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Abstract

Populations of Trichuris spp. isolated from six species of sigmodontine rodents from Argentina were analyzed based on
morphological characteristics and ITS2 (rDNA) region sequences. Molecular data provided an opportunity to discuss the
phylogenetic relationships among the Trichuris spp. from Noth and South America (mainly from Argentina). Trichuris
specimens were identified morphologically as Trichuris pardinasi, T. navonae, Trichuris sp. and Trichuris new species,
described in this paper. Sequences analyzed by Maximum Parsimony, Maximum Likelihood and Bayesian inference methods
showed four main clades corresponding with the four different species regardless of geographical origin and host species.
These four species from sigmodontine rodents clustered together and separated from Trichuris species isolated from murine
and arvicoline rodents (outgroup). Different genetic lineages observed among Trichuris species from sigmodontine rodents
which supported the proposal of a new species. Moreover, host distribution showed correspondence with the different
tribes within the subfamily Sigmodontinae.
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Introduction

Species of Trichuris Roederer, 1761 (Nematoda: Trichuridae)

have a cosmopolitan distribution and parasitize a broad range of

mammalian hosts, such as ruminants, marsupials, rodents, and

primates, including humans [1,2]. The presence of Trichuris
species among host species is probably related to a combination of

factors, such as the immunologic status and the behavior of the

host species, and characteristics of the environment where the host

lives [2,3]. To discriminate between the alternative hypotheses of

co-speciation (host-parasite) versus geographical differentiation, it

is necessary to integrate studies of both morphological and

molecular analysis [4].

Several features, such as the presence/absence of the spicular

tube, the shape and distribution of the spines of the spicular

sheath, length of the spicule and the cloacal tube, the shape of the

proximal and distal cloacal tube, and the vulvar morphology,

along with classic morphometric characteristics have been used as

characteristics with high discriminatory value to differenciate the

species of Trichuris i.e. [5–10]. Moreover, scanning electron

microscopy (SEM) has been used as a diagnostic tool in some

studies [10–15]. Trichuris species have been described with a

narrow range of anatomic and biometric characteristics; and they

have been insufficiently compared with their congeneric species

i.e. [5,16–19]. Consequently, different populations with overlap-

ping morphometrical features [8] result in taxonomic and

nomenclatorial problems, e.g. individuals of the same species

recognized as different species (under different names: synonyms),

and different species referred as the same species (sibling species)

[20,21].

To date, 24 Trichuris species have been described from 10

families of North and South American rodents [22]. Among these,

three species are parasites of Cricetidae in North America: T.
opaca Barker and Noyes, 1915 from Arvicolinae, T. neotomae
Chandler, 1945 and T. peromysci Chandler, 1946 from Neotomi-

nae; and five parasites of Cricetidae in South America: T. chilensis
Babero, Cattan and Cabello, 1976, T. travassosi Correa Gomes,

Lanfredi, Pinto and Souza, 1992, T. laevitestis Suriano and

Navone, 1994; T. pardinasi Robles, Navone and Notarnicola,

2006, and T. navonae Robles, all from Sigmodontinae. The last

three species were found from Argentina [7,10,22].

Of the Trichuris from Cricetidae, 66% share a general

morphological pattern, including the absence of a spicular tube,

spicular sheath with spines (most with a cylindrical shape), and a
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non-protrusive vulva, thus these can be separated mainly by

morphometric characters with high discriminatory value [6,10,22–

25]. However, this also exemplifies the difficulty in finding

morphological differences among species in this genus. For this

reason, some studies have used isoenzymatic patterns and

molecular studies to identify these nematodes [25–29]. The genes

encoding the rRNA subunits are particularly useful in phyloge-

netic studies. In fact, recent studies have demonstrated that

internal transcribed spacers (ITS1-5.8S-ITS2) of nuclear ribosom-

al DNA (rDNA) provide genetic markers for the accurate

identification of closely related nematode species [30]. Sequence

data of the ribosomal ITS2 have also been shown to be a valuable

tool in species identification; first because they are highly species-

specific and, second because they are flanked by conservative

regions of the rDNA that allows the use of universal primers that

bind to the 5.8S and 28S rDNA genes of many helminths e.g. [31–

37]. Since, the ITS2 region is much more variable than ITS1, it

allows a better discrimination at the species level. For example,

ITS2 have been used for the unequivocal delineation of

morphologically well defined adults such as Trichuris ovis,
Trichuris leporis and Trichuris suis with high levels (32.8–

58.64%) of interspecific variation e.g. [21,27]. Also, ITS2 provides

significant phylogenetic insights [38,39]. Studies on the compar-

ative phylogeny of taxa strongly linked by an ecological factor,

such as parasitism, have shown that the degree of phylogenetic

congruence increases with the forced character of the host–

parasite relationship [40].

The purpose of this paper was to study different populations of

Trichuris isolated from six species of Sigmodontinae rodents from

Argentina, based on morphological characteristics and ITS2 of

nuclear rDNA region sequences. Also, the description of a new

species of Trichuris is provided in this study, and the level of

variation among the ITS2 sequences of studied populations was

determined. Molecular data are also used to analyze and discuss

the phylogenetic relationships among the Trichuris spp from the

Americas, and mainly from Argentina.

