be set for every possible doublet (i.e., 16 different

values). For all the experiments presented in this section, we

employed the values listed in Table 1. The proposed DNA

sequence-to-signal mapping was designed to consider the nucle-

otides within a window defined by a. An example of the effect of a
on the proposed mapping is depicted in Figure 1. As the value of a
increases, the resulting DNA signal becomes smoother as the

values corresponding to nucleotides within the window are

combined. This indicates that the value of a determines how far

a change is propagated through the signal. Note that a single

nucleotide substitution produces a vertical shifting effect depend-

ing on the value of a with respect to a signal corresponding to a

similar sequence. As a increases, a substitution has less impact on

the signal shift. Indels in the DNA sequence are reflected as a

horizontal shift with respect to another similar sequence propor-

tional to the number of deleted or inserted bases. Figure 2 depicts

the distance as computed by GAFD with respect to different

numbers of changes in a given sequence employing different values

of a. Note that, compared to methods that perform DNA

sequence-to-signal mapping using individual nucleotides, a deter-

mines the robustness of our method with respect to subtle

differences between the sequences being evaluated. In this work,

we chose to employ a~3 since this value allows us to distinguish

between different numbers of signal changes.

In a sense, substitution matrices may be considered equivalent

to simple–DNA-mapping functions. Where the former assigns a

value to the difference between two nucleotides on different DNA

sequences, the latter replaces the nucleotide with a number.

Therefore, when comparing two mapped sequences, the difference

between two nucleotides would be represented by their corre-

sponding numbers. It becomes evident then that simple-mapping

functions reduce the degrees of freedom when element-wise

comparisons are made. The main advantage when mapping DNA

is the ability to treat it as a series, which allows for the use of DSP

and other concepts such as context information-dependent

entities.

In this paper, we gathered contextual information using the NN

algorithm, where each nucleotide value is considered along with its

neighboring nucleotides. This approach, albeit still unidimension-

al, increases the degrees of freedom with respect to simple–DNA-

mappings while also including contextual information. Although

Figure 3. Depiction of phylogenetic trees for the ribosomal 18S
subunit gene of 26 selected species. (A and B) Trees computed
with GAFD and NW, respectively. (C) Maximum parsimony-boot-
strapped Phylip tree. The species assessed and their corresponding
KEGG entries are: Acyrthosiphon pisum (api:100145839), Aedes aegypti
(aag:AaeL_AAEL009747), Apis mellifera (ame:552726), Bos taurus
(bta:326602), Caenorrhabditis elegans (cel:Y57G11C.16), Canis familiaris
(cfa:403685), Ciona intestinalis (cin:100182116), Danio rerio (dre:192300),
Drosophila melanogaster (dme:Dmel_CG8900), Equus caballus
(ecb:100052654), Homo sapiens (hsa:6222), Macaca mulatta
(mcc:713939), Monodelphis domestica (mdo:100027117), Mus musculus
(mmu:20084), Nasonia vitripennis (nvi:100117049), Nematostella vecten-
sis (nve:NEMVE_v1g245261), Oryza sativa (osa:4334407), Pan troglodytes
(ptr:455055), Populus trichocarpa (pop:POPTR_551159), Rattus norvegi-
cus (rno:100360679), Ricinus communis (rcu:RCOM_0557270), Saccharo-
myces cerevisiae (sce:YDR450W), Sus scrofa (ssc:396980), Vitis vinifera
(vvi:100245272), Xenopus tropicalis (xla:414719), Zea mays
(zma:100285246). The trees are color-coded for the relevant phyloge-
netic groups, namely blue for eutherian mammals, green for plants and
brown for insects. S. cerevisiae is bolded as reference.
doi:10.1371/journal.pone.0110954.g003
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this is only a ‘‘proof of concept’’ study, we hypothesize that the

referring context may not be only local, but also distant.

Moreover, it may contain the sequence information itself as well

as data from different annotation levels according to related

known ontology or metadata. Adding the contextual elements will

improve analysis by encompassing the DNA grammar into the

structural information.

