
Negation’s Not Solved: Generalizability Versus
Optimizability in Clinical Natural Language Processing
Stephen Wu1,5*, Timothy Miller2, James Masanz1, Matt Coarr3, Scott Halgrim4, David Carrell4,

Cheryl Clark3

1 Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America, 2 Children’s Hospital Boston Informatics Program, Harvard

Medical School, Boston, Massachusetts, United States of America, 3 Human Language Technology Department, The MITRE Corporation, Bedford, Massachusetts, United

States of America, 4 Group Health Research Institute, Seattle, Washington, United States of America, 5 Oregon Health and Science University, Portland, Oregon, United

States of America

Abstract

A review of published work in clinical natural language processing (NLP) may suggest that the negation detection task has
been ‘‘solved.’’ This work proposes that an optimizable solution does not equal a generalizable solution. We introduce a new
machine learning-based Polarity Module for detecting negation in clinical text, and extensively compare its performance
across domains. Using four manually annotated corpora of clinical text, we show that negation detection performance
suffers when there is no in-domain development (for manual methods) or training data (for machine learning-based
methods). Various factors (e.g., annotation guidelines, named entity characteristics, the amount of data, and lexical and
syntactic context) play a role in making generalizability difficult, but none completely explains the phenomenon.
Furthermore, generalizability remains challenging because it is unclear whether to use a single source for accurate data,
combine all sources into a single model, or apply domain adaptation methods. The most reliable means to improve
negation detection is to manually annotate in-domain training data (or, perhaps, manually modify rules); this is a strategy
for optimizing performance, rather than generalizing it. These results suggest a direction for future work in domain-adaptive
and task-adaptive methods for clinical NLP.
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Introduction

Negation in unstructured clinical text is a well-known phenom-

enon. It is crucial for any practical interpretation of clinical text,

since negation is common in clinical narrative. For example, the

medical significance of ‘‘no wheezing’’ is quite different from that

of ‘‘wheezing.’’ With the increasingly widespread use of electronic

medical records (EMRs), computational methodologies for nega-

tion detection have also become well-known, most notably the

early and strikingly straightforward NegEx algorithm [1]. In

NegEx, simple regular expressions yield solid performance on

detecting the negation of Findings, Diseases, and Mental or

Behavioral Dysfunctions from the Unified Medical Language

System (UMLS). The success of NegEx (and other techniques) is

attributable to the constrained pragmatics of clinical text: because

physicians are writing the text in order to convey the health status

of a patient, there is a limit to the ways that medically pertinent

concepts can be negated. Since existing algorithms have

performed well in many published studies [2–8], many clinical

natural language processing (NLP) practitioners consider negation

detection a solved problem (see Table 19s summary of Related

Work) with a simple, generalizable solution.

However, our present work will show that this ‘‘solved’’

designation is premature because current solutions are easily

optimizable but not necessarily generalizable. Negation detection is

still a challenge when considered from a practical, multi-corpus

perspective, i.e., one in which an algorithm is deployed in many

clinical institutions and on many sources of text. For simplicity in

this article, we will consider each corpus as its own ‘‘domain,’’

though we recognize that each corpus bridges multiple medical

subdomains and all sources that we consider consist only of clinical

text.

As the NLP Attribute Discovery team for the Strategic Health

IT Advanced Research Project on the Secondary use of the EHR

(SHARPn), we attempted to detect negation in four corpora, using

machine learning, rules, domain adaptation, and various evalua-

tion scenarios. These corpora include the new SHARPn NLP

Seed Corpus of clinical text with multiple layers of syntactic and

semantic information, including named entities (NEs) and polarity

(i.e., negation). We also used the 2010 i2b2/VA NLP Challenge

corpus, the MiPACQ corpus, and the NegEx Test Set. The

SHARPn Polarity Module used in our evaluation is currently

available in Apache cTAKES (clinical Text Analysis and

Knowledge Extraction System; ctakes.apache.org) as part of the

ctakes-assertion project, including an integrated domain adapta-

tion algorithm [9]. cTAKES is a comprehensive clinical NLP tool

based on the Unstructured Information Management Architecture
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(UIMA), including (among other things) named entity recognition

and negation detection.

We conclude that practical negation detection is not reliable

without in-domain training data and/or development. Thus, it can

be optimized for a domain, but is difficult to generalize across

domains. ‘‘Benchmark’’ gold standard data sets differed sufficiently

to have a profound effect on the viability of negation detection

algorithms. Furthermore, it is difficult to determine an optimal mix

of training data, or to standardize a definitive ‘‘benchmark’’

metric, since both are influenced by corpus-specific annotation

guidelines and data sources. The results we report here should

remind users of negation detection algorithms to be vigilant in

tuning systems to their data, whether by training with local data or

modifying rules. We also call for future work in domain-adaptive

and task-adaptive methods.