Material and Methods

Cricetid rodents were trapped during different field studies

between 2009 and 2012 (see collectors in acknowledgements). A

total of 81 adult specimens of Trichuris were studied from six

species of Sigmodontinae rodents (Cricetidae) from eight/seven

localities respectively: 61 for morphological analyses and 20 for

molecular characterization (see Table 1).

Ethics Statement
The research has been conducted according to Argentine laws.

Sample collection was carried out during fieldwork under oficial

permits granted by Ministerio de Asuntos Agrarios de la provincia

de Buenos Aires (expedient 22500-7981-2010-0) and Organismo

Provincial para el Desarrollo Sustentable (OPDS) (expedient 2145-

6077/10), Ministerio de Producción y Ambiente de la Provincia de

Formosa (authorization s/n; Guı́a de Tránsito: 004076), Minis-

terio de Ecologı́a, RNR y Turismo, Provincia de Misiones

(authorization #27, Guı́a Tránsito 000316). This study was

carried out in accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National

Institutes of Health. The specimens obtained with methods for live

capture were studied and humanely sacrificed (euthanasia by

thoracic compression under ether anesthesia), following the

procedures and protocols approved by national laws (Animal

Protection National law 14.346 and references in the provincial

permits) and Ethics Committee for Research on Laboratory

Animals, Farm and Obtained from Nature of National Council of

Scientific and Technical Research (CONICET) (Resolution 1047,

section 2, annex II), and subsequently by National Agency for the

Promotion of Science and Technology of Argentina (ANPCYT)

(PICT 2010-0924). No endangered species were involved in this

study.

Morphological analysis
Nematodes were preserved in 70% ethanol, and cleared in

lactophenol, and studied using a light microscope. Morphological

identification was performed using characteristics listed by Robles

et al. [10] and Robles [22]. Drawings of specimens of Trichuris
from Sooretamys angouya were made with the aid of a drawing

tube. Four specimens of this population were dehydrated in an

ethanol series (75%, 80%, 85%, 90%, 96%, 100%), dried using

the critical point method, and examined with the aid of a scanning

electron microscope (Jeol 6360 LVLV, Tokyo, Japan). Measure-

ments of new species are presented as follows: holotype male or

allotype female, and paratypes with mean, standard deviations,

and range in parentheses. We tested for statistical differences for

some variables. When data met parametric requirements,

Student’s t-test was used for pairwise comparisons; otherwise a

non-parametric Mann–Whitney U-test was used. For all calcula-

tions, we tested significance at the a= 0.05 level. Statistical analysis

was performed using Past 3.01 (Paleontological Statistics, free

software). All measurements are given in millimeters (mm). The

scales of figures are given in micrometers (mm).

Nomenclatural acts
The electronic edition of this article conforms to the require-

ments of the amended International Code of Zoological Nomen-

clature, and hence the new names contained herein are available

under that Code from the electronic edition of this article. This

published work and the nomenclatural acts it contains have been

registered in ZooBank, the online registration system for the

ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any

standard web browser by appending the LSID to the prefix

‘‘http://zoobank.org/’’. The LSID for this publication is: urn:lsid:-

zoobank.org:pub: A22989C7-144F-4F9F-A3E8-0D13023B0413.

The electronic edition of this work was published in a journal with

an ISSN, and has been archived and is available from the following

digital repositories: PubMed Central and LOCKSS.

Specimens of nematodes were deposited in the Helmintholog-

ical Collection of Museo de La Plata (MLP), La Plata, Buenos

Aires, and hosts in Mastozoological Collections of the Centro

Nacional Patagónico (CNP), Puerto Madryn, Chubut, and

Mastozoological Collections of Museo de La Plata (MLP) La

Plata, Buenos Aires, Argentina.

Molecular analysis
The specimens previously identified were washed extensively in

0.9% saline solution and stored in 70% ethanol until used for PCR

and sequencing.
PCR and sequencing of specimens. Genomic DNA from

individual worms was extracted using the DNeasy Blood and

Tissue Kit (Qiagen) according to the manufacturer’s protocol.

Quality of extractions was assessed using 0.8% agarose gel

electrophoresis and ethidium bromide staining. The Internal

Transcribed Spacer 2 (ITS2) of ribosomal DNA (rDNA) region

was amplified by PCR using a Perkin Elmer thermocycler and the

following PCR mix: 10 ml 106PCR buffer, 2 ml 10 mM dNTP

mixture (0.2 mM each), 3 ml 50 mM MgCl2, 5 ml primer mix

(0.5 mM each), 5 ml template DNA, 0.5 ml Taq DNA polymerase
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(2.5 units) and autoclaved distilled water to 100 ml. The following

