Abstract
In the present study, the receptor binding potential of transferrin (Tf) was linked to an antibody binding specificity. Human Tf was fused to mouse-human chimeric IgG3 at three positions: at the end of heavy chain constant region 1 (CH1), after the hinge, and after CH3. The resulting Tf-antibody fusion proteins were able to bind antigen and the Tf receptor. The CH3-Tf fusion protein showed no complement-mediated cytolysis but possessed IgG receptor I (Fc gamma RI) binding activity. Most importantly, all of the fusion proteins demonstrated significant uptake into brain parenchyma, with 0.3% of the injected dose of the hinge-Tf fusion protein rapidly targeted to the brain. Recovery of iodinated CH3-Tf fusion protein from the brain parenchyma demonstrated that the fusion proteins can cross the blood-brain barrier intact. The binding specificity of these fusion proteins can be used for brain delivery of noncovalently bound ligands, such as drugs and peptides, or for targeting antigens present within the brain.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. L., Abraham G. N. Characterization of the Fc receptor for IgG on a human macrophage cell line, U937. J Immunol. 1980 Dec;125(6):2735–2741. [PubMed] [Google Scholar]
- Baba T., Black K. L., Ikezaki K., Chen K. N., Becker D. P. Intracarotid infusion of leukotriene C4 selectively increases blood-brain barrier permeability after focal ischemia in rats. J Cereb Blood Flow Metab. 1991 Jul;11(4):638–643. doi: 10.1038/jcbfm.1991.115. [DOI] [PubMed] [Google Scholar]
- Bickel U., Yoshikawa T., Landaw E. M., Faull K. F., Pardridge W. M. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2618–2622. doi: 10.1073/pnas.90.7.2618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullard D. E., Bourdon M., Bigner D. D. Comparison of various methods for delivering radiolabeled monoclonal antibody to normal rat brain. J Neurosurg. 1984 Nov;61(5):901–911. doi: 10.3171/jns.1984.61.5.0901. [DOI] [PubMed] [Google Scholar]
- Butt A. M., Jones H. C., Abbott N. J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990 Oct;429:47–62. doi: 10.1113/jphysiol.1990.sp018243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canfield S. M., Morrison S. L. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J Exp Med. 1991 Jun 1;173(6):1483–1491. doi: 10.1084/jem.173.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chappel M. S., Isenman D. E., Everett M., Xu Y. Y., Dorrington K. J., Klein M. H. Identification of the Fc gamma receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9036–9040. doi: 10.1073/pnas.88.20.9036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciechanover A., Schwartz A. L., Dautry-Varsat A., Lodish H. F. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983 Aug 25;258(16):9681–9689. [PubMed] [Google Scholar]
- Crone C., Olesen S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 1982 Jun 3;241(1):49–55. doi: 10.1016/0006-8993(82)91227-6. [DOI] [PubMed] [Google Scholar]
- Dangl J. L., Wensel T. G., Morrison S. L., Stryer L., Herzenberg L. A., Oi V. T. Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J. 1988 Jul;7(7):1989–1994. doi: 10.1002/j.1460-2075.1988.tb03037.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffy K. R., Pardridge W. M. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 1987 Sep 8;420(1):32–38. doi: 10.1016/0006-8993(87)90236-8. [DOI] [PubMed] [Google Scholar]
- Duffy K. R., Pardridge W. M., Rosenfeld R. G. Human blood-brain barrier insulin-like growth factor receptor. Metabolism. 1988 Feb;37(2):136–140. doi: 10.1016/s0026-0495(98)90007-5. [DOI] [PubMed] [Google Scholar]
- Duncan A. R., Winter G. The binding site for C1q on IgG. Nature. 1988 Apr 21;332(6166):738–740. doi: 10.1038/332738a0. [DOI] [PubMed] [Google Scholar]
- Duncan A. R., Woof J. M., Partridge L. J., Burton D. R., Winter G. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature. 1988 Apr 7;332(6164):563–564. doi: 10.1038/332563a0. [DOI] [PubMed] [Google Scholar]
- Enns C. A., Sussman H. H. Similarities between the transferrin receptor proteins on human reticulocytes and human placentae. J Biol Chem. 1981 Dec 25;256(24):12620–12623. [PubMed] [Google Scholar]