After a discussion of the extensive related work in negation

detection, the remainder of this article will introduce the data and

methods for corpus and system comparisons of negation detection,

present the resulting performance of systems on the different

corpora, and discuss implications for negation detection and

annotation schema in the larger picture of clinical informatics.

Related Work

Negation has been studied philosophically since the time of

Aristotle; computational efforts addressing negation and related

evidentiality/belief state issues have surfaced much more recently

[10]. In the clinical domain, negation detection was a very

practical early motivation for NLP adoption among the informat-

ics community, and thus significant effort has gone into this task.

While there have been many systems implementing negation

detection, publicly available corpora for testing them are limited

by patient privacy concerns, as is typical in clinical NLP.

Negation detection systems have shown excellent performance

in clinical text, beginning with the rule-based NegEx algorithm

[1]. NegEx was originally evaluated on spans of text that matched

UMLS Findings, Diseases, and Mental or Behavioral Dysfunctions

among 1000 test sentences sampled from discharge summaries at

the University of Pittsburgh Medical Center; a regression test set

was released later with de-identified notes of 6 different types.

NegEx has produced numerous updated and customized systems

[11,12], including the updated version released with ConText [13]

which performed well on a benchmark NegEx Test Set (available

at https://code.google.com/p/negex/wiki/TestSet). Our tests

used the YTEX (Yale cTAKES Extensions) version of NegEx

[14] as a baseline and included the NegEx Test Set as a

benchmark.

Similar to NegEx, many other negation algorithms take a rule-

based approach, with a variety of techniques: lexical scan with

context free grammar [6], negation ontology [3], or dependency

parse rules [7]. Some negation algorithms treat the problem as a

machine learning classification task [4] or as some hybrid between

rules and machine learning [2,5]. The performance of these

systems and their data sources is summarized in Table 1 below.

All these general approaches were represented in the 2010

i2b2/VA NLP Challenge task on assertions [8]. In addition to

catalyzing innovation from multiple systems, this shared task

produced a benchmark data set that is available for research with a

simple data use agreement; it interprets negation on medical

problem NEs as an assertion that the problem is absent.

The four corpora used in our study all annotate named entities
explicitly; here, we consider named entities to be spans of text that

refer to real-world entities or events that may or may not be

classified or mapped to some external ontology. These corpora do

not explicitly include the scope of negation indicators – i.e., the

maximum span within a negation cue word could be applicable..

Some efforts have reversed this, giving an implicit notion of named

entities but an explicit notion of negation scope: notably the

BioScope Corpus [15] that was used as part of the CoNLL 2010

Shared Task [16]. Bioscope annotates negation, uncertainty, and

their scopes on de-identified clinical free text (1,954 radiology

reports), biological full articles (9 articles from FlyBase and BMC

Bioinformatics), and scientific abstracts (1,273 abstracts also in the

GENIA corpus). This is in contrast to the work we present here,

which focuses on named entities. We ignore scope for two reasons:

First, the lack of gold standard named entity mentions is an

additional source of error that no other corpus would have,

making the comparison unfair. Second, while negation scope

annotations overcome some recall issues for non-standard

terminology (e.g., ‘‘patient is not feeling as much like a pariah

today’’ would represent negation correctly despite finding no NE),

they do not overcome issues in fine-grained annotation guideline

distinctions (see Section 3.3 on Annotation Guidelines).

Methods

Here, we first describe the annotated NLP corpora used in

training and testing, with salient information about the gold

standard entity and negation annotation guidelines. We then

describe the new SHARPn Polarity Module and the YTEX

NegEx rule-based baseline.

3.1 Ethics statement
We did not seek IRB approval as all the data used in this study

were collected from previous studies. While the data sets were

from electronic medical records that originally included protected

health information, all medical records were reliably de-identified

Table 1. Extensive successful previous work on negation detection in clinical text.

Algorithm Data source Entities Method Prec. Rec. F1

Negfinder [6] 10 surgery notes & discharge summaries UMLS concepts Lexical/syntax rules 91.84 95.74 92.96

NegEx [1] UPMC ICU discharge summaries clinical conditions Trigger/scope rules 84.49 77.84 80.35

Neg assignment grammar [3] Hopkins HNP notes SNOMED concepts Negation ontology 91.17 97.19 93.90

Neg. Detection Module [5] Stanford radiology reports unmapped text phrases Regex/syntax rules 98.63 92.58 94.91

ConText [13] UPMC 6 note types clinical conditions Trigger/scope rules 92 94 93

MITRE assertion [2] 2010 i2b2/VA ‘‘problem’’ phrases Cue words, CRFs 92 95 94

DepNeg [7] Mayo clinical notes symptoms & diseases Dependency path rules 96.65 73.93 83.78

doi:10.1371/journal.pone.0112774.t001
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before we had access to the data sets. Thus, none of the authors

had access to any patient identifying information. Three of the

corpora (the SHARPn corpus, MiPACQ corpus, and i2b2 corpus)

were available to us with signed Data Use Agreements between the

supplier and recipient institutions. One (the NegEx Test Set) was

freely downloadable online with no restrictions.