conditions were applied: 94uC for 3 min (denaturing), 35 cycles at

94uC for 1 min (denaturing), 50uC for 1 min (annealing), 72uC for

1 min (primer extension), followed by 10 min at 72uC. DNA

sequences of the forward primer 5.8S F (59-GTAGGT-

GAACCTGCGGAAGGATCATT-39) and reverse primer ITS2R

(59-TTAGTTTCTTTTCCTCCGCT-39) corresponded to the

conserved 39- 59 ends of the ITS1-5.8S-ITS2 flanking the 5.8S

and 28S gene regions. Thus, DNA sequence of the reverse primer

was cited by Gasser et al. [41], while forward primer was designed

by us. For each set of PCR reactions and extraction of the DNA,

samples without DNA (negative) and a known (positive) control

DNA samples were also included. The PCR products were

checked on ethidium bromide-stained 2% Tris-Borate-EDTA

(TBE) agarose gels. Bands were eluted from the agarose by using

the Wizard SV Gel and PCR Clean-Up System (Promega). The

purificated PCR products were concentrated, and directly

sequenced by Stab Vida (Portugal). The rDNA intra-individual

similarity was determined by sequencing between three to five

clones of one individual per population of Trichuris species. Thus,

the isolated DNA was cloned into Escherichia coli DH5a using

pGEM-T Easy vector system (Promega). Transformed cells were

selected by overnight incubation at 37uC on LBB/Amp/X-gal/

IPTG plates. In order to check for successful cloning and to study

the intra-individual variation, at least ten single recombinants

(clones) were screened for the DNA insert and sequenced. The ten

clones containing the correct insert were used to inoculate 5 ml of

LBB/Amp broth and incubated, shaked at 37uC for 12 h. Plasmid

were purified using a Wizard Plus SV (Promega)and sequenced by

Stab Vida (Portugal) with an universal primer (M13). The intra-

specific similarity was determined for the rDNA by sequencing, at

least, three individuals of each locality and host. Furthermore, all

the sequences were aligned and compared with each other using

the CLUSTAL W program. Alignments were manually adjusted.

Restriction maps of the different ITS2 sequences were

determined by using the ‘‘Map’’ program available on Gen Bank.

Sequence analysis. Phylogenetic trees based on ITS2 rDNA

were rooted by including five outgroups representing members of

the genus Trichuris from Murinae and Arvicolinae rodents

isolated from Europe, Africa and North America (Table 2).

Phylogenetic trees were produced using three methods: Maximum

Likelihood (ML), Maximum Parsimony (MP) and Bayesian

Inference (BI), using the PhyML package [42], MEGA 5.0

program [43] and MrBayes version 3.1.2 [44], respectively.

jModeltest version 0.1.1 [45] was used to choose a best-fit model of

sequence evolution [45]. For the Bayesian analysis, we ran three

independent runs of four Markov chains for 10 million genera-

tions, sampling every 500 generations. For ML inference, the rapid

Table 1. Trichuris specimens studied from different rodent species of Argentina.

Trichuris spp. Number of studied specimens Host species Locality/Province Code Geographical point

Morphological Molecular

8 3 Phyllotis bonariensis Cerro Bahı́a Blanca, Parque Provincial
Ernesto Tornquist, Sierra de la
Ventana, Partido de Tornquist,
Buenos Aires province

SV 38u04947.990 S, 62u00922.480 W

10 2 Phyllotis xanthopygus Cerro Los Linderos, Departamento
Calamuchita, Córdoba province

SC 32u00917.820 S, 64u569 01.510 W

Robles, 2011; Robles and
Navone, 2014

4 Akodon montensis Refugio Moconá, Departamento San
Pedro, Misiones province

RM 27u89 S, 53u559 W

10 3 Reserva de Vida Silvestre Urugua-ı́,
Fundación Vida Silvestre,
Departamento General Manuel
Belgrano, Misiones province

UR 25u59908.190 S, 54u06936.150 W

6 1 Campo Anexo M. Belgrano, INTA, San
Antonio, Departamento General
Manuel Belgrano, Misiones province

SA 26u02952.600 S, 53u469210 W

2 1 Thaptomys nigrita Reserva de Vida Silvestre Urugua-ı́,
Fundación Vida Silvestre,
Departamento General Manuel
Belgrano, Misiones province

UR 25u58932.290 S, 54u07900.080 W

3 2 Campo Anexo M. Belgrano, INTA, San
Antonio, Departamento General
Manuel Belgrano, Misiones province

SA 26u02954.210 S, 53u46932.400 W

5 1 Necromys obscurus Estación Experimental Agropecuaria
Balcarce, INTA, Partido de Balcarce,
Buenos Aires province

BA 37u42959.530S, 58u16923.120W

12 2 Sooretamys angouya Refugio Moconá, Departamento
San Pedro, Misiones province

RM 27u89 S, 53u559 W

3 1 Estación de Animales Silvestres
Guaycolec, Departmento Formosa,
Formosa Province

GU 25u589510 S, 58u99520 W

2 0 Reserva de Usos Múltiples Guaranı́,
Departamento Guaranı́, Misiones
province

RG 26u569 S, 54u139 W

doi:10.1371/journal.pone.0112069.t001
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bootstrap algorithm (with GTRCAT) was used (1000 replicates) to

assess the relative reliability of clades, whereas the best ML tree

was found using the GTRGAMMA model and a more thorough

optimization.