GSP distance computations using GAFD
To evaluate the performance of GAFD with respect to existing

methods for computing sequence distances, we assessed the

similarity of unrooted phylogenetic trees generated by the NJ

method [51,52] (equal variance and independence of evolutionary

distance estimates) using distance matrices computed with GAFD

and NW (nuc44 scoring matrix, gap penalty of 8, and use of Jukes-

Cantor for the maximum likelihood estimate of the number of

substitutions) of various DNA sequences belonging to different

organisms. In addition, we computed phylogenetic trees employ-

ing the Phylip method using ordinary parsimony and without

randomization, with a search for the best 100 trees. The Phylip

method was fed with sequences aligned using ClustalW with gap

open penalty = 10, gap extension penalty = 0.05, and no weight

transition. The resulting tree typologies were compared using the

previously described cluster overlapping score k.

Examination of the ribosomal S18 subunit gene. Two

experiments were performed by analyzing two sets of DNA

sequences corresponding to the ribosomal S18 subunit (KEGG

orthology K02964). This gene was selected because it is the

broadest evolutionary marker discernable between all eukaryotes.

In the first experiment, three basic clusters were built, namely

mammals, insects, and plants, according to general taxonomy.

The resulting phylogenetic trees generated from the distance

matrices computed by the three methods are depicted in Figure 3.

Note that the eutheryan (a mammal subgroup) were grouped in

GAFD, NW, and Phylip. However, the insects were grouped

differently by the three methods (e.g., Nasonia vitripennis was

located far outside the other insects according to GAFD and

Phylip). These results are consistent with the known complexity of

insect genetics due to horizontal transference, spurious recombi-

nation, and high variability rate. Note that NW represented the

outside eukaryote Saccharomyces cerevisiae appropriately, while

GAFD placed it incorrectly among the plant group. Phylip placed

this sequence in an outer group next to Monodelphis domestica and

N. vitripennis. Although M. domestica was expected to be placed

Figure 4. Phylogenetic trees generated by NW and GAFD for two selected orthologies: K14221 (tRNA-Asp) and K14224 (tRNA-GLU).
The trees have been simplified to depict similarities in clustering. Each color represents a particular organism cluster: Orange: S. cerevisiae, red: A.
gossypii, green: L. thermotolerans, blue: D. hansenii.
doi:10.1371/journal.pone.0110954.g004

Table 2. Similarity scores of tRNAs.

KEGG orthology Gene name NS A B C

K14218 tRNA-Ala 68 85.13 80.86 95.21

K14219 tRNA-Arg 90 84.58 81.98 91.86

K14220 tRNA-Asn 46 86.18 80.83 89.33

K14221 tRNA-Asp 55 96.54 91.00 91.11

K14222 tRNA-Cys 24 91.27 86.26 93.00

K14223 tRNA-Gln 43 88.20 84.83 86.89

K14224 tRNA-Glu 65 88.22 89.53 92.00

K14225 tRNA-Gly 87 86.00 83.07 87.65

K14226 tRNA-His 33 79.80 79.97 93.64

K14227 tRNA-Ile 59 89.39 89.46 94.36

K14228 tRNA-Leu 91 88.85 90.53 91.74

K14229 tRNA-Lys 69 86.94 93.94 88.64

K14230 tRNA-Met 38 86.56 91.20 90.71

K14231 tRNA-Phe 44 85.80 86.03 89.64

K14232 tRNA-Pro 48 76.52 83.81 85.63

K14233 tRNA-Ser 84 89.88 90.99 95.30

K14234 tRNA-Thr 66 79.89 79.23 94.35

K14235 tRNA-Trp 33 92.94 90.08 88.09

K14236 tRNA-Tyr 41 88.55 86.82 92.96

K14237 tRNA-Val 74 83.73 85.95 95.69

Mean 86.75 86.32 91.39

Std 4.48 4.28 2.92

Cluster overlapping scores k for the comparison of trees generated with (A) GAFD and NW, (B) GAFD and Phylip, and (C) NW and Phylip.
The species included in the comparisons are: Ashbya gossypii, Ailuropoda melanoleuca, Arabidopsis thaliana, Debaryomyces hansenii, Danio rerio, Equus caballus, Homo
sapiens, Macaca mulatta, Mus musculus, Lachancea thermotolerans, Populus trichocarpa, Physcomitrella patens, Rattus norvegicus, Saccharomyces cerevisiae. NS = Number
of sequences.
doi:10.1371/journal.pone.0110954.t002
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in an external group within mammals, it was placed in the outer

branch of all trees. Lastly, with the exception of S. cerevisiae in

GAFD, all plants were properly clustered.