3.2 NLP corpora with negation annotations
Our work used four clinical NLP annotation efforts; the

SHARPn NLP Seed Corpus, the 2010 i2b2/VA NLP Challenge

Corpus; the MiPACQ corpus; and the NegEx Test Set. Statistics

in Table 2 show their overall relative sizes, train/test splits, and

proportion of negated concepts.

First, the SHARPn NLP Seed Corpus consists of de-identified

radiology notes related to Peripheral Arterial Disease (PAD) from

Mayo Clinic, and de-identified breast oncology progress notes

regarding incident breast cancer patients from Group Health

Cooperative. This multi-layered annotated corpus follows com-

munity adopted standards and conventions for the majority of

annotation layers, which include syntactic trees, predicate-

argument structure, coreference, UMLS named entities, UMLS

relations, and Clinical Element Models (CEM) templates [17].

Negation is included in the CEM templates as an attribute of

UMLS concepts.

Second, the 2010 i2b2/VA NLP Challenge Corpus contained

manually annotated, de-identified reports from Partners Health-

care, Beth Israel Deaconess Medical Center, and the University of

Pittsburgh Medical Center. The majority of notes were discharge

summaries, but the University of Pittsburgh Medical Center also

contributed progress notes.

Third, the MiPACQ corpus [18,19] annotates multiple

syntactic and semantic layers, similar to the SHARPn NLP

corpus. There are three major divisions to the sources of data: a

snapshot of Medpedia articles on medical topics, written by

clinicians, retrieved on April 26, 2010; clinical questions from the

National Library of Medicine’s Clinical Questions corpus (http://

clinques.nlm.nih.gov), collected by interviews with physicians; and

sentences from Mayo Clinic clinical notes and pathology notes

related to colon cancer.

Finally, the NegEx Test Set is a set of manually-selected

sentences from 120 de-identified University of Pittsburgh Medical

Center reports (20 each of radiology, emergency department,

surgical pathology, echocardiogram, operative procedures, and

discharge summaries). This set was used to evaluate the ConText

algorithm [13], while another 120 reports of similar distribution

(not publically available) were used for the development of the

negation portion of ConText (i.e., an updated NegEx).

3.3 Comparison of annotation guidelines
Manually annotated negation in one of these corpora is not

strictly equivalent to that in other corpora. We cannot directly

compare annotation guidelines because we do not have corpora

that are multiply-annotated with different guidelines. However, we

should note that all annotation projects reported high inter-

annotator agreement within their respective projects. Here, we

qualitatively analyze the annotation guidelines concerning the

annotation of both NEs (concepts) and attributes (assertion status),

hypothesizing that some differences in annotation guidelines may

negatively affect the performance of negation algorithms across

corpora.

The primary difference between the annotation guidelines of

the corpora appears to be in the definition of NEs, rather than

direct indications of how negation should be handled. First, NE

annotation guidelines differ in the semantic types that are allowed.
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The broadest is the MiPACQ corpus, which annotates 17 UMLS

Semantic Groups. (However, in practice, some semantic groups

have zero or negligible frequencies, and we have grouped them

together in our analysis.) SHARP only annotates the 6 most

clinically relevant groups, namely, Diseases and Disorders, Signs

and Symptoms, Labs, Medications, Procedures, and Anatomical

Sites. These semantic group divisions and their respective

distributions are enumerated in Table 3, for these two corpora.

The NegEx Test Set is much more narrow, including only Signs,

Symptoms, Diseases, and Findings (but not differentiating between

these) with qualitative values. The i2b2 corpus is similarly

restrictive, only annotating ‘‘problems,’’ i.e., Diseases, Signs and

Symptoms. Thus, they are excluded from Table 3.

The corpora also differ in the span to consider when identifying

NEs. NegEx Test Set is the most permissive, annotating whole

clinically-relevant phrases as NEs regardless of their syntactic type

(e.g., the statement ‘‘Right ventricular function is normal’’ is

treated as a single entity as shown by the underlining). i2b2/VA

guidelines only consider whole noun and adjective phrases as

possible NEs (e.g., ‘‘her shortness of breath and coughing

resolved’’ includes the modifier ‘‘her’’ in the NE). Similar to

i2b2/VA, MiPACQ also indicates that whole noun phrases should

be candidate NEs, but smaller units are typically used in practice

(e.g., ‘‘her chest x-ray’’ leaves out the modifier ‘‘her’’). SHARP

predominantly annotates maximal strings that match UMLS terms

as NEs, which often excludes long paraphrases and closed-class

modifying adjectives (similar to MiPACQ), although there are

some cases of CUI-less NEs and multi-span NEs.