Results

Morphological analysis
Specimens of Trichuris from eight populations were identified

based on morphological characteristics (Table 3). The specimens

found in Phyllotis bonariensis Crespo, 1964 and P. xanthopygus
Waterhouse, 1837 were identified as Trichuris pardinasi; and

those found in Akodon montensis Thomas, 1913 and Thaptomys
nigrita (Lichtenstein, 1829) as T. navonae. Although the Trichuris
specimens from Necromys obscurus (Waterhouse, 1837) were

studied in detail, species identification was not possible since only

one male was present. A new species of Trichuris was found in

Sooretamys angouya (Fischer, 1814), which is described here.

Moreover, Cerro Los Linderos (SC), Córdoba province;

Reserva de Vida Silvestre Urugua-ı́ (UR) and Campo Anexo M.

Belgrano, INTA, San Antonio (SA), Misiones province; Estación

Experimental Agropecuaria Balcarce, INTA (BA), Buenos Aires

province, and Estación de Animales Silvestres Guaycolec (GU),

Formosa Province constitute new geographical records for the

genus Trichuris (Table 3).

Description. Trichuris bainae n. sp. urn: lsid: zooban-
k.org: act: C53665A4-4DAE-4A2C-988A-59754EBA54A7.

(Figs. 1, 2)

Diagnosis: Cuticle with fine transversal striation (Figs. 1C, 2K).

Anterior part of body long, narrow, tapered, and whip-like;

posterior part of body broad, and handle-like (Fig. 1A). Ratio

between anterior and posterior body length is 1:1.8 in males and

1:1.4 females. Stichosome with 1 row of stichocytes, and 1 pair of

conspicuous cells at esophagus-intestinal junction level (Figs. 1B,

1D, 1G). Male with spicular tube absent. Proximal cloacal tube,

united laterally to distal cloacal tube (Fig. 1E). Spicular sheath

cylindrical with spines distributed from proximal to distal portion;

distal spines very sharpened and joined together (Figs. 1F, 2L, 2M,

2N). Testis ends near final third of distal cloacal tube, showing

different degree of convolutions (Fig. 1E). Cloaca subterminal with

1 pair of paracloacal papillae, not ornamented (Figs. 1F, 2M).

Female with ornamentated protrusive vulva located at esophagus-

intestinal junction level (Figs. 1G, 1H). Anus subterminal, with

long caudal end finished with terminal torsion (Fig. 1I).

Bacillary band located laterally in anterior portion of body

(Figs. 1C, 2K). Bacillary band 0.05–0.09 from anterior end of

body, and extends to body width region of 0.18–0.24. With SEM,

cuticular inflations appear bordering bacillary band from 0.2–0.37

to 0.6–0.87 in the anterior end of body, forming low rings of thick

walls and very reduced interior cavity. These structures limit

laterally to abundant and visible bacillary glands with conspicuous

pore (Fig. 1C, 2K). Cuticle around vulvar aperture with

transversally striated pattern (Fig. 1H).

Male (6 specimens): Body length 13.9, 13.660.58 (12.97–14.4).

Anterior portion of body 8.67, 8.9861.04 (7.4–9.92) long and

thick portion of body 5.25, 4.9660.83 (4.15–6.05) long. Anterior

body width 0.75, 0.06860.01 (0.050–0.075), maximum posterior

body width 0.25, 0.3560.061 (0.27–0.42), width at esophagus-

intestinal junction level 0.17, 0.2260.035 (0.17–0.25) (Figs. 1B,

1D). Total length of esophagus 8.65, 8.8960.89 (7.3–9.9),

Table 2. Trichuris species included in the phylogenetic analysis based on the ITS2 rDNA.

Species Host species Host family/subfamily Geographical Origin Code Accession Number

Trichuris sp. Microtus townsendii Cricetidae/Arvicolinae Oregon, USA OR FR849676

Trichuris arvicolae Myodes glareolus Cricetidae/Arvicolinae Montseny, Spain MO FR849660

Trichuris muris Mus domesticus Muridae/Murinae Calafel, Spain CA FN543175

Trichuris carlieri Gerbilliscus vicinus Muridae/Murinae Maguha, Tanzania MA JX683522

Trichuris mastomysi Mastomys natalensis Muridae/Murinae Berega Tanzania BE JX683517

doi:10.1371/journal.pone.0112069.t002

Table 3. Trichuris species found from different rodent species from Argentina (see Table 1), with new localities records and
molecular data.

