
Gait Analysis in a Mecp2 Knockout Mouse Model of Rett
Syndrome Reveals Early-Onset and Progressive Motor
Deficits
Kamal K. E. Gadalla1,3., Paul D. Ross1., John S. Riddell1, Mark E. S. Bailey2, Stuart R. Cobb1*

1 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, 2 School of Life Sciences,

College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, 3 Pharmacology Department, Faculty of Medicine, Tanta University,

Egypt

Abstract

Rett syndrome (RTT) is a genetic disorder characterized by a range of features including cognitive impairment, gait
abnormalities and a reduction in purposeful hand skills. Mice harbouring knockout mutations in the Mecp2 gene display
many RTT-like characteristics and are central to efforts to find novel therapies for the disorder. As hand stereotypies and gait
abnormalities constitute major diagnostic criteria in RTT, it is clear that motor and gait-related phenotypes will be of
importance in assessing preclinical therapeutic outcomes. We therefore aimed to assess gait properties over the prodromal
phase in a functional knockout mouse model of RTT. In male Mecp2 knockout mice, we observed alterations in stride,
coordination and balance parameters at 4 weeks of age, before the onset of other overt phenotypic changes as revealed by
observational scoring. These data suggest that gait measures may be used as a robust and early marker of MeCP2-
dysfunction in future preclinical therapeutic studies.
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Introduction

Rett Syndrome (RTT) is an X-linked disorder caused by loss-of-

function mutations in the MECP2 gene [1] and affecting ,1 in

10,000 females. The RTT phenotype is characterised by a

constellation of typical and associated features [2], most of which

involve brain dysfunction, with notable characteristic features

being developmental regression, loss of motor and language skills

and stereotyped movements of the hands. Gait abnormalities and

motor dysfunction are among the main criteria for diagnosis of

Rett Syndrome [2]. Subsequent to the regression phase, most

RTT patients gain or regain only modest locomotor skills, most

being confined to wheelchairs or requiring lifelong assistance with

walking. Gait has been analysed in mobile RTT patients post-

regression and has been reported to be wide-based and clumsy [3].

Many of the features of RTT are successfully modelled in Mecp2
knockout mice, and locomotor behaviour has been shown to be

affected [4–7]. Although RTT has commonly been thought to be

neurodevelopmental in character, recent work has demonstrated

that the phenotype can be rescued to an appreciable extent by

restoration of Mecp2 gene function at any stage postnatally [7,8]

whilst adult inactivation of Mecp2 results in a RTT-like phenotype

[9,10]. These studies suggest that RTT may potentially be both

preventable and reversible in patients. As more therapeutic

avenues are explored in RTT, the characterisation of good

outcome measures for therapeutic interventions is becoming of

prime importance.

Previous gait-related studies of Mecp2 knockout mice have

utilised either paw inking or video imaging on a static surface

[7,11,12] and have reported significant differences in several gait

parameters in symptomatic animals. However, these approaches

are limited in the range of gait phenotypes that can be

characterised in detail, and did not account for speed differences

between the Mecp2 knockout mice (which have clear motor and

movement deficits) and wild-type controls. Moreover, there is little

data concerning the longitudinal trajectory of the gait-related

phenotype in these mice, which is important for the development

of outcome biomarkers for use in pre-clinical therapeutics studies.

We therefore carried out a thoroughgoing analysis, using a

treadmill apparatus, of the gait-related aspects of phenotype in

Mecp2 knockout mice to inform future studies aimed at developing

accurate and easy to implement outcome measures for pre-clinical

therapeutic strategy testing. Because other variables in these

knockout mice, such as running speed and motivation, could be

confounding in a study of gait, we employed a treadmill, which

allowed us to minimise any such confounding factors. Further-

more, the automated analysis provides an objective method of

calculating gait parameters. We detected a number of novel gait
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parameters affected in knockout mice, several of which were

detectable before the onset of other overt RTT phenotypes.