In the second experiment, all entries of the aforementioned

orthology were compared. A total of 149 organisms and 231

entries were analyzed, resulting in mean similarity scores of

k~93:12 between GAFD and NW, k~94:19 for GAFD and

Phylip, and k~95:75 for NW and Phylip.
Assessment of other evolutionary markers. In this

experiment, we selected evolutionary markers corresponding to

coding (i.e., 21 tRNA synthetases and 2 ribosomal proteins) and

non-coding (i.e., 20 tRNAs and 2 rRNAs) genes. We included

species present in all KEGG orthologies and then selected all

entries belonging to these organisms. We constructed and

compared the phylogenetic trees generated using GAFD, NW,

and Phylip. Figure 4 depicts two examples of trees generated by

NW and GAFD for two selected orthologies (tRNA-Asp and

tRNA-GLU). Note the similarity in gene clustering by GAFD and

NW. Tables 2, 3, and 4 list the similarity scores k for the non-

coding tRNAs, coding tRNA synthetases, and coding/non-coding

ribosomal genes, respectively. The mean scores for the non-coding

genes were k~0:85+0:06, while k~0:82+0:06 was exhibited for

the coding genes. In general, the cluster overlapping scores

Table 3. Similarity scores for tRNA synthetase genes.

KEGG orthology Gene name NS A B C

K01872 Alanyl-tRNA synthetase 24 85.11 80.07 84.71

K01887 Arginyl-tRNA synthetase 23 76.14 93.67 79.31

K01893 Asparaginyl-tRNA synthetase 32 89.44 91.00 85.96

K01876 Aspartyl-tRNA synthetase 29 87.88 91.10 86.28

K01883 Cysteinyl-tRNA synthetase 25 75.75 81.38 84.75

K01886 Glutaminyl-tRNA synthetase 16 76.87 80.29 85.32

K01885 Glutamyl-tRNA synthetase 22 93.44 89.99 90.27

K01880 Glycyl-tRNA synthetase 18 80.30 82.07 68.41

K01892 Histidyl-tRNA synthetase 23 82.39 80.93 93.00

K01870 Isoleucyl-tRNA synthetase 29 73.20 84.47 85.99

K01869 Leucyl-tRNA synthetase 28 84.43 80.77 78.68

K04567 Lysyl-tRNA synthetase, class II 24 72.61 83.08 75.03

K01874 Methionyl-tRNA synthetase 30 87.02 90.63 93.46

K01889 Phenylalanyl-tRNA synthetase 30 82.94 77.28 91.94

K01890 Phenylalanyl-tRNA synthetase 16 93.35 77.13 77.84

K01881 Prolyl-tRNA synthetase 23 84.01 87.98 79.11

K01875 Seryl-tRNA synthetase 30 74.98 73.18 90.28

K01868 Threonyl-tRNA synthetase 35 89.14 73.77 78.12

K01867 Tryptophanyl-tRNA synthetase 28 82.83 84.23 81.47

K01866 Tyrosyl-tRNA synthetase 30 79.04 73.57 87.78

K01873 Valyl-tRNA synthetase 25 78.60 86.56 78.30

Mean 82.36 83.01 83.62

Std 6.10 6.01 6.36

Cluster overlapping scores k for the comparison of the phylogenetic trees generated with (A) GAFD and NW, (B) GAFD and Phylip, and (C) NW and Phylip.
NS = Number of sequences.
doi:10.1371/journal.pone.0110954.t003

Table 4. Similarity scores for ribosomal protein genes and rRNAs.

KEGG orthology Gene name NS A B C

K01982 Large subunit ribosomal RNA 65 75.33 93.57 81.04

K01979 Small subunit ribosomal RNA 64 76.99 87.50 81.13

K02963 Ribosomal protein S18 22 81.19 79.31 84.85

K02964 Ribosomal protein S18e 27 89.18 90.45 96.32

Mean 80.67 87.71 85.84

Std 5.36 5.31 6.25

Cluster overlapping scores k for the comparison of the phylogenetic trees generated with (A) GAFD and NW, (B) GAFD and Phylip, and (C) NW and Phylip.
NS = Number of sequences.
doi:10.1371/journal.pone.0110954.t004
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between the methods were relatively high, indicating that GAFD

can group similar sequences effectively.