Species Host species Localities Base pairs G+C% GenBank Accession number

T. pardinasi Phyllotis bonariensis SV 429 430 431 60.3 60.7 61.7 HG934448 HG934445 HG934449

Phyllotis xanthopygus SC (new locality) 429 433 60.4 60.1 HG934447 HG934446

T. navonae Akodon montensis RM 427 427 427
427

59.4 59.7 60.2 60.1 HG934435 HG934436 HG934437
HG934438

UR (new locality) 428 435 427 59.6 59.5 59.7 HG934443 HG934444 HG934441

SA (new locality) 427 59.7 HG934434

T. navonae Thaptomys nigrita UR (new locality) 427 59.7 HG934439

SA (new locality) 427 427 59.5 60.4 HG934440

Trichuris sp. Necromys obscurus BA (new locality) 388 59.3 HG934450

Trichuris bainae n. sp Sooretamys angouya RM 441 441 59.9 59.7 HG934431 HG934432

GU (new locality) 441 60.6 HG934433

doi:10.1371/journal.pone.0112069.t003
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Figure 1. Drawings of Trichuris bainae n. sp. (A) Complete female specimen. (B) Esophagus, muscular and stichosome portions. (C) Esophagus,
muscular and stichosome portions, with bacillary band and cuticular inflations view. (D) Male, esophagus-intestine junction and proximal portion of
testis, with bacillary band view. (E) Male, posterior end, spiny spicular sheath, spicule and proximal and distal cloacal tube, lateral view. (F) Male, detail
of the posterior extremity, lateral view. (G) Female, esophagus-intestine junction and vulva, lateral view. (H) Female, detail of vulva, lateral view. (I)
Female, posterior end, lateral view. (J) Egg.
doi:10.1371/journal.pone.0112069.g001
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muscular portion 0.45, 0.3660.16 (0.2–0.47) long, stichosome

portion 8.2, 8.761.1 (7–9.8) long. Spicule length 1.94, 2.1660.13

(1.93–2.3) (Fig. 1E). Spicular sheath densely spinose 1.7, 1.861.1

(1.5–2) long (Figs. 1F, 2L). Proximal cloacal tube 1.2, 1.5760.35

(1.19–2.11) long, distal cloacal tube 1.79, 1.3660.31 (1.15–1.9)

long (Fig. 1E). Ratio between total body length and posterior

portion length 2.64, 2.8960.45 (2.22–3.23). Ratio between total

body length and spicule length 7.16, 6.3360.53 (5.87–6.97). Ratio

between posterior portion length and spicule length 2.7,

2.3260.52 (1.89–3.13). Ratio beween proximal cloacal tube

length and distal cloacal tube length 0.67, 1.1560.17 (1.01–

1.43). Ratio between maximum posterior body width and

posterior portion length 0.04, 0.0760.01 (0.06–0.095).

Female (2 specimens): Body length 22.18, 23.3. Anterior portion

of body 12.66, 14.2 long and thick portion of body 9.52, 9.1 long

(Fig. 1A). Anterior body width 0.05, 0.075, maximum posterior

body width 0.5, 0.5; width at esophagus-intestinal junction 0.2,

0.22 (Fig. 1G). Total length of esophagus 12.65, 13.7, muscular

portion 0.38, 0.35 long, stichosome portion 12.27, 13.66 long.

Distance between esophagus-intestinal junction and vulva 0.22,

0.20. Eggs oval, with bipolar plugs, (n = 10) 0.020–0.02560.045–

0.05 (Fig. 1J). Ratio between total body length and posterior

portion length 2.33, 2.56. Ratio between maximum posterior body

width and posterior portion length 0.052, 0.055.

Taxonomic summary. Type host species: Sooretamys an-
gouya (Fischer, 1814) (Sigmodontinae: Oryzomyini). Symbiotype:

Female CNP 1998. Other hosts housed: CNP 2529 and CNP 3634.

Type locality: Refugio Moconá (27u89 S, 53u559 W), Guaranı́

Department, Misiones province, Argentina.

Other localities: Estación de Animales Silvestres Guaycolec

(25u989 S, 58u169 W), Formosa Department, Formosa Province

and Reserva de Usos Múltiples Guaranı́ (26u569 S, 54u139 W),

Guaranı́ Department, Misiones province.

Site of infection: Caecum.

Type specimens: Holotype male MLP-He 6760, allotype female

MLP-He 6761, 6 paratypes MLP-He 6762 deposited at the

Helminthological Collection of the Museo de La Plata.

Etymology: Dedicated to the memory of Odile Bain, a widely

recognized parasitologist from Paris, France; who contributed

valuable knowledge on trichurid nematodes from many host

groups and different parts of the world.

Differential diagnosis. The Trichuris species from North

and South American rodents were compared by different

morphometric features [5–7,9,10,19,22–24,46–54]. Trichuris bai-
nae n. sp. resembles T. travassosi and T. navonae in their similar

general size, cloacal tubes and distance from anterior end to vulva.

However, the new species differs from T. travassosi by the unequal

distribution of the spines on the spicular sheath, and differs from

both species by the presence of a vulva ornamented with spines as

well as morphometric features.

Trichuris bainae n. sp. can be separated from eight of the

species that parasitize American rodents, i.e., T. citelli, T.
perognathi, T. neotomae, T peromysci, T. madisonensis, T.
dipodomys, T. fulvi and T. laevitestis by the absence of a spicular

tube (the spicule lies entirely within the distal cloacal tube).

The new species differs from T. opaca, T. fossor, T. citelli, T.
neotomae, T. dipodomys, and T. bursacaudata by lacking a spicular

sheath with a spiny distal spherical bulge or a spiny campanuli-

form shape. Among those species with a cylindric spicular sheath,

the new species can be separated from T. travassosi and T.
pampeana by the distribution of the spines.

