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Abstract

Object: The aim of this study was to determine the suitability of magnetic resonance spectroscopy (MRS) for screening brain
tumors, based on a systematic review and meta-analysis of published data on the diagnostic performance of MRS.

Methods: The PubMed and PHMC databases were systematically searched for relevant studies up to December 2013. The
sensitivities and specificities of MRS in individual studies were calculated and the pooled diagnostic accuracies, with 95%
confidence intervals (CI), were assessed under a fixed-effects model.

Results: Twenty-four studies were included, comprising a total of 1013 participants. Overall, no heterogeneity of diagnostic
effects was observed between studies. The pooled sensitivity and specificity of MRS were 80.05% (95% CI = 75.97%–83.59%)
and 78.46% (95% CI: 73.40%–82.78%), respectively. The area under the summary receiver operating characteristic curve was
0.78. Stratified meta analysis showed higher sensitivity and specificity in child than adult. CSI had higher sensitivity and SV
had higher specificity. Higher sensitivity and specificity were obtained in short TE value.

Conclusion: Although the qualities of the studies included in the meta-analysis were moderate, current evidence suggests
that MRS may be a valuable adjunct to magnetic resonance imaging for diagnosing brain tumors, but requires selection of
suitable technique and TE value.
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Introduction

The early detection of brain tumors is associated with significant

clinical benefits, but presents a diagnostic challenge. A total of

57,100 new cases of brain tumors were diagnosed in Europe in

2012, and 45,000 deaths were attributed to brain tumors, half of

which were glioblastomas [1]. Information on histological grade

and tissue diagnosis are important for the clinical management of

brain cancers, and are closely related to survival probability.

However, there are two major limitations to the histopathological

grading of brain tumors, especially gliomas. Firstly, although

stereotactic biopsy can adequately represent pathological grading

of the whole tumor, potential sampling error of biopsy was

inherent. Secondly, it is very difficult to accurate assess residual

tumor tissue after cytoreductive surgery [2]. Contrast-enhanced

magnetic resonance imaging (MRI) is the current gold standard

for guiding neurosurgeons when obtaining biopsy tissue for the

diagnosis of brain tumors. However, the results of this technique

can sometimes be ambiguous, and differentiating progressive or

recurrent brain tumors from radiation-induced injury is difficult

using MRI [3]. Proton magnetic resonance spectroscopy (MRS)

provides important metabolic information of tumours, such as N-

acetyl-aspartate (NAA), choline (Cho), creatine (Cr) at different

MRS echo times (TEs), and showed a major advantage without

electromagnetic radiation exposure as an imaging technique for

guiding brain tumor biopsy procedures [4].

Several recent studies have reported the utility of MRS for brain

tumor assessment, with the ability to differentiate between high-

grade and low-grade gliomas [5], and between neoplastic and non-

neoplastic brain lesions [6]. However, it is difficult todraw

conclusions based on individual studies because variations instudy

qualities, and different inpatient populations and study designs

may cause heterogeneity amongstudy results. To overcome the

shortcomings of individual studies, we performed a systematic

review and meta-analysis of published data on the diagnostic

performanceof MRS for detecting, differentiating, and grading

brain tumors, especially gliomas, to determine the diagnostic value

of MRS.
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Materials and Methods

Data sources and search strategy
Electronic searches of the Medline (using PubMed as the search

engine) and ProQuest Health & Medical Complete databases were

conducted using the terms ‘magnetic resonance spectroscopy’,

‘brain tumor or gliomas’ and ‘sensitivity and specificity’ to identify

appropriate studies published in English prior to December 30,

2013. Included studies must have used MRS to detect the

occurrence, grade, recurrence, or transformation of brain tumors.

Study selection
Two authors independently screened the search results by title

and abstract. They obtained the full text of each manuscript and

excluded studies with overlapping data and studies that did not

provide both sensitivity and specificity information for MRS

evaluation of brain tumors. Author names, institutions, publication

dates, tumor and assessment types were collected for all studies. All

the studies were evaluated independently and discussed by the

authors until a consensus was reached.