Another difference in NE annotation guidelines is the amount of
overlap allowed between NEs. The NegEx Test Set has only one

phrase annotated per sentence, hence no overlap in NEs; i2b2/VA

only annotates full noun and adjective phrases, so fully subsumed

NEs are not allowed. In contrast, SHARP annotates subspans as

long as they are mapped from the UMLS and of a different

semantic type (e.g., both ‘‘chest’’ (anatomical site) and ‘‘chest x-

ray’’ (procedure) in ‘‘her chest x-ray’’). MiPACQ removes this

restriction of different semantic types, but stipulates that some

relationship must be shared between the subspan and the full span

– this is in practice very similar to SHARP (e.g., there is a

locationOf relationship between ‘‘chest’’ and ‘‘chest x-ray’’).

Overall, the four guidelines are not as precise with negation

annotation definitions as they are with NEs. The SHARP,

MiPACQ, and NegEx Test Set representations imply a relation

between an explicit negation marker and the negated term (e.g., a

cue word like ‘‘no’’ would be marked, and the following term

‘‘shortness of breath’’ would then set a negation_indicator = pre-

sent). The i2b2/VA guideline assumes a pragmatic inference

about the intent of the author in describing his/her observations

(e.g., ‘‘no shortness of breath’’ would mark assertion = absent

without marking the cue word). This difference does lead to some

minor morphology-related annotation differences. For example,

‘‘afebrile’’ is marked as ‘‘absent’’ for i2b2, but not in SHARP,

MiPACQ, or NegEx Test Set since there is no external negation

indicator.

3.4 SHARPn Polarity Module
As with many existing approaches, the SHARPn Polarity

module treats negation detection as a classification problem for

NEs. We engineered features that would make sense of the context

surrounding an NE:

A. Token in Bag-of-Words (BOW). These most basic,

binary features indicated whether a given word appeared

within a window (bag) from the NE. For example, one feature
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might be whether ‘‘no’’ occurred in the 5 preceding words.

We included several different BOWs, based on directionality

(preceding vs. following the NE) and size (3, 5, or 10).

B. Token in positional context. These features are similar to

BOW features, but are specific to the exact position with

respect to the NE of interest (e.g., ‘‘without’’ occurred 4

words preceding the NE). Windows of 4 and 5 were

considered.

C. Cue words. Following MITRE’s successful negation

detection system [2], we identified cue words – an expert-

curated list of negation-related words (e.g., ‘‘negative for’’).

The nearest cue word in scope and its category (a normalized

word or phrase, e.g., ‘‘negative’’) were included as binary

features.

D. Dependency path rules. We directly utilized the rule-

based DepNeg system [7] to produce binary features

corresponding to whether the NE lay along a dependency

path that typically specifies negation. For example, ‘‘no

evidence of coughing, rales, or wheezing’’ has ‘‘wheezing’’

outside a 5-word window, but is connected by a dependency

parse path to ‘‘no.’’

E. Constituency tree fragments. In addition to dependency

path rules, we also used constituency tree fragments. The

constituent parser within cTAKES is Ratnaparkhi’s Maxi-

mum Entropy parser [20] as implemented in OpenNLP,

trained on clinical treebanks. Tree fragments (partial

constituency trees) can represent, for example, that the NE

in question sits inside an adjective phrase ‘‘negative for ,

concept..’’ Fragments are automatically extracted and

defined following Pighin and Moschitti [21]; training data

determines whether the features are useful or not.

Examples of these features are included in a table in the

Discussion section. The size of the feature set is upper-bounded by

the size of the training set’s vocabulary and diversity of tree

fragments; there are 12 dependency path rules. In practice, a

feature vector, v, will be smaller than this upper bound, since not

every dictionary word is in the context of an NE.

The SHARPn Polarity Module classifies each NE based on

these features. We chose to utilize classifiers via ClearTK because

of its compatibility with UIMA-based systems like cTAKES [22].

After some preliminary experimentation with various classifiers,

we selected linear kernel SVMs implemented with LIBLINEAR,

which learn decision boundaries (negated vs. not negated) based

on the distribution of features in the training data. SVMs are

considered to have good generalization performance due to

inherent regularization, and excel in situations (like ours) where

there are a massive number of features. Since linear kernel SVMs

require only one parameter to be tuned, we manually tuned it

during development using cross-validation.