We assessed statistical significance by applying the non-

parametric Wilcoxon Signed-Rank test, which does not require

any assumptions regarding the normality of the data distribution.

The null hypothesis for our tests is that the median difference k̂k
between the similarity of pairs of evaluations is not significant

(H0:k̂k1~k̂k2), while the alternative hypothesis is the statistically

significant difference between both medians (H1:k̂k1=k̂k2). The

resulting p-values for each test at a significance level of 0:05 are

listed in Table 5. No significant differences were observed between

the three methods when examining coding sequences. However,

for non-coding genes, GAFD performed differently from the other

two methods. This may be related to the fact that coding genes

appear to have a certain periodic structure [11,16–23] which will

affect GAFD since it also considers the frequency content of the

mapped sequence.

Figure 5 depicts the times required to compute the distance

matrices using NW and GAFD on a desktop PC (i-Core 7, 2GHz,

6 GB RAM) for different numbers of sequences. GAFD performed

faster than NW despite the implementation of high level

MATLAB code. We believe that this performance could be

improved by employing low level coding (e.g., C++) and tools such

as GPU and parallel computing. A comparison of computer times

for Phylip was not necessary because this method does not

compute a similarity matrix.

Similar to other methods (e.g., [2–11]), the values presented in

Table 1 are completely arbitrary. We expect that use of different

mapping values will result in different distance scores. To evaluate

the sensitivity of GAFD with respect to the dinucleotide values, we

compared the phylogenetic trees corresponding to KEGG

orthology K02964, generated using NW and Phylip, against

20,000 trees generated with GAFD using different random

arbitrary dinucleotide values. The mean similarity scores were

91:07+4:57 and 91:13+3:54 when compared to NW and Phylip,

respectively.

Several elements may impact GAFD results to different extents.

Even if they are related, these elements can be grouped according

to the source of two critical phenomena, namely those related to

the method, such as sequence-to-signal mapping and zero

padding, and those related to the nature of the genomic grammar.

Regarding the former, GAFD sequence-to-signal mapping is based

on uniformly-euclidean unidimensional mappings. Even though

comparisons will sometimes yield different results under particular

sequence conditions, higher-order NN mappings are very difficult

to implement and analyze. Additionally, since biologically

meaningful sequences may not be of the same length, power

spectra comparisons are influenced by zero padding. Regarding

the latter, genomic information is typically full of challenging

sequences, i.e. palindromes, inversions, translocations, repeats,

duplications, and indels. All of these will exhibit distinct

characteristics in power spectra that will in turn lead to

inconsistencies when several sequence comparisons are performed.

For example, differences among inversions, translocations, and

palindromes may not be observed, while repetitions and duplica-

tions will display specific frequency peaks. How the interaction

between all of these elements affects GAFD analysis is outside the

scope of this paper. Moreover, NN mapping using context-

sensitive information and DNA distance determination through

power spectra comparison should be explored in the future.

Table 5. Statistical significance test results.

Type k̂k1 k̂k2 H0 p-value

NC GAFD-NW GAFD-Phy Non rejected 4.56 61021

NC GAFD-NW NW-Phy Rejected 7.76 61023

NC GAFD-Phy NW-Phy Rejected 6.90 61024

C GAFD-NW GAFD-Phy Non rejected 3.70 61021

C GAFD-NW NW-Phy Non rejected 1.76 61021

C GAFD-Phy NW-Phy Non rejected 2.80 61021

Wilcoxon Signed-Rank Test was performed to determine the statistical significance of comparing the means of the similarity scores k̂k for each pair of methods on coding
(C) and non-coding (NC) sequences.
Significance level of 0.05. Phy = Phylip.
doi:10.1371/journal.pone.0110954.t005

Figure 5. Times required to determine the distance matrix
using NW and GAFD. A 10,000 nt random sequence was created.
Using this sequence as template, another was created that included 10
random substitutions. The previously created sequence then became a
template for the creation of a new sequence with 10 new random
substitutions in non-mutated bases. The process was repeated until
20% of the sequence had changed. Then, both NW and GAFD were
used to build distance matrices with an increasing number of
sequences and the computer time was registered. Results are plotted
on a logarithmic scale.
doi:10.1371/journal.pone.0110954.g005
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GAFD is not intended for sequence alignment, but rather for

comparing them in another domain and rendering a similarity

value. We believe that, after refinement, this approach will enable

us to discover relationships between sequences that are not bound

to the sequence itself, but to specific underlying patterns in the

genomic grammar that is yet to be fully understood.