Data extraction and quality assessment
Two authors independently extracted the data from each study,

including information on the first author, year of publication,

country, sample size, tumor and assessment type, and sensitivity

and specificity of MRS for brain tumors, as well as the risk of bias

according to pre-specified criteria from the Cochrane Collabora-

tion’s tool for assessing risk of bias [7]. The following risk-of-bias

items were evaluated independently by two authors using

standardized methods: sequencing generation, allocation conceal-

ment, blinding of patients and study personnel, blinding of

outcome assessment, incomplete outcome data, selective reporting,

and other biases.

Data synthesis and statistical analysis
In order to evaluate the diagnostic accuracy of MRS for brain

tumors, we calculated the sensitivity, specificity, positive likelihood

ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio

(DOR) and 95% confidence intervals (CI). The result of pathologic

tissue diagnosis was the reference standard in all cases. Due to the

different diagnostic purpose in multiple studies, different positive

sets were defined. For tumor recurrence studies, recurrence was

considered as positive and postoperative necrosis was negative. For

tumor grading studies, high-grade gliomas (III–IV grade) were

positive and low-grade gliomas (I–II) were negative. Statistical

heterogeneities in summary effects of PLR, NLR, and DOR were

tested in all data using Cochran’s Q test, which approximately

follows a x2 distribution with k21 degrees of freedom (where k is

the number of studies included) [8]. The statistic I2 = ((Q2(k21))/

Q)6100% was also assessed. I2 ranged from 0–100%, with 0–

25%, 25–50%, 50–75%, and 75–100% indicating low, moderate,

high, and very high degrees of heterogeneity, respectively [9]. We

considered a p value ,0.05 to indicate significant heterogeneity.

Values of diagnostic effects were evaluated usinga fixed-effects or

Figure 1. Flow chart showing the process of studies retrieved.
doi:10.1371/journal.pone.0112577.g001

Diagnostic Performance of MRS: Meta-Analysis

PLOS ONE | www.plosone.org 2 November 2014 | Volume 9 | Issue 11 | e112577



T
a

b
le

1
.

C
h

ar
ac

te
ri

st
ic

s
o

f
al

l
in

cl
u

d
e

d
st

u
d

ie
s.