The new species has a shorter spicule than T. myocastoris, T.

bradleyi, T. chilensis, T. fulvi, T. robusti, T. laevitestis, T.

bursacaudata, T. pampeana and T. pardinasi and longer than T.

opaca, T. fossor, T. perognathi, T. neotomae, T peromysci, T.

madisonensis, T. dipodomys, and T. elatoris. Although the ranges

of spicule length among T. bainae n. sp., T. travassosi and T.

Figure 2. Scanning electron micrographs of Trichuris bainae n. sp. - SEM. (K) Bacillary band, with detail of bacillary glands. (L) Male, posterior
end, ventral view. (M) Male, detail of the proximal portion of spiny spicular sheath. (N) Male, detail of the distal portion of spiny spicular sheath.
doi:10.1371/journal.pone.0112069.g002
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navonae overlap in part, the means are differents (2.16, 1.63 and

2.3, respectively).

Moreover, T. bainae n. sp. has a shorter distal cloacal tube than

T. bradleyi, T. chilensis, T. robusti, T. bursacaudata, T.

pampeana, and T. pardinasi and longer than T. perognathi, T.

neotomae, T. peromysci, T. dipodomys and T. fulvi.

The most similar biometrical features were found between T.
bainae n. sp. and T. navonae. However, some statistical differences

were found in characters such as spicule length (T-test, t = 6.61,

p,0.001), proximal cloacal tube (T-test, t = 3.94, p,0.001), and

the ratio between posterior portion length and spicule length (U-

test, w = 12, p = 0.037).

The new species has an ornamentated protrusive vulva, which is

absent in the rest of the species from American rodent hosts. In

addition, T. bainae n. sp. has a smaller distance to vulva from the

anterior end than T. gracilis, T. opaca, T. myocastoris, T. citelli, T.
perognathi, T. neotomae, T. peromysci, T. madisonensis, T.
dolichotis, T. dipodomys, T. bradleyi, T. bursacaudata, T.
pampeana, and T. pardinasi.

Since the males of T. gracilis and T. dolichotis have not been

described, these species were not included in the preceding

comparison. However, the females of these species can be

separated from the new species by the dimensions of the body

length, and the lengths of the anterior and posterior portions of the

body.

Molecular analysis
Internal Transcribed Spacer 2 (ITS2) rDNA sequences of the

specimens of Trichuris from seven populations of four species were

obtained and analyzed. These sequences ranged from 388 to 441

base pairs (bp) (exclusive of the primers) and their G+C content

ranged from 59.3%–61.7% (Table 3).

Multiple alignment and sequence model selection. The

alignment of 25 ITS2 sequences of Trichuris species from rodents

from Africa, North America, Europe (Table 2) and South America

yield a dataset of 450 characters. jModelTest determined that the

best-fit model for ITS2 rDNA datasets was GTR+I+G, which was

used for Maximum Likelihood and Bayesian inference.

Intra-individual, intra- and inter-specific similarities of

Trichuris spp. from Argentina based on ITS2 Rdna. The

intra-individual similarity, observed for 3 to 5 clones of one

individual per population, ranged from 97.4% to 100% (data not

shown). The highest value corresponded to all the individuals of

Trichuris populations from Argentina; nevertheless, the minimum

value was observed in T. navonae individuals.

The range of intra-specific similarity of Trichuris species based

on ITS2 rDNA ranged from 95.6% to100%. Trichuris pardinasi
from Córdoba showed the minimum value (Table 4).

In order to analyze inter-specific similarities, different species of

Trichuris isolated from Sigmodontine rodents from Argentina

were compared. All the ITS2 rDNA sequences obtained for each

species were included in the analysis (alignment not shown). The

highest similarity was found between Trichuris navonae and T.
bainae n. sp. both from Misiones (95.5%) and between T. navonae
and T. bainae n. sp. (94.5%), from Misiones and Formosa,

respectively. The lowest similarities were found between Trichuris
pardinasi from Buenos Aires and T. bainae n. sp. from Misiones

(88.3%), and Trichuris sp. from Buenos Aires and T. navonae and

T. bainae n. sp. from Misiones (88.8%) (Table 4).

Relationships of Trichuris based on ITS2 rDNA

sequences. Phylogenetic trees (Fig. 3) provided robust phylo-

genetic resolution among most Trichuris taxa regardless of the

inference method. The topology among Trichuris species showed

that all the species of Trichuris from Argentina are separated from

those belonging to Trichuris isolated from rodents of Africa, North

America and Europe (Bootstrap Values (BP), 100% and 100% in

ML and BI methods) (Fig. 3). Furthermore, Trichuris muris from

Europe and South Africa clustered together and separated of T.
arvicolae from Europe and North America with high BP (81%,

98% and 100% in ML, MP, and BI respectively) (Fig. 3).