GSP distance descriptors
To explore the three-dimensional space generated by the

proposed descriptors (R,C,D), we performed an experiment in

which we perturbed a randomly generated DNA sequence Sr that

generates a DNA signal ŜSr of length b~20. Using Sr as the

‘‘mother sequence’’, we generated all the DNA sequences and

signals corresponding to all possible combinations of one, two, and

three changes, considering all possible types of changes (i.e.,

substitutions, deletions, and insertions). Every pair of signals

generated a point (R,C,D) in the this space (Figure 6). Our results

from the comparisons corresponding to one change were located

near the origin, while those corresponding to two or three changes

were positioned at increasing distance from the origin according to

the number of changes. Additionally, the points corresponding to

substitutions were well-separated from those corresponding to

insertions and deletions (Figures 6 D and 6 E). These results

demonstrate that GAFD can characterize the type of change

present using a classification technique that combines several

descriptors. However, coherence exhibited the poorest results

since a lack of specificity for detecting insertions and substitutions

was observed. This result is supported by Sims, et al. [53], where it

was reported that optimal resolutions (length of b) proved critical

for genomic comparisons. Moreover, studies have shown that

coherence AR models depend highly on the parameters employed

[54].

As a preliminary domain search assay, we conducted another

experiment using real data (i.e., ribosomal S18 subunit sequences

from the previous 26 selected species). The signal corresponding to

the Homo sapiens sequence was segmented into non-overlapping

fragments of length b~20 to generate a ‘‘signal dictionary’’. From

the dictionary, seven entries were selected at random and

compared against the complete signal set employing a sliding

window of length b. For each position within the sliding window,

we computed the proposed similarity descriptors. We considered

the segment of signal contained within the sliding window as

similar to that from the dictionary if the correlation and coherence

descriptors were larger than 0.9 and the comparison derivative

was less than 0.8. The resulting alignment schematic is depicted in

Figure 7. Even when the fragments were selected randomly, our

results provide evidence that most mammals share similar

fragments. Note that the number of shared fragments decreases

as the sequences become less related to the original sequence (i.e.,

H. sapiens). Interestingly, insects shared the least number of

fragments. These data suggest that it may be possible to determine

biologically significant elements among compared sequences.

Figure 6. Depiction of the similarity space created with the three GSP distance descriptors. A random 20 nt sequence was created. Using
this sequence as a template, all possible combinations for up to three substitutions were created and measured against the template using the three
distance descriptors. The dots in A, B, and C correspond to the distances for one (red), two (blue), and three (green) substitutions, respectively. As
expected, the more substitutions present, the farther they scattered along the frequency peak. Subsequently, starting with the same template, all
possible combinations of insertions, deletions, and substitutions were created and measured similarly as aforementioned. The dots in D, E, and F
correspond to the distances for insertions (yellow), deletions (brown), and substitutions (green). The distance scatters shift between substitutions and
indels, which is especially evident in the Correlation and Derivative descriptors. The blue scatter on A through C is equal to the green scatter on D
through F.
doi:10.1371/journal.pone.0110954.g006

Figure 7. Schematic of the regions where selected entries of the signal dictionary were found in the different species.
doi:10.1371/journal.pone.0110954.g007
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The use of alternative descriptors and classification techniques

for grouping data is the subject of future work as it may be applied

towards domain search and contig assembly.

Conclusions

We present a novel GSP alignment-free method for determining

the distance between two DNA sequences with a performance

comparable to current methods such as Needleman-Wunsch and

Phylip. Additionally, we evaluated three DSP-based distance

metrics for use as descriptors for categorizing differences between

pairs of DNA signal fragments. This work provides a foundation

for the development of methods for domain search and the

characterization of DNA sections.
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