- Fishman J. B., Rubin J. B., Handrahan J. V., Connor J. R., Fine R. E. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res. 1987;18(2):299–304. doi: 10.1002/jnr.490180206. [DOI] [PubMed] [Google Scholar]
- Friden P. M., Walus L. R., Musso G. F., Taylor M. A., Malfroy B., Starzyk R. M. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4771–4775. doi: 10.1073/pnas.88.11.4771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friden P. M., Walus L. R., Watson P., Doctrow S. R., Kozarich J. W., Bäckman C., Bergman H., Hoffer B., Bloom F., Granholm A. C. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science. 1993 Jan 15;259(5093):373–377. doi: 10.1126/science.8420006. [DOI] [PubMed] [Google Scholar]
- Goldstein G. W., Betz A. L. The blood-brain barrier. Sci Am. 1986 Sep;255(3):74–83. doi: 10.1038/scientificamerican0986-74. [DOI] [PubMed] [Google Scholar]
- Harbaugh R. E. Nerve growth factor as a potential treatment in Alzheimer's disease. Biomed Pharmacother. 1989;43(7):483–485. doi: 10.1016/0753-3322(89)90108-x. [DOI] [PubMed] [Google Scholar]
- Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
- Jefferies W. A., Brandon M. R., Hunt S. V., Williams A. F., Gatter K. C., Mason D. Y. Transferrin receptor on endothelium of brain capillaries. Nature. 1984 Nov 8;312(5990):162–163. doi: 10.1038/312162a0. [DOI] [PubMed] [Google Scholar]
- Larrick J. W., Fischer D. G., Anderson S. J., Koren H. S. Characterization of a human macrophage-like cell line stimulated in vitro: a model of macrophage functions. J Immunol. 1980 Jul;125(1):6–12. [PubMed] [Google Scholar]
- Morrison S. L., Canfield S., Porter S., Tan L. K., Tao M. H., Wims L. A. Production and characterization of genetically engineered antibody molecules. Clin Chem. 1988 Sep;34(9):1668–1675. [PubMed] [Google Scholar]
- Neuwelt E. A., Rapoport S. I. Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors. Fed Proc. 1984 Feb;43(2):214–219. [PubMed] [Google Scholar]
- Pardridge W. M., Buciak J. L., Friden P. M. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther. 1991 Oct;259(1):66–70. [PubMed] [Google Scholar]
- Pardridge W. M., Eisenberg J., Yang J. Human blood-brain barrier transferrin receptor. Metabolism. 1987 Sep;36(9):892–895. doi: 10.1016/0026-0495(87)90099-0. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M. Receptor-mediated peptide transport through the blood-brain barrier. Endocr Rev. 1986 Aug;7(3):314–330. doi: 10.1210/edrv-7-3-314. [DOI] [PubMed] [Google Scholar]
- Raub T. J., Newton C. R. Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells. J Cell Physiol. 1991 Oct;149(1):141–151. doi: 10.1002/jcp.1041490118. [DOI] [PubMed] [Google Scholar]
- Schneider C., Sutherland R., Newman R., Greaves M. Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9. J Biol Chem. 1982 Jul 25;257(14):8516–8522. [PubMed] [Google Scholar]
- Shin S. U., Friden P., Moran M., Morrison S. L. Functional properties of antibody insulin-like growth factor fusion proteins. J Biol Chem. 1994 Feb 18;269(7):4979–4985. [PubMed] [Google Scholar]
- Shin S. U., Morrison S. L. Expression and characterization of an antibody binding specificity joined to insulin-like growth factor 1: potential applications for cellular targeting. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5322–5326. doi: 10.1073/pnas.87.14.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin S. U., Morrison S. L. Production and properties of chimeric antibody molecules. Methods Enzymol. 1989;178:459–476. doi: 10.1016/0076-6879(89)78034-4. [DOI] [PubMed] [Google Scholar]
- Smith R. I., Morrison S. L. Recombinant polymeric IgG: an approach to engineering more potent antibodies. Biotechnology (N Y) 1994 Jul;12(7):683–688. doi: 10.1038/nbt0794-683. [DOI] [PubMed] [Google Scholar]
- Tao M. H., Smith R. I., Morrison S. L. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J Exp Med. 1993 Aug 1;178(2):661–667. doi: 10.1084/jem.178.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triguero D., Buciak J., Pardridge W. M. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem. 1990 Jun;54(6):1882–1888. doi: 10.1111/j.1471-4159.1990.tb04886.x. [DOI] [PubMed] [Google Scholar]
- Turkewitz A. P., Harrison S. C. Concentration of transferrin receptor in human placental coated vesicles. J Cell Biol. 1989 Jun;108(6):2127–2135. doi: 10.1083/jcb.108.6.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]