Training data for a single model can consist of more multiple

corpora. In a standard setting, instances from different corpora

would not be differentiated during training. Alternatively, we

implemented an optional domain adaptation algorithm, frustrat-

ingly easy domain adaptation (FEDA) [9], to build some of our

multi-corpus models. FEDA is a simple but effective domain

adaptation technique that requires in-domain training data. If

there are data from four domains a, b, c, and d, for example, a

model would be trained with 5 concatenated (row) feature vectors:

v = [vall va vb vc vd ]. A training sample from domain a will be

logged in vall and va only, whereas a training sample from from

domain b will be logged in vall and vb only, and so forth. At test

time, the domain of the test sample is supplied to the classifier, and

instances are classified with a weighting of the domain-specific

model in concert with the ‘‘general’’ model.

3.5 Evaluation Setup
Our evaluations used the NegEx algorithm as a baseline, as

implemented in the Yale cTAKES Extensions (YTEX) [14]. Using

Named Entities discovered by the standard cTAKES pipeline, the

YTEX negation module set the ‘‘polarity’’ attribute of each NE to

21 (negated) or +1 (not negated). Because NegEx is a rule-based

method, we would expect it to be immune to performance

improvement or degradation based on training data. However, it

is well-known that customization of rules is likely necessary when

applying NegEx in settings other than the one in which it was

initially developed [11,12].

The SHARPn Polarity module was implemented within the

cTAKES system (see Figure 1), leveraging feature extraction and

machine learning programming interfaces available in the

ClearTK suite of tools (available at https://code.google.com/p/

cleartk/). It should be noted that we did preliminary tests using x2

feature selection (filtering out the feature if their x2 values were too

low), but the performance did not significantly improve. Thus, we

have left feature selection out of the results of this study; some

sample x2 values for specific features are listed in the Discussion

section. The polarity module used in our tests is currently available

as a tagged branch of the Apache cTAKES source code

repository, and will be part of a future cTAKES release.

For both training and testing, we used gold standard NEs and

negation annotations as defined in each of the corpora. System

negation annotations are compared to gold standard for precision,

recall, and F-measure (the harmonic mean of precision and recall).

We also used the default cTAKES pipeline to produce anything

besides NEs or negation annotations (e.g., sentence annotations,

tokens, POS tags, dependency parses, constituency parses,

semantic role labels; see ). While there is some risk for error

propagation from these other components into negation detection,

we believe this risk is minimized for the main precision, recall, and

F-measure metrics, because systemic errors would appear in both

training and testing data, and any impact on negation perfor-

mance would be mediated through their representation in a

machine learning feature vector.

We trained the SHARPn Polarity module on each of the four

corpora; train/test splits were provided for the SHARPn, i2b2/

VA, and MiPACQ corpora; for these three corpora, training and

testing in our evaluations uniformly respected these training and

testing splits (e.g., even in cases like training on SHARP data but

testing on i2b2 data). Because the NegEx Test Set’s corresponding

development set was not available, we used the NegEx Test Set in

any single evaluation as either the training data or the testing data.

The tables presenting our results use parantheses to show when

reusing training data invalidates the test performance measures

(i.e., training and testing would have been on the same data).

Results

4.1 Single test corpus performance
The practical question a user might ask is: ‘‘How can I

maximize negation detection performance for my data?’’ Table 4

below illustrates the difficulty of answering this question by

showing performance on four corpora (columns) by various

systems (rows). Row 0 gives previously reported comparison

statistics for i2b2 data (MITRE [2]) and the NegEx TestSet

(GenNegEx 1.2.0, see https://code.google.com/p/negex/wiki/

TestSet); SHARP and MiPACQ do not have previous results to

compare with. We have grouped these systems to be representative
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of three strategies for negation detection that are used in the

community: the unedited, rule-based YTEX algorithm (row 1);

machine learning classifiers when only out-of-domain data (OOD)

is available (rows 2–6); and machine learning classifiers when some

in-domain data is available (rows 7–9). Note that row 7 is

equivalent to the diagonal from rows 2–6, namely, where the

training set and test set are from (different portions of) the same

corpus. Table 4 also includes significance bands down each

column; pair-wise approximate randomization significance tests

for F1 score, aggregated by document, are reported for p,0.05.

Values in a column labeled with different successive superscripted

letters (e.g., 93.9a and 92.6b) indicate that there is a significant

difference between two systems. These bands are further visualized

in Figure 2.

First, YTEX (top row), implementing the widely used rule-based

NegEx algorithm, performed quite well on the NegEx Test Set

(F1 = 95.3%). When used without modification on other corpora,

performance fell to unacceptable levels (e.g., F1 = 62.3% on

SHARP data). As might be expected, we may conclude that

widely-used rule-based algorithms need to be modified according

to their target data.

For situations in which only OOD data is available (common in

clinical text), one strategy is to use a single OOD corpus as training

data (rows 2–5). Using a single OOD corpus has widely varying

results, with models ranging from 59.3% to 95.4% F-score on the

NegEx Test Set. Another strategy is to ‘‘use all the (OOD) data

you have’’ (row 6), but again the results are mixed. With the

highest OOD models in bold, it is not clear which strategy is

optimal, and it is difficult to tell what pairs of corpora yield good

performance. Underlying reasons for this variability are further

explored in Section 4.2.