S
tu

d
y

C
e

n
te

r
P

e
ri

o
d

C
a

n
ce

r
T

y
p

e
T

P
F

P
F

N
T

N
T

e
ch

n
iq

u
e

M
e

th
o

d
(m

s)
C

u
to

ff

R
e

d
d

y
e

t
al

(2
0

1
3

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
R

e
cu

rr
e

n
t

2
1

2
7

–
–

–

P
am

ir
e

t
al

(2
0

1
3

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
R

e
si

d
u

al
1

2
0

2
6

SV
LT

E
=

1
3

5
C

h
o

/C
r

q
2

0
%

Sa
h

in
e

t
al

(2
0

1
3

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
6

4
0

1
0

C
SI

ST
E

=
3

0
C

h
o

/C
r

=
1

.3

Se
e

g
e

r
e

t
al

(2
0

1
3

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
R

e
cu

rr
e

n
t

1
6

4
7

1
3

C
SI

LT
E

=
1

3
5

C
h

o
/C

r
=

2
.3

3

A
m

in
e

t
al

(2
0

1
2

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
R

e
cu

rr
e

n
t

1
1

0
7

6
SV

ST
E

=
3

0
C

h
o

/C
r

=
1

.5

C
ri

si
e

t
al

(2
0

1
3

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
D

e
te

ct
io

n
1

8
3

5
1

5
SV

ST
E

=
3

5
–

Li
u

e
t

al
(2

0
1

2
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

1
9

1
3

9
SV

LT
E

=
1

4
4

C
h

o
/C

r
=

2
.0

1

Li
u

e
t

al
(2

0
1

2
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

1
6

1
6

9
SV

LT
E

=
1

4
4

C
h

o
/N

A
A

=
2

.4
9

Li
u

e
t

al
(2

0
1

2
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

1
7

3
5

7
SV

LT
E

=
1

4
4

N
A

A
/C

r
=

0
.9

7

P
e

n
g

e
t

al
(2

0
1

2
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

D
e

te
ct

io
n

1
9

6
3

1
3

C
SI

LT
E

=
1

4
4

C
h

o
/C

r
=

3
.1

6

P
e

n
g

e
t

al
(2

0
1

2
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

D
e

te
ct

io
n

1
8

2
4

1
7

C
SI

LT
E

=
1

4
4

C
h

o
/N

A
A

=
2

.1
3

P
e

n
g

e
t

al
(2

0
1

2
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

D
e

te
ct

io
n

1
4

2
8

1
7

C
SI

LT
E

=
1

4
4

C
h

o
/C

h
o

-n
=

1
.2

8

G
u

ill
e

vi
n

e
t

al
(2

0
1

1
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

R
e

cu
rr

e
n

t
5

0
3

1
3

SV
T

E
=

3
5

/1
4

4
(C

h
o

/N
A

A
-C

h
o

/C
r)

/(
C

h
o

/N
A

A
)