Methods

Mecp2-stop mice
A breeding colony of Mecp2-stop mice (Mecp2tm2Bird, Jackson

Laboratories Stock No. 006849) was set up using Mecp2stop/+

heterozygous female stock mice (a kind gift from Prof. A. Bird,

University of Edinburgh, UK). The disease-causing mutation in

this RTT model is the insertion of a targeted STOP cassette

upstream of exon 3, which leads to a null product from the mutant

allele and is therefore akin to a gene knockout. All mice used in

experiments were male Mecp2stop/y offspring resulting from a

breeding scheme involving at least ten generations of backcross

from a congenic C57BL/6 background onto a BALB/c back-

ground. Genotype was determined from ear clipping samples by

PCR as described [8]. Mice were maintained on a 12 h light/dark

cycle and provided with food and water ad libitum. Experiments

were carried out in accordance with the European Communities

Council Directive (86/609/EEC) and a project licence and

approval under the UK Scientific Procedures Act (1986). The

work was also approved by the University of Glasgow Ethical

Review Panel.

Phenotype Scoring
From the age of 3 weeks (weaning), mice were scored weekly for

signs of the Mecp2-stop phenotype using an observational severity

score described previously [8,13–15]. Briefly, each of six observ-

able features (mobility, gait, hindlimb clasping, tremor, breathing

and general condition) were scored on a 0–2 scale (0 - no signs, 1 -

mild signs; 2 - severe/obvious signs; see [8] for details), with the

observer blind to genotype. Scores were aggregated to give an

overall severity score out of 12 for each individual mouse.

Gait analysis
Gait was analysed using the DigiGait imaging system (Mouse

Specifics Inc., Boston, MA, USA). A range of running speeds were

tested in a pilot experiment to define a highest speed that all mice

were able to run at, thus excluding differences in self-selected

speeds as the most critical confounding factor in the interpretation

Figure 1. Treadmill-based measurement of gait properties in Mecp2stop/y mice. (A) Video still image showing mouse walking on transparent
treadmill (viewed from below) at 25 cm/s. (B) Placement of each paw is detected from the video illustrated in (A). (C) Graph of paw area in contact
with the treadmill surface for each paw over time (one session, one animal); the area outlined in black has been replotted in (D). (D) Excerpt from (C)
showing calculated paw area in contact with treadmill surface over time for a representative single paw (right fore; pink in B and C), from which
multiple stride indices can be obtained (labeled). (E) Column plots showing stride time measures (mean +/2 SEM) for each limb in 8 week old wild-
type (WT) and Mecp2stop/y mice (***p,0.001 relative to WT; t-test, n = 5 per genotype).
doi:10.1371/journal.pone.0112889.g001
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of over-ground walking subjects. Digital videos of the ventral

surface of the mice were captured as they ran at 25 cm/s (a speed

at which all mice including the Mecp2 knockout mice were able to

steadily run for a minimum of 6 complete strides) on a transparent

motorised treadmill (figure 1A). To ensure mice remained within

the viewing field of the camera they were contained within an

open-bottomed Plexiglas chamber with adjustable bumpers at

either end. Videos captured by the camera were analysed with the

supplied proprietary DigiGait software to produce digitised and

vectorised paw images (figure 1B); this enabled tracking over time

and the production of a waveform pattern representing the

stepping cycles for each paw (figure 1C, D), from which the

DigiGait software calculates numerous gait parameters/indices.

Animals that refused or were unable to perform (in the case of

some Mecp2stop/y mice) were removed from the study.

Statistical analysis
All results are given as mean 6 standard error of the mean

(SEM). Groups were compared using 2-way repeated measures

ANOVA with Tukey post hoc pairwise comparisons, or the Mann

Whitney test, as appropriate (Minitab 16.0, Minitab Inc., USA).