The situation is much improved when in-domain data is

available (rows 7–9, with most scores lying within the highest

significance band, labeled with superscript ‘a’). Only in MiPACQ

data, for which the test set is small, are there OOD models in the

same significance bands (i.e., superscript ‘a’ in rows 2–6) as the

best models with in-domain data. With in-domain models, we still

face the same problem of whether to use a single in-domain corpus

(row 7) or to ‘‘use all the data you have’’ (row 8). Only in i2b2 data

are improvements statistically significant, and which approach

performs better appears to differ by corpus. It may be the case

that, since i2b2 data is only on ‘problems,’ including training data

Figure 1. The cTAKES Pipeline. The SHARPn Polarity Module is an Attribute Discovery algorithm. Training and evaluations use gold standard NEs
(skip NER).
doi:10.1371/journal.pone.0112774.g001

Figure 2. Significance bands of model performance for each test corpus. These are labeled with successive letters from right to left in
Table 4.
doi:10.1371/journal.pone.0112774.g002
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from other sources decreases performance; the MiPACQ corpus,

being the most general, appears to benefit from training on other

corpora.

Using domain adaptation (row 9) is also not conclusively better

than a single in-domain corpus (row 7) or leaving out domain

adaptation (row 8), since improvements are not statistically

significant at the p,0.05 level (all share ‘a’ superscripts). Recall

that these ‘‘All+FEDA’’ tests (row 9) will train a model with a

feature space approximately 5 times the size of the ‘‘All’’ feature

spaces (row 8). Without conclusive evidence, it is difficult to say

whether the additional model complexity is worth it.

Thus, whether there is in-domain data available or not, we

cannot conclude a uniform policy such as ‘‘use all available data to

train your model’’ or ‘‘train a model on a single most similar

corpus’’ or ‘‘always use domain adaptation if possible.’’ However,

we can conclude that annotating in-domain data is the best way to

ensure solid performance on a machine learning system. Note that,

this is a method of optimizing the performance for a corpus, rather

than generalizing performance between corpora.

4.2 Corpus difficulty and usefulness
Rather than trying to define an arbitrary scientific measure of

corpus ‘similarity,’’ we consider the practical perspectives of

corpus ‘‘difficulty’’ (scores on testing, down columns) and

‘‘usefulness’’ (scores on training, along rows). As evidenced by

the OOD rows 2–5 of Table 4, the difficulty and usefulness of

corpora seem to vary. Testing on MiPACQ data has an average F1

score of 70.9% down the column of trained systems, indicating it is

probably the most difficult to test on. Training on i2b2 data (row

3) achieved a macro-averaged F1 score of 80.7% across the row of

test sets, indicating its training set is perhaps the single most useful

for training.

Difficulty and usefulness are not symmetric: i2b2 data is clearly

the best OOD training data for the NegEx Test Set (F1 = 95.4% in

column 4); but NegEx is not the best OOD training data for the

i2b2 test set (F1 = 81.1% in column 2; MiPACQ is significantly

better with F1 = 82.6%). These variations in difficulty and

usefulness could hypothetically be explained by several factors.

For example, the diversity of source data in the MiPACQ corpus

(including non-clinical data such as Medpedia) may contribute to

its difficulty; MiPACQ in-domain performance is loosely compa-

rable to the OOD performance of other models. Additionally,

Section 4.4 below explores differences in the annotation guidelines

(as expressed in NE length and semantic group). Different corpora

have fundamentally different characteristics, and more samples

from one corpus are not equal to those from another.

We also sought determine whether usefulness could be

explained by corpus size, hypothesizing that more data would

lead to more robust machine learning models. Thus we performed

experiments in which the amount of training data was varied.

These experiments focus on the i2b2 training data which had a

small but consistent advantage in cross-domain experiments. We

built learning curves in which we tested on the SHARP Seed,

MiPACQ, and i2b2 test sets. We randomly sampled from 10% to

100% of the training data, at increments of 10%. For each

sampled proportion size we averaged across 5 runs to compute F-

scores at that point.

The results are shown in Figure 3. The learning curve for the

i2b2 data seems to be increasing even until the very end, as the

classifier seems to be making marginal improvements with ever

more data. In contrast, in both cross-domain experiments the

performance levels off very early, conservatively estimated at

around 20% of the i2b2 training data being used. For additional

reference, we have also plotted two points taken from Table 4– the

in-domain performance for SHARP and Mipacq. The x-axis for

each of these points is the size of the training data (counted as the

number of instances of negation), while the y-axis is the F-score

obtained on each corpus’ in-domain evaluation.