=
0

.0
4

6

Z
o

u
e

t
al

(2
0

1
1

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
1

5
0

3
1

2
C

SI
LT

E
=

1
3

5
N

A
A

/C
h

o
=

0
.2

6
5

,
A

D
C

=
1

1
1

8
.1
6

1
0

2
6

m
m

2
/s

Se
rv

e
r

e
t

al
(2

0
1

1
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

5
4

0
5

1
5

C
SI

LT
E

=
1

3
5

C
h

o
/N

A
A

=
1

.7
8

P
ra

t
e

t
al

(2
0

1
0

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
R

e
cu

rr
e

n
t

1
1

1
0

1
2

–
–

–

Z
e

n
g

e
t

al
(2

0
1

1
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

2
1

2
4

1
0

C
SI

LT
E

=
1

4
4

C
h

o
/C

r
=

2
.0

4

Z
e

n
g

e
t

al
(2

0
1

1
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

2
2

4
3

8
C

SI
LT

E
=

1
4

4
C

h
o

/N
A

A
=

2
.2

0

Z
e

n
g

e
t

al
(2

0
1

1
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

G
ra

d
e

1
9

4
6

8
C

SI
LT

E
=

1
4

4
N

A
A

/C
r

=
0

.7
2

Se
n

ft
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
2

8
1

7
8

1
0

C
SI

LT
E

=
1

4
4

C
h

o
m

e
a

n
=

1
.5

1

Se
n

ft
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
3

1
6

5
2

1
C

SI
LT

E
=

1
4

4
C

h
o

m
a

x
=

2
.0

2

Se
n

ft
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
2

6
1

4
1

0
1

3
C

SI
LT

E
=

1
4

4
C

E

Se
n

ft
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
2

8
9

8
1

8
C

SI
LT

E
=

1
4

4
C

h
o

/C
r

=
0

.5
8

H
la

ih
e

l
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
M

e
ta

st
as

e
s

4
1

1
1

5
SV

/C
SI

LT
E/

ST
E

=
3

2
/1

3
6

C
h

o
/C

r
=

2
.4

H
la

ih
e

l
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
M

e
ta

st
as

e
s

5
8

0
8

SV
/C

SI
LT

E/
ST

E
=

3
2

/1
3

6
C

h
o

/C
r

=
1

.7

H
la

ih
e

l
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
M

e
ta

st
as

e
s

2
5

3
1

1
SV

/C
SI

LT
E/

ST
E

=
3

2
/1

3
6

rC
B

V
=

2

H
la

ih
e

l
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
M

e
ta

st
as

e
s

2
7

3
9

SV
/C

SI
LT

E/
ST

E
=

3
2

/1
3

6
rC

B
V

=
1

.7
5

H
la

ih
e

l
e

t
al

(2
0

0
9

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
M

e
ta

st
as

e
s

4
7

1
9

SV
/C

SI
LT

E/
ST

E
=

3
2

/1
3

6
rC

B
V

=
1

.5

Z
e

n
g

e
t

al
(2

0
0

7
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

R
e

cu
rr

e
n

t
1

8
0

1
9

C
SI

LT
E

=
1

4
4

C
h

o
/C

r
=

1
.7

1

P
al

u
m

b
o

e
t

al
(2

0
0

6
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

R
e

cu
rr

e
n

t
1

7
1

2
1

0
SV

LT
E

=
1

4
4

C
h

o
/C

r
=

2
.0

Fa
ye

d
e

t
al

(2
0

0
6

)
Si

n
g

le
A

d
u

lt
G

lio
m

as
G

ra
d

e
1

7
2

1
1

0
SV

ST
E

=
3

0
C

h
o

/C
r

=
1

.5
6

Fl
o

e
th

e
t

al
(2

0
0

5
)

Si
n

g
le

A
d

u
lt

G
lio

m
as

D
e

te
ct

io
n

3
4

3
0

1
3

SV
LT

E
=

1
3

5
–

La
w

e
t

al
(2

0
0

3
)

Si
n

g
le

A
d

u
lt

/C
h

ild
G

lio
m

as
G

ra
d

e
1

1
7

6
3

4
4

C
SI

ST
E

=
6

C
h

o
/C

r
=

1
.0

8

W
an

g
e

t
al

(1
9

9
5

)
Si

n
g

le
C

h
ild

A
st

ro
cy

to
m

a
D

e
te

ct
io

n
1

0
1

1
1

4
SV

LT
E

=
1

3
5

/2
7

0
–

Diagnostic Performance of MRS: Meta-Analysis

PLOS ONE | www.plosone.org 3 November 2014 | Volume 9 | Issue 11 | e112577



random-effects model, depending on the p value of the hetero-

geneity test. A summary receiver operating characteristic (SROC)

curve was generated based on the sensitivity and specificity of each

study for assessing the diagnostic accuracy. Linear regression of

the logits of the sensitivity (Se) and specificity (Sp) was used to fit

the SROC curve, through the equation D = a+b6S, where

D = logit(Se)2logit(12Sp) = log(OR) and S = logit(Se)+logit(12

Sp), a is the intercept and b is the regression coefficient estimated

in the regression equation. D represents the diagnostic log-odds

ratio that relates to the test’s diagnostic accuracy for discriminating

between disease-positivity and negativity, depending on the

threshold used. S represents the threshold for classifying a test as

positive. The closer b is to 0, the more evidence exists for a lack of

significant heterogeneity with respect to OR. If b differs from 0,

the OR is dependent on the threshold used. The SROC curve can

be fit weighted by the inverse of the variance of the logarithm of

OR from the individual studies corresponding to the area under

the SROC curve (AUC). Based on the SROC, when Se equals Sp,

where Se = exp(a/2)/[1+exp(a/2)] and 12Sp = 1/[1+exp(a/2)],

Q* = Se = 12Sp was estimated to represent the diagnostic

threshold at which the probability of a correct diagnosis was

constant for all subjects. Funnel plot analyses and Egg’s test were

used to evaluate publication bias. All statistical tests were

performed using mada package in R [10].

Results

Study characteristics
A total of 54 studies were identified after filtering titles and

abstracts, and four multi-centre studies including pattern recog-

nition studies was retrieved from PubMed. Finally, full texts of 48

studies were obtained. 24 studies were excluded based on the

inclusion criteria, including two studies that were reviews, five

studies that did not report the sensitivity and specificity of MRS for

brain tumor diagnosis, and seventeen studies that did not use MRS

to assess the tumor. The systematic literature search yielded 24

studies including 1013 participants (605 cases and 408 controls,

Figure 1). The studies originated from 10 countries or regions

(including the USA, Turkey, China, Japan, Norway, Spain,

France, Germany, Italy and Egypt) and were published between

1995 and 2013. The sample sizes of the included studies ranged

from 12–160 (mean 40).