Phylogenetic trees based on ITS2 sequences of Trichuris species

from Argentina showed four main clades by ML, MP and BI

methods (Fig. 3). These four main clades included: Clade 1

clustered T. navonae from different hosts from different localities

of Misiones region (BP 100%, 98% and 98% in ML, MP and BI

methods). Within clade 1, we observed a polytomy of populations

of T. navonae regardless of the geographical origin and host

species. Clade 2 clustered Trichuris bainae n. sp., from Formosa

and Misiones provinces with high BP values (93%, 100% and

100% in ML, MP and BI). Clade 3 included Trichuris sp. from N.
obscurus from Buenos Aires. Finally, Clade 4 clustered T.
pardinasi populations from Buenos Aires and Córdoba.

Based on the ITS2 sequences, restriction mapping identified

many endonucleases that could be used to delineate different

species of Trichuris from sigmodontine rodents. Thus, BsePI,

BssHII, HinfI, SacII and SstII sites were present in the sequences

of T. bainae n. sp., but not in T. navonae. Otherwise, AgeI, BshTI,
HindIII and Sspl sites were present in the sequences of T. navonae
but not in those of T. bainae n. sp. Interestingly, HinfI site was

only present in T. bainae n. sp., but not in T. navonae, T.
pardinasi and Trichuris sp, therefore this endonuclease is specific

for the determination of this new species of Trichuris.

Discussion

The four species of Trichuris studied showed the same general

morphological pattern in the male reproductive system. In fact,

identification of closely related species is very difficult. This is due

in part to the phenotypic plasticity of the organisms themselves,

host-induced variation, the paucity of morphological features, and

the extensive overlap in morphometric characteristics that occur

among species e.g. [8,18,15,22]. However, isoenzymatic patterns

and molecular studies for identification of these nematodes have

been used successfully [25–29].

The specimens of Trichuris collected from Sooretamys angouya
in Misiones province belong to a new species with clear morpho-

biometrical differences in respect to the rest of the species of

Trichuris. Molecular data corroborated these results. Although

Trichuris specimens from Necromys obscurus were morphologi-

cally studied, species identification was not attained. However,

molecular characterization was achieved for those individuals as

well as T. pardinasi and T. navonae. This is the first study that

provides the molecular characterization of Trichuris species of

Sigmodontinae rodents. Also, it is confirmed that Thaptomys
nigrita is a host of T. navonae, since this was previously

characterized as Trichuris cf. navonae [3]. In addition, five new

localities for the four species of Trichuris studied were recorded.

The internal transcribed spacers (ITS1 and ITS2) located in the

ribosomal DNA are considered appropriate molecular markers to

resolve relationships at the species level [30]. It has been

demonstrated that there is little, if any, intraspecific variation in

the sequence of ITS2 and, further, that closely related species show

unequivocal differences in these sequences [31–35,55,56]. In this

context, for example, ITS rDNA and 5.8S sequences data have

been used to test the existence of two species: T. muris and T.
arvicolae in Muridae and Arvicolidae hosts, respectively and a

phylogenetic analysis based on combined 5.8S and ITS2

sequences was carried out [27]. The results obtained clearly
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indicated that the ITS+ region of rDNA provides genetic markers

for whipworm species. Previously, the results of the analysis of the

ITS1-5.8S-ITS2 sequence of the ribosomal DNA had confirmed

the presence of DNA polymorphisms among T. muris isolates

from Europe, suggesting the presence of different lineages/species

[57].

The percentage of interspecific variation observed among the

four species far exceeded the intraindividual and intraspecific

variation which is, in general, slight in the ITS2 sequences. These

Table 4. Intra-specific (*) and inter-specific similarity observed in ITS2 sequences in Trichuris populations isolated from different
rodent species.

Species
T. pardinasi
(Buenos Aires)

T. pardinasi
(Córdoba)

T. navonae
(Misiones)

Trichuris sp.
(Buenos Aires)

T. bainae n. sp.
(Misiones)

T. bainae n. sp.
(Formosa)

T. pardinasi (Buenos Aires) 95.6–97.3% *

T. pardinasi (Córdoba) 97.6% * 98% *

T. navonae (Misiones) 89.3% 90.6% 96.3%–100% *

Trichuris sp. (Buenos Aires) 92.1% 92.7% 88.8% 100% *

T. bainae n. sp. (Misiones) 88.3% 89.8% 95.5% 88.8% 97.4%–100% *

T. bainae n. sp. (Formosa) 89.7% 90.1% 94.5% 89% 99.2% * 98.1% *

doi:10.1371/journal.pone.0112069.t004

Figure 3. Phylogenetic tree of of Trichuris species from rodents of Sigmodontinae, Arvicolinae and Murinae of different
geographical origins (see Table 1 and 2) based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA inferred using Maximum
Composite Likelihood. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is
shown on the branches (Maximum Composite Likelihood/Maximum Parsimony/Bayesian Inference). Bootstrap values lower than 65% are not shown.
doi:10.1371/journal.pone.0112069.g003
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results indicate that T. pardinasi, T. navonae, Trichuris sp. and T.
bainae n. sp. must be considered different species.