These experiments seem to indicate that the value of the i2b2

corpus is not simply because of its size. In fact, performance on

outside corpora of a system trained on 20% of the i2b2 data is

comparable to one trained on 100%.

We should be careful to not overstate the distinctions of ‘‘most

difficult’’ or ‘‘most useful.’’ Furthermore, overall ‘‘usefulness’’ does

not necessarily imply usefulness in a specific OOD setting or

corpus, for example, supplementing in-domain training data with

the ‘‘useful’’ corpus. In further testing on the SHARP corpus, we

considered whether the ‘‘useful’’ i2b2 training data could augment

the SHARP training data, and found that adding i2b2 training

data did not improve performance on the SHARP corpus

(F1 = 90.9%), whereas adding MiPACQ did improve performance

(F1 = 94.6%). Though it is difficult to define ‘‘similarity,’’ it may be

the case that more similar corpora can be mixed as training data

more effectively.

4.3 Average performance
We considered average performance of several models on

multiple corpora. In Table 5 we include averages with and

without FEDA (i.e., for rows 8–9 of Table 4), labeling pairwise

Table 4. Performance (F1 score) in practical negation detection situations.

Test sharp i2b2 mipacq negexts

Previous 0. (various) – 94 – 94.6

Rule-based 1. ytex (rules) 62.3c 82.1d 71.3a,b 95.3a

ML with out-of-domain (OOD) training 2. sharp 80.7e 61.2b 87.3b

3. i2b2 74.7b,c 71.9a,b 95.4a

4. mipacq 72.9b,c 82.6d 59.3d

5. negexts 58.6c 81.1e 70.6a,b

6. All 3 OOD 79.0b 83.9c 69.1a,b 69.9c

ML with in-domain training 7. 1 In-Domain 93.5a 93.6a 73.6a,b (99.9)

8. All 4 corpora 89.7a 92.6b 75.3a (69.9c)

9. All+FEDA 97.9a 93.9a 73.9a (58.0d)

doi:10.1371/journal.pone.0112774.t004
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statistical significance at p,0.05 between the domain adapted and

non-domain adapted versions with an asterisk. The NegEx Test

Set is used for training rather than testing.

Here, we report both macro-averages (arithmetic mean of the

three test sets) and micro-averages (weighted by the number of

instances in each test set). The micro-averaged scores are heavily

weighted towards the i2b2 numbers because the i2b2 test set is the

largest; macro-averages, on the other hand, are much lower than

has been previously reported in literature, in large part due to the

difficulty of the MiPACQ corpus. Overall, i2b2 is the only corpus

on which domain-adapted models clearly outperform un-adapted

models.

4.4 Named Entity characteristics
Negation predictions were further analyzed to see if the

differences in NE annotation guidelines influenced performance,

since resulting differences in ‘‘gold standard’’ training data could

confuse machine learning systems. Because guidelines for anno-

tating NEs differed in how much of a noun phrase to include, we

examined NE length in words. Figure 4 shows that the i2b2-

trained model has the best overall performance, likely due to its

larger number of training samples rather than its similarity to

other annotation guidelines. Underscoring this, the NegEx Test

Set is the most permissive guideline (allowing whole phrases), yet it

obtains similar performance to the restrictive SHARP and

MiPACQ guidelines (typically short phrases).

Figure 4 also shows that longer Named Entities are more

difficult to negate correctly in all of the corpora; in the i2b2 corpus,

single-word terms were easy to negate, whereas in other corpora

single-word terms were substantially harder. One hypothesis is

that this could be due to i2b2’s different accounting of inherently

negated terms such as ‘‘afebrile.’’ ‘‘Afebrile’’ itself accounted for

124 of 3,609 negated NEs in the i2b2 training set, and the number

Figure 3. Learning curve for i2b2 training data on various corpora. For each proportion of the i2b2 corpus (x axis), the reported F-score (y
axis) is an average of 5 randomly sampled runs.
doi:10.1371/journal.pone.0112774.g003

Table 5. Average F-score with and without frustratingly easy domain adaptation (FEDA).

Test \Train All + FEDA

sharp 89.66 97.87

i2b2 92.57 93.93*

mipacq 75.29 73.93

negex – –

macro-avg 85.84 88.58

micro-avg 91.91 93.28*

doi:10.1371/journal.pone.0112774.t005

Figure 4. The effect of named entity length (in number of
words) on performance for each of 6 training configurations.
SHARP, MiPACQ, and i2b2 test sets are used for evaluation.
doi:10.1371/journal.pone.0112774.g004
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of single-term entities inherently negated by virtue of negative

suffixation or negative acronym component (e.g., ‘‘NAD’’ standing

for ‘‘no acute distress’’) total 299 (8.3%). While this does not

account for the total error difference in one-word NEs, it is a factor

worth noting. Additional annotation differences may result from

differing assumptions regarding explicit and implicit expression of

negations. Further accounting of these terms may require re-

annotation of the corpus, which is out of the scope of this article.