All the included studies evaluated the diagnostic accuracy of

MRS for the detection or grading of brain tumors. Twenty-two

studies assessed gliomas [2,11,12,13,14,15,16,17,18,19,20,21,22,

23,24,25,26,27,28,29,30,31], two study assessed ependymomas

and primitive neuroectodermal tumors [32,33]. Seven studies

evaluated the diagnostic power of recurrence [11,14,15,19,22,

26,27], nine studies evaluated the grade [2,13,17,20,21,23,24,

28,31], five studies evaluated the detection [16,18,29,32,33], one

evaluated residual tumor [12], and two evaluated tumor metas-

tases [25,30]. The detailed diagnostic power are shown in Table 1.

Exploration of heterogeneity and sensitivity analysis
We assessed the risk of bias for each study, and the detailed

standard and results for each item of bias are shown in Table S1

and Figure S1. The risk of bias is summarized in Figure 2A. In

general, the risk of bias was low or unclear in most studies for

many assessed items. Six studies stated that the sequences of

participants were generated randomly and were therefore defined

as low risk. The sponsors of 30%–67% of studies had authorship

and were not involved in data collection, assessment of tumors, or

interpretation of the outcomes. The sensitivities and specificities of

all the different diagnostic methods were reported in 50% of
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studies, indicating no selective reporting. Three studies were

reported to be free of other sources of bias.

In order to evaluate the heterogeneity of the diagnostic effects of

MRS, we performed heterogeneity tests for PLR, NLR, and DOR

(Table 2). No significant heterogeneity of diagnostic effects was

observed (p.0.05, I2 = 0%), as described in Table 2. We therefore

adopted a fixed-effects model for all measures in the meta-analysis.

Funnel plots were used to demonstrate the effects of small study

size for each diagnostic imaging modality, to assess publication

bias by examining the relationship between the effect measure (log

DOR) and its standard error. As shown in Figure 2B, relatively

symmetrical funnel plots suggested potential publication bias in

five of the 24 studies, which fell outside the funnel. Publication bias

was evaluated using Egg’s test, which found no significant

differences (p = 0.40). This suggests that there was no trend

towards higher levels of test accuracy among studies with smaller

sample sizes.

Meta-regression analysis was used to assess factors affecting the

diagnostic accuracy of MRS. We suspected that different tumor

types, diagnostic purposes, patient period, technique of MRS and

TE could affect the sensitivity and false positive rate of tumor

diagnosis. We therefore used true and false positive rates as

responses and studied whether the above five factors can affect the

diagnostic accuracy through meta-regression analyses, respective-

ly. As shown in Table 3, the p values for the tumor type,

diagnostic purpose, MRS technique and TE in the fixed-effects

model were not significant for true positive rate or false positive

rate. However, periods of patient had significant effects on

sensitivity and false positive rate of MRS (p value,0.001

respectively). In addition, differential of tumor grad had significant

correlation with false positive rate of MRS (p value = 0.01). We

therefore concluded that the diagnostic accuracy of MRS was

robust for different types, MRS technique and TE in brain tumors.

Meta-analysis and diagnostic accuracy
Meta-analysis revealed that the overall sensitivity and specificity

of MRS were 80.05% (95% CI: 75.97–83.59%) and 78.46% (95%

CI: 73.40%–82.78%, Figure 3A), respectively. The overall PLR

after logarithmic transformation was 1.28 (95% CI: 1.05–1.52)

corresponding to 3.53 (95% CI: 2.71–4.60, Table 2 and

Figure 3B). The NLR after logarithmic transformation was

21.31 (95% CI: 21.53 to 21.09) corresponding to 0.29 (95%

CI: 0.24–0.36, Table 2 and Figure 3B). The DOR after logarith-

mic transformation was 2.86 (95% CI: 2.42–3.30) corresponding

to 14.66 (95% CI: 9.81–21.92, Table 2 and Figure 3B). In general,

MRS thus demonstrated high diagnostic accuracy.