Results

The mutant phenotype trajectory was assessed by weekly

observational scoring from week three onwards. From five weeks

of age Mecp2stop/y animals showed a progressively more severe

phenotype (figure 2A) that was significantly different from that for

WT animals, which scored zero for the duration of the study (p,

0.002 from 5 weeks onwards, Mann Whitney pairwise compar-

isons; we set p,0.01 as our alpha value for significance to control

for multiple testing). Mecp2stop/y mice have reduced survival [8,13]

and consequently the study was restricted to 10 weeks.

Subtle changes in gait parameters precede the onset of
overt RTT-like signs in Mecp2stop/y mice

Treadmill-based gait analysis was used to characterise the gait

of male hemizygous Mecp2stop/y mice at three different time points

after birth, four weeks, eight weeks and ten weeks. Several aspects

of gait were assessed, including stride, coordination and balance

parameters. Stride length, the distance between initial contacts of

the same paw in one complete stride, is a basic gait feature and a

reduction in this parameter is commonly seen in animal models of

human disease with a prominent motor component such as

Parkinson disease [16]. There was a highly significant effect of

genotype on stride length (F1,32 = 63.9, p,0.0001, 2-way repeated

measures ANOVA). No difference was observed between Mecp2-
stop/y and WT animals at four weeks (figure 2B), but there were

highly significant differences between genotypes at both eight

weeks and ten weeks, with Mecp2stop/y animals having a 2261.3%

reduction in stride length compared to WT at 10 weeks (p,0.0001

Tukey post hoc pairwise comparisons).

Gait coordination was assessed through measurement of

parameters including overlap distance, stance width, step angle

and gait symmetry. During normal gait in quadrupeds such as

mice the forelimbs and hindlimbs show a stereotypical pattern of

movement relative to one another. The hindlimbs are typically

swung forwards such that hindpaws are plantar placed during

stance, close to, but often a little ahead of, the position occupied by

the forepaws during the preceding forepaw stance phase. The

hindpaw stride therefore overlaps that of the forepaw stride in the

direction of movement (antero-posterior axis). Injury or disease

can lead to a change in the spatial relationship between forelimb

and hindlimb strides such that the degree of overlap between the

forepaw and subsequent hindpaw stance positions may increase or

decrease. For example in models of cerebellar dysfunction, an

increase in overlap distance (the distance between placement of

front and hind paws) is observed [17]. In the current study,

Mecp2stop/y mice showed much greater overlap distance than WT

mice at all time points (figure 2C, F1,32 = 111.42, p,0.001, 2-way

repeated measures ANOVA with Tukey post hoc pairwise

comparisons), even at four weeks, before an overt phenotype is

observed using the observational scoring system (figure 2A). It is

known that mice with lesions or diseases that affect balance and

postural stability tend to adopt a wider stance, presumably to

compensate for centre of gravity shifts during locomotion. Stance

width (distance between the centre of the two hind paws) was

significantly greater in Mecp2stop/y mice than WT at 4 weeks but

there was no significant difference at 8 and 10 weeks (figure 2D,

F1,32 = 23.79, p,0.001, p,0.01 at 4 weeks, and p.0.05 at 8 and

Figure 2. Automated gait analysis reveals early signs of motor
defects in Mecp2stop/y mice. (A) Plot showing aggregate phenotype
severity score (mean +/2 SEM) in male wild-type (WT, black diamond
symbols) and Mecp2stop/y (grey circles) mice. Mecp2stop/y mice show a
gradual phenotype score progression that is significantly different from
WT (WT n = 7; Mecp2stop/y n = 8 at 3–7 weeks, n = 7 at week 8, n = 5 at
week 9 and n = 4 at week 10); decreasing numbers of Mecp2stop/y mice
are explained by early death of some mutant mice. (B–F) Plots showing
stride length, overlap distance, stance width, step angle and gait
symmetry (mean +/2 SEM) measured in WT and Mecp2stop/y mice at 4, 8
and 10 weeks (WT n = 7 at 4 weeks and 5 at 8 & 10 weeks; Mecp2stop/y