Also, based on ITS2 sequences, some specific recognition sites

for endonucleases were detected. Trichuris navonae and T. bainae
n. sp. from Misiones and T. navonae from Misiones and T. bainae
n. sp., from Formosa were the populations with the most similar

sequences, but the HinfI restriction site was only present in T.
bainae n. sp., being a useful endonuclease for the determination of

this new species.

Phylogenetic studies that includes ecological and host geo-

graphical distribution data allows a better interpretation of

possible processes that determine the geographical distribution of

parasites, subdivisions of populations, speciation events or

ecological adaptation [58]. The phylogeographic study of Trich-
uris populations isolated from Cricetid rodents by Callejón et al.

[4] used the ITS1-5.8S-ITS2 fragment of the ribosomal DNA and

the first subunit of the cytochrome c oxidase (cox1) region of

mitochondrial DNA. This study confirmed the presence of DNA

polimorphism among Trichuris arvicolae and Trichuris sp.

isolated from the Western Nearctic and the Western half of the

Palearctic region. Also, this survey indicated that there might be a

second species of Trichuris in arvicoline rodents.

The analysis of ITS2 sequences of Trichuris species from

Argentina showed four main clades by ML, MP and BI methods

corresponding with four different species regardless of the

geographical origin and host species: Trichuris navonae, T.
pardinasi, Trichuris sp. and T. bainae n. sp. These four species

from sigmodontine rodents clustered together and separated from

Trichuris species isolated from murine and arvicoline rodents

(outgroup). Different genetic lineages were found among Trichuris
species from sigmodontine rodents, which supported the proposal

of a new species.

The host distribution of the studied species showed correspon-

dence with different tribes included in Sigmodontinae rodents such

as, Clade 1-Akodontini; Clade 2- Oryzomyini, Clade 4-Phyllotini.

Trichuris navonae (Clade 1) is a parasite of Akodon montensis, one

of the most abundant host species present in a wide geographical

distribution from the Atlantic forest and cerrado in Brazil,

Paraguay and Argentina [59–63]. Also, T. navonae is present in

another sympatric host species, Thaptomys nigrita, which is

considered rare (not easy to capture) and not abundant (not

caught in numbers) [64,65]. Both rodents occur in the same

microhabitat, living in primary and secondary forests [66]. The

new species Trichuris bainae n. sp. (Clade 2) is a parasite of

Sooretamys angouya, a rodent with sympatric distribution with the

two akodontines mentioned above, although this species uses trees

and ground more frequently [64,67–69]. This rodent is considered

common (easy to capture) but not abundant (not caught in

numbers) [64]. Trichuris pardinasi (Clade 3) is a parasite of

Phyllotis bonariensis and P. xanthopygus, both abundant species

which are found in a wide variety of habitats, but these are

restricted mainly to rocky outcrops [70,71]. Phyllotis bonariensis is

distributed only in Sierra de la Ventana, southeast of Buenos Aires

province (Argentina) [72,73] while P. xanthopygus has a wide

distribution, along the Andes from west central Peru to Santa Cruz

Province (Argentina) and the adjacent Magellan Region of Chile

[74,75]. The population of P. bonariensis from Sierra de la

Ventana was originally cited as an endemic species by Crespo

[72], Reig [76], Galliari et al. [77], and Musser and Carleton [74].

Later, the populations of P. xanthopygus were considered as stated

in Pardiñas et al. [78]. Currently, there is no solid evidence

available to justify this second proposal and specific status [79]. In

this paper we follow the first taxonomic proposal. However,

Sierras de Córdoba and Sierra de la Ventana are areas considered

faunistic islands that share a considerable number of species and

subspecies, i.e., molluscs, insects, amphibians [80], as well as T.
pardinasi.

In this study, three clades showed different levels of host

specificity. Clade 1 and 2 indicated the presence of different

species of Trichuris in the same biome, but with each species

associated with a different host tribe and ecological habits. In

addition, these species of whipworm follow their hosts along their

geographical distribution (e.g. T. bainae in S. angouya from

Misiones and Formosa provinces). Clade 4 indicated the presence

of the same species of Trichuris in two congener host species in

two disjunct areas; showing a probably specificity at the generic

level of host (or specific level if futures studies confirm that P.
bonariensis and P. xanthopygus are conspecific).

Although other closely related species of Trichuris spp. from

Sigmodontinae, such as T. laevitestis from Akodon azarae (Fischer,

1829), Scapteromys aquaticus Thomas, 1920 and Necromys
lasiurus (Lund, 1840) [3]; and T. travassosi from Oligoryzomys
nigripes (Olfers, 1818) [6] were not studied here, it is possible that

the correspondence between parasite-tribe host is maintained,

even though probably the level of host specificity could be different

in agree with the ecology of the species host and the history of the

areas where the hosts lives [81].

The understanding of the phylogeography of these nematodes

would be improved by the study of a larger number of specimens

and integrating biogeographic information from potential hosts.

For example, Trichuris spp. in Clade 3 consisted of only one

specimen and it was not possible to provide any hypothesis about

its host and geographical distribution.

This study highlights the importance of an integrated study of

Trichuris spp., allowing a more complete understanding of the

taxonomy, host and geographical distribution, and biology of

whipworms.
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