We generated an SROC curve based on the sensitivity and

specificity of each study. The regression coefficient b was 0.002

(95% CI: 20.37–0.37), where b was close to 0 indicating a lack of

heterogeneity, which was consistent with the results of heteroge-

neity analysis of diagnostic effects. The AUC showed relatively

high diagnostic accuracy (Figure 3C, AUC = 0.78). Based on the

SROC curve, the Q* metric was calculated as 84.22% (95% CI:

80.69%–87.21%), when the sensitivity equaled the specificity.

These results suggest that MRS can be used for screening brain

tumors with good diagnostic accuracy.

Stratified meta analysis
In order to further detailed analyze the diagnostic power of

MRS, we performed Stratified meat analysis based on the period

of patients, MRS technique and TE value. Diagnostic power of

MRS between adult and child showed that child had more high

Figure 2. Methodological quality and publish bias assessment. (A) Risk of bias graph. The items of bias were independently evaluated by two
authors. If the study reported all of the sensitivities and specificities of genes which were measured DNA methylation status, selective reporting was
defined as low risk. (B) Funnel plot to assess bias in estimates of diagnostic odds ratio caused by small-study effects.
doi:10.1371/journal.pone.0112577.g002

Table 2. The heterogeneity analysis of diagnostic effects.

Estimate [95% CI] Log(Estimate) [95% CI] df Q P-value I2

PLR 3.53 [2.71–4.60] 1.28 [1.05–1.52] 41 29.77 0.90 0%

NLR 0.29 [0.24–0.36] 21.31 [21.53–1.09] 41 41.03 0.47 0.062%

DOR 14.66 [9.81–21.92] 2.86 [2.42–3.30] 41 41.22 0.46 0.54%

PLR: positive likelihood ratio. NLR: negative likelihood ratio. DOR: diagonistics odd ratio. Estimate [95% CI]: the pooled effect measure with the corresponding 95%
confidence interval. Log(Estimate) [95% CI]: logarithmic transformation of the pooled effect measure with the corresponding 95% confidence interval. df: degrees of
freedom. Q and P-value were the Q value and p value of Cochran’s Q test.
doi:10.1371/journal.pone.0112577.t002
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Table 3. Meta-regression of potential risk of bias of methodological characteristics affecting the diagnostic sensitivity of MRS.

Factor Label Sensitivity False positive rate

Coefficient P value Coefficient P value

Cancer Gliomas 21.04 0.22 1.57 0.11

Ependymoma 21.54 0.26 0.59 0.68

Neuroectodermal tumor 21.06 0.38 0.43 0.78

Diagnose Grade 0.22 0.49 1.05 0.01

Metastases 20.58 0.16 0.62 0.17

Recurrent 20.38 0.35 20.17 0.77

Residual 0.22 0.80 20.80 0.63

Period Adult 2.23 ,0.001 3.04 ,0.001

Child 0.34 0.48 21.20 0.03

Technique SV 0.43 0.62 0.03 0.97

CSI 0.56 0.51 1.22 0.12

TE STE 1.19 0.20 0.26 0.81

LTE 0.73 0.38 0.14 0.87

doi:10.1371/journal.pone.0112577.t003

Figure 3. Forest plot of estimate of diagnostic accuracy of MRS. (A) Forest plot of estimate of sensitivity and specificity of MRS. (B) Forest plot
estimate of PLR, NLR and DOR of MRS. (C) SROC curve of diagnostic performance of MRS from all studies. Solid line represents the ROC curve, and dotted line
represented 95% confidence ellipse. Hollow triangle represented observed data from each study and solid rhombus represented the summary estimate.
doi:10.1371/journal.pone.0112577.g003
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Figure 4. SROC curve of diagnostic performance of stratified meta-analysis. (A) Adult and child. (B) SV and CSI. (C) LTE and STE.
doi:10.1371/journal.pone.0112577.g004

Figure 5. Forest plot of estimate of diagnostic accuracy of adult and child stratified meta-analysis.
doi:10.1371/journal.pone.0112577.g005
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accuracy than adult (AUC 0.89 VS. 0.77, Figure 4A). Diagnostic

performance of MRS showed both higher sensitivity (83.37% VS.

78.38%) and specificity (91.06% VS. 76.60%) in child (Figure 5).