n = 6 at 4 weeks, n = 5 at weeks 8 & 10. The treadmill speed was 25 cm/
s. *p,0.05 **p,0.01 ***p,0.001, Mann Whitney pairwise comparisons
(A) and 2-way repeated measures ANOVA with Tukey post hoc pairwise
comparisons (B–F).
doi:10.1371/journal.pone.0112889.g002
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10 weeks, 2-way repeated measures ANOVA with Tukey post hoc
pairwise comparisons). Step angle records the combined angle

formed by the long axes of the hind paws in relation to the long

axis of the body and reflects changes in paw rotation that are a

measure of spinal dysfunction [18]. Mecp2stop/y animals showed a

significantly lower step angle than WT at all time points

(figure 2E, F1,32 = 43.23, p,0.001, p = 0.02 at 4 weeks, and p,

0.01 at 8 and 10 weeks, 2-way repeated measures ANOVA with

Tukey post hoc pairwise comparisons), indicating an inward

rotation of the hind paws in the mutant animals. Other aspects of

brain and spinal pathway-based motor coordination were assessed

using the gait symmetry parameter, which measures how often

strides are taken by the hindpaws relative to the forepaws. In

normal gait there will be one forepaw step for every hind paw step

taken. There was no difference in gait symmetry observed between

the genotypes (figure 2F).

Discussion

In this study, we used a treadmill system to investigate potential

gait abnormalities in a mouse model of Rett syndrome. We aimed

to characterize the onset and progression of gait phenotypes and

also to evaluate whether gait abnormalities provide rapid, robust

and objective outcome measures that might be utilized in future

studies to assess the effectiveness of therapeutic interventions. We

found that Mecp2stop/y mice showed several highly significant gait

alterations including increased stride frequency, less precise paw

placement and a wider gait. Gait abnormalities and gait

dysfunction are key diagnostic characteristics of RTT in girls

and these features represent prominent and disabling aspects of

the disorder [2,19–21]. Mecp2 knockout mice have been reported

previously to display gait abnormalities at the age of 5–8 weeks

[7,11,12], and our findings agree with these reports. However, our

findings reveal locomotor deficits in these mice across a wide range

of gait domains including stride features and coordination, and

that these deficits are evident from 4 weeks of age in the Mecp2stop/y

model and are maintained over early adult life in many cases.

Early detection of biomarkers of the phenotype is potentially

important in preclinical therapeutic studies. At 4 weeks of age,

hemizygous Mecp2 knockout mice are typically considered to be

‘presymptomatic’ for overt Rett-like signs [4,5,8]. Certain cellular

and network features of MeCP2-deficiency, such as imbalance

between cortical excitatory and inhibitory circuits, are apparent in

Mecp22/y mice from as early as 4–5 weeks [22], but many other

features, such as diminished synaptic plasticity [13,23] and the

appearance of reduced locomotion, seizures and abnormal

breathing, are typically reported to occur later in male Mecp2
knockout mice [24].

Whilst RTT predominantly affects females, male knockout mice

are typically used for RTT preclinical studies, in part to overcome

the complexities resulting from mosaic expression of Mecp2 in

heterozygous females (due to X chromosome inactivation) but also

because the course of phenotype development is more aggressive,

more stereotyped and less variable in the males, and they therefore

provide a more useful and experimentally tractable test-bed for

putative therapeutic interventions [25].

The treadmill-based gait analysis used here has been validated

in a variety of disease models including amyotrophic lateral

sclerosis [26], Parkinson disease [27,28] and Huntington disease

[29,30] and has been shown to be a simple, sensitive and objective

method for detecting gait abnormalities. We have shown here that

certain gait abnormalities can be detected very early in the disease

progression in the RTT model used here, and we would argue that

these measures should be evaluated as biomarkers for early and

deep-seated aspects of the RTT-like phenotype, with a view to

developing them as early indicators of amelioration and/or

reversibility of RTT-like phenotypes in preclinical therapeutic

studies [31–35].
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