Because the annotation guidelines also differed in which

semantic groups to annotate, we considered performance of each

model for each specific semantic group, shown in Figure 5. Recall

from Table 3 that SHARP and MiPACQ included a broad

selection of semantic groups, including anatomical sites (ANAT),

chemicals and drugs (CHEM), disorders (DISO), laboratories

(LAB), procedures (PROC), and symptoms (SYMP). i2b2 and the

NegEx Test Set only specified ‘‘problems’’ and are considered

EVENT in Figure 5.

Despite their annotation guideline similarity, we did not find

that SHARP and MiPACQ performed similarly on individual

semantic groups. Note in particular the relatively low SHARP-

trained performance on ANAT, CHEM, PROC, and SYMP

despite its having training data in those groups. A MiPACQ-

trained model also did not outperform other models, despite that

most of the test set NEs of minority semantic groups came from

the MiPACQ corpus. Similarly, the i2b2-trained and NegEx Test

Set-trained models had similar annotation guidelines, but did not

perform similarly on groups such as EVENT, DISO, or PROC.

These models were not uniformly worse than SHARP or

MiPACQ on the semantic groups for which they had no training

data.

Discussion

5.1 Salient features
From the foregoing tests, NE properties like length and semantic

group (and thus, annotation guidelines) did not fully explain the

discrepancy in performance between different models. Thus, we

qualitatively examined the broader differences between corpora by

looking at negation contexts in each corpus. We defined negation

contexts as the features of the SHARPn Polarity Module, as

defined in Section 3.4.

Table 6 calculates and ranks the x2 statistic corresponding to

each feature (i.e., on a 262 grid of whether the NE was negated vs.

whether the feature was present) within all four sets of training

data. Thus, the ranking in Table 6 corresponds to the model

trained on ‘‘All’’ training sets, in row 8 of Table 4 and in the

preceding section. Table 6 also compares the rank of features in

the ‘‘all’’ model to salient features in each individual corpus.

It is evident that the most important features were consistent

across all the corpora, representing the ‘‘easy cases’’ of negation:

namely, when the word ‘‘no’’ is related to a concept by proximity

or by syntax. The SHARP corpus differs somewhat, likely due to

the sources of data for the SHARPn Seed Corpus: Mayo Clinic

radiology reports (do not directly report a patient interaction) and

Seattle Group Health breast cancer-related notes (only one

example of a patient ‘‘denying’’ smoking). This distinction does

not explain why MiPACQ, rather than SHARP, is a more

‘‘difficult’’ corpus.

5.4 The Big Picture for Negation Detection
Because of the relatively constrained pragmatic uses of negation

in clinical text, negation detection algorithms are easy to optimize

for specific corpora, as illustrated in Table 1. However, we believe

the research community has at times conflated this with being

immediately effective off-the-shelf. Evaluation of systems is

artificially inflated by the ad hoc development of training and

testing corpora and their differing annotation guidelines. When in-

domain, consistently-annotated training data is scarce or nonex-

istent, negation detection performance remains unimpressive

(middle portion of Table 4), just as in other NLP problems like

parsing or named entity recognition. Furthermore, it is difficult to

simply characterize the differences between domains, e.g., by NE

length (Figure 4), semantic group (Figure 5) or lexical and

syntactic context (Table 6).

Figure 5. The effect of named entity semantic group on the F-score of 6 models. SHARP, MiPACQ, and i2b2 test sets are used for
evaluation.
doi:10.1371/journal.pone.0112774.g005
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To ensure excellent negation performance for a machine

learning model, it appears that we still need to annotate examples

of negation on the target corpus for fully supervised training (or

domain adaptation). Similarly, rule-based methods need a

development set and experts who can develop domain-specific

rules. Thus, we conjecture that negation is not ‘‘solved’’ until

negation is tailored to specific applications and use cases, or until

the more general problem of semi-supervised domain adaptation is

solved.

Conclusion

While a review of published work may suggest that the negation

detection task in clinical NLP has been ‘‘solved,’’ our multi-corpus

analysis of negation detection indicates that it is easy to optimize for

a single corpus but not to generalize to arbitrary clinical text.

Though negation detection can be straightforward in constrained

settings, both rule-based and machine-learning approaches have

mixed results in heterogeneous corpora. Furthermore, more

training data was not necessarily better for the common case in

which no in-domain data is available. The most significant

difference in performance was the availability of in-domain

training data, which is inherently a strategy for optimizing

performance rather than generalizing it. Furthermore, training

on all available data and using domain adaptation techniques did

not uniformly benefit performance in a significant way. Future

work includes task-adaptive negation detection algorithms and

semi-supervised domain adaptation.
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