Our results limited the very few studies on child, that will be more

accurate with the increase of the number of studies. Although

AUC value of SV was higher than CSI (0.89 VS. 0.79, Figure 4B),

CSI had higher sensitivity (82.39% VS. 79.35%) and SV had

higher specificity (85.49% VS. 73.52%, Figure 6). Two techniques

of MRS has its own advantage. Finally, we analyzed the diagnostic

power of LTE and STE. STE showed slightly higher AUC (0.79

VS. 0.73, Figure 4C), and had higher sensitivity (88.40% VS.

80.23%) and specificity (77.86% VS. 73.52%, Figure 7). Although

some studies adopted double standard including both LTE and

STE, diagnostic power has not been improved (sensitivi-

ty = 80.05% [95% CI: 75.97%–83.59%] and specificity 78.46%

[95% CI: 73.40%–82.78%], respectively).

Discussion

Contrast-enhanced structural MRI is the method of choice for

diagnosing brain tumors, especially follow-up of brain metastasis.

However, the differentiation of locally-recurrent brain metastasis

in many patients is difficult using contrast-enhanced structural

MRI [34]. Various imaging techniques such as positron-emission-

tomography (PET), single-photon emission computed tomography

(SPECT), MRS and perfusion-weighted MRI (PWI) have been

used to differentiate tumors. PET has been used to diagnose brain

metastases [35], but it limits to small lesion size [36], long time

interval between PET scans [37] and requiring of ionising

radiation source [4]. Although SPECT provided higher sensitivity

(90%) and specificity (92%) than PET, the major disadvantage of

SPECT over PET was lower spatial resolution [38]. PWI and

MRS as advanced MRI techniques can be successfully used to

Figure 6. Forest plot of estimate of diagnostic accuracy of SV and CSI stratified meta-analysis.
doi:10.1371/journal.pone.0112577.g006
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differentiate brain tumors. PWI provided high sensitivity (70%–

100%) and specificity (95%–100%) [37]. MRS even reached

sensitivity and specificity of 100% [39]. However, these studies

investigating advanced MRI techniques have mostly been based

on limited numbers of patients. In addition, small size of the lesion,

or susceptibility artifacts near to the lesion may negatively affect

the analysis and interpretation of MRS data [40,41], thus limiting

its diagnostic accuracy. It is difficult to draw conclusions about the

diagnostic accuracy of MRS for brain tumors based on individual

studies, and pooled studies thus represent a useful approach for

assessing its diagnostic performance.

The present systematic review and meta-analysis included 24

studies, comprising a total of 1013 participants, with 605 cases and

408 controls. Overall, the methodological quality of the included

studies was moderate, with no heterogeneity or publication bias,

despite the fact that the different studies used different criteria for

positivity. Meta-analytically, MRS demonstrated slightly high

sensitivity and specificity for discriminating brain tumors (pooled

estimates of 80.58% and 78.46%, respectively), suggesting that it is

a suitable and accurate diagnostic technique for brain tumors.

Based on stratified meta analysis, MRS showed higher sensitivity

and specificity in STE than LTE. CSI had higher sensitivity and

SV had higher specificity. Diagnostic accuracy of MRS between

adult and child need to increase the number of studies on child.

The present meta-analysis had several limitations. First, no

large-scale prospective validation studies have been carried out by

stereotactic biopsy. Second, the included studies did not provide

sufficient information to assess the diagnostic values of other

imaging techniques for comparison with multimodal imaging

studies. Third, the included studies used a combination of different

controls (normal, necrosis, and low-grade, respectively) as refer-

ence standards for determining diagnostic accuracy. Fourth,

Figure 7. Forest plot of estimate of diagnostic accuracy of LTE and STE stratified meta-analysis.
doi:10.1371/journal.pone.0112577.g007
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although we evaluated the diagnostic accuracy of MRS for brain

tumors, more gliomas were included.

In conclusion, despite the limitations of this systematic review

and meta-analysis, current evidence suggests that MRS may be an

appropriate, non-invasive method for diagnosing brain tumors.
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