Skip to main content
. 2014 Nov 13;9(11):e112975. doi: 10.1371/journal.pone.0112975

Table 4. Statistics of best-fitting Poisson regression models of the monthly cases (2008–2012) on the mosquito abundance.

β S.E. p QICu (e(0.1*β)−1) = percent increase (%) 95% CI for percent increase (%)
Lower boundary Upper boundary
(A)
2008(Lag1) 0.6886 0.2092 <0.01 −84.9509 7.13 2.83 11.61
2009(Lag0) 0.3164 0.0803 <0.0001 −37.7425 3.21 1.60 4.85
2010(Lag1) 0.2968 0.0951 <0.01 −23.9126 3.01 1.11 4.95
2011(Lag0) 0.8847 0.4433 <0.05 3.9918 9.25 0.16 19.17
2012(Lag1) 0.5577 0.2780 <0.05 −15.9544 5.74 0.13 11.66
(B)
2009(Lag1) 7.5208 2.0986 <0.001 −70.6459 7.81 3.47 12.34
(C)
2008(Lag1) 1.2891 0.2314 <0.0001 −241.0632 1.30 0.84 1.76
2009(Lag2) 0.4842 0.1293 <0.001 −124.6235 0.49 0.23 0.74
2010(Lag0) 0.5830 0.1278 <0.0001 −575.0240 0.58 0.33 0.84

The Poisson regressions are calculated between (A) monthly JE cases and time-lagged Culex mosquito abundance, (B) monthly DF cases and time-lagged Ae. albopictus abundance, (C) monthly malaria cases and time-lagged An. sinensis abundance, respectively. All significance levels are assessed at α